数值分析考试复习总结汇总

合集下载

期末数值分析重点总结

期末数值分析重点总结

期末数值分析重点总结第一部分:数值逼近(Approximation)数值逼近是数值分析的基础,主要研究如何利用有限的计算资源得到逼近数学问题的有效算法。

数值逼近的主要内容包括多项式逼近、插值和最小二乘等。

1. 多项式逼近多项式逼近是指用一个多项式函数来逼近给定函数的值。

通过选择合适的多项式次数和插值点,可以使得多项式逼近误差最小化。

其中最常用的方法是最小二乘法,它可以通过最小化残差来得到最佳的多项式逼近。

多项式逼近在信号处理、图像处理和计算机图形学等领域中有广泛的应用。

2. 插值插值是指通过已知数据点的函数值来估计在其他点的函数值。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值通过构造一个满足插值条件的多项式来逼近给定函数。

牛顿插值则利用差商的概念来构造插值多项式。

插值方法在数值微分和数值积分中有广泛的应用。

3. 最小二乘最小二乘是一种在一组离散数据点上拟合曲线的方法。

通过最小化数据点与拟合曲线之间的欧几里得距离,可以得到最佳拟合曲线。

最小二乘法可以用于曲线拟合、参数估计和数据关联等问题。

第二部分:数值解方程(Numerical Solution of Equations)数值解方程是数值分析的重要内容之一,研究如何通过数值计算来求解非线性方程组和线性方程组。

数值解方程的主要方法有迭代法、常微分方程数值解和偏微分方程数值解等。

1. 迭代法迭代法是求解非线性方程组的常用方法之一。

通过不断迭代逼近方程的根,可以得到方程组的数值解。

常用的迭代法有牛顿迭代法和弦截法。

迭代法在计算机辅助设计、优化和数据分析等领域中有广泛的应用。

2. 常微分方程数值解常微分方程数值解研究如何通过数值计算来求解常微分方程。

常微分方程数值解的主要方法有Euler方法、Runge-Kutta方法和线性多步法等。

常微分方程数值解在物理学、工程学和生物学等领域中有广泛的应用。

3. 偏微分方程数值解偏微分方程数值解研究如何通过数值方法来求解偏微分方程。

(完整版),数值分析笔记期末复习汇总,推荐文档

(完整版),数值分析笔记期末复习汇总,推荐文档

x
*n )
e(x *1)
f
(x *1,
x *2 ,, xn
x *n
)
e(x *n )
n i 1
f
(x *1, x *2 ,, x *n ) xi
e(x *i )
9、加减乘除运算的误差估计
加法

对 误
e(x1 x2 ) e(x1) e(x2 )



误 (x1 x2 ) (x1) (x2 )
x1
b
sign(b) 2a
b2 4ac 109
x1
x2
c a
x2
c a x1
109 109
1
求和时从小到大相加,可使和的误差减小。若干数相加,采用绝对值较小者先加的算法,
结果的相对误差限较小
y 54321100 0.4100 0.3100 0.4100 54322
(三) 注意简化计算步骤,减少运算次数,避免误差积累(秦九韶)
则称 r (x*) 为近似值 x*的相
对误差限。 (2)性质:
当|| er (x*) | 较小时,可用下
是有量纲的。 (2)绝对误差限是正的,有无穷
常取
er
( x*)
e( x*) x*
式计算
绝对误差是误差的绝对值? 多个【则比 * 大的任意正数均
(错)
是绝对误差
限】
r
( x*)
(x*) | x |

x2* =3.14
作为 π 的近似值,则 | e2
| 0.00159
1 102 :三个有效数字 2

x3* =3.1416 作为 π 的近似值,则 | e3
| 0.00000734

山东省考研数学复习资料数值分析重点知识点

山东省考研数学复习资料数值分析重点知识点

山东省考研数学复习资料数值分析重点知识点数值分析是数学中的一个重要分支,它研究的是利用数值方法解决实际问题的理论和方法。

对于山东省考研的学生来说,数值分析是一个必修课程,理解和掌握数值分析的重点知识点对于备考非常重要。

本文将详细介绍山东省考研数学复习资料中数值分析的重点知识点。

一、数值误差与有效数字在进行数值计算时,绝对精确的数值很难获得,因此数值计算中会产生误差。

数值误差主要分为绝对误差和相对误差。

绝对误差是指计算结果与真实值之差的绝对值,相对误差是指绝对误差与真实值之比的绝对值。

为了评估数值的精确程度,我们还需要了解有效数字的概念。

有效数字是指一个数中,从第一个非零数位开始,一直到最后一个数字位之间的数字个数。

在进行数值计算时,我们需要考虑有效数字和误差的影响。

二、插值与多项式逼近插值是指利用已知数据点构造出一个函数,在这些数据点上与给定函数的函数值相等。

而多项式逼近是指利用已知数据点构造出一个多项式函数,使该多项式函数与给定函数在这些数据点上尽可能接近。

插值与多项式逼近是数值分析中常见的实用计算方法,可以用于曲线拟合、数据恢复等实际问题的求解。

三、数值积分与数值微分数值积分是利用数值方法计算给定函数在一个区间上的积分值。

数值微分是利用数值方法计算给定函数在一个点处的斜率或导数值。

数值积分和数值微分是计算积分和求导数的常用数值方法,可以广泛应用于物理、工程、金融等领域的问题求解。

四、常微分方程的数值解法常微分方程是研究物理、生物和工程等领域的重要工具。

数值解法通过将常微分方程问题转化为数值离散问题,进而求解出近似的数值解。

常见的数值解法包括欧拉法、改进的欧拉法、龙格-库塔法等,每种方法都有其适用范围和特点,需要根据具体问题选择合适的方法。

五、线性代数方程组的数值解法线性代数方程组是数值分析中的重要问题,常常涉及到大规模的稀疏矩阵。

数值解法通过将线性代数方程组转化为数值问题,并应用迭代法或直接法求解出线性代数方程组的解。

数值分析考试复习总结修订稿

数值分析考试复习总结修订稿

数值分析考试复习总结 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生?答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则:误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

数值分析期末知识点总结

数值分析期末知识点总结

数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。

它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。

在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。

本文将对数值分析期末知识点进行总结,以便帮助大家复习。

二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。

插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。

常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。

2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。

微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。

数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。

3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。

原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。

数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。

4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。

在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。

数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。

三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。

这些误差可能来自于测量、舍入、截断等各种原因。

因此,误差分析是数值分析中一个非常重要的内容。

数值分析考试复习总结

数值分析考试复习总结

第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生?答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0Λ=i , 101=h设 1+≤≤i i x x x ,则: 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x Λ, 其中 n x x x ,,,12Λ是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

(完整版)数值分析考试复习总结汇总,推荐文档

(完整版)数值分析考试复习总结汇总,推荐文档

10
100
误差估计:
f
max | f (x) fh (x) |
(x ih) (x (i 1)h) . 2! ixx(i1)h

第三章
最佳一致逼近:(了解) 最佳平方逼近
主要分两种情形:
1. 连续意义下
在空间 L2[a,b]中讨论
2. 离散意义下
在 n 维欧氏空间 Rn 中讨论,只要求提供 f 的样本值
n (x)
(x
xi
)
n
(xi
)
ji
n
n
其中: n (x) (x x j ), n xi (xi x j ) .
j0
j0
ji
例 1 n=1 时,线性插值公式
P1 ( x)
y0
(x x1) (x0 x1)
y1
(x x0 ) (x1 x0 )

例 2 n=2 时,抛物插值公式
P2 (x)
可得: L3 (x) x 2 (x 1 2)
方法二. 令
L3 (x) x(x 1 2) ( Ax B)

L3
(1)
3 2

L3 (1)
1, 2
定 A,B
(称之为待定系数法)

15.设 f (x) x2 ,求 f (x) 在区间[0,1] 上的分段线性插值函数 fh (x) ,并估计误差, 取等距节点,且 h 1/10 .
(2)
2x ( x 1 x
x 1 x) .
(3) 1 cos x sin 2 x sin x .

x
x(1 cos x) 1 cos x
第二章
拉格朗日插值公式(即公式(1))

数值分析考试复习总结

数值分析考试复习总结

第一章1误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时 哪些阶段将有哪些误差产生? 答:实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差: 建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差传播误差 6 •设a 0.937关于精确数x 有3位有效数字,估计a 的相对误差. 计f(a)对于f(x)的误差和相对误差. 解 a 的相对误差:由于1 |E(x)| x a 10 32-^10 2 2 9f(a)对于f(x)的误差和相对误差.E r (x)—1018|E(f)| | -.1 x 、1 a| =般要经历哪几个阶段?在对于f (x) .J x ,估x aE r (x)(Th1)| E r (f)| 10 3. 1 a 4 10 34=102 0.252有效数字基本原则:1两个很接近的数字不做减法:2:不用很小得数做分母(不用很大的数做分子)例题:4 •改变下列表达式使计算结果比较精确:1 1 2xx 1x1 cosx(1)| 1;1;(3)0,|x|解(1)2X 2(1x)(1 2x).1 cosxsin 2 xsin x,x 1 x)■x(1 cosx) 1 cosx第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为n其中:n(X)(X X j),j 0 n X i (X i X j).j 0例1 n=1时,线性插值公式P(x) yo (x X i) (x X o) (X o X i) y1(X i X o)例2 n=2时,抛物插值公式牛顿(Newton)插值公式由差商的引入,知(1) 过点X o , X1的一次插值多项式为其中(2) 过点X o,X1,X2的二次插值多项式为其中重点是分段插值:例题:1.利用):解⑵:方法一.由Lagrange 插值公式可得:L3(X) X2(X 12)方法二•令3 1由L a( 1) 3,L S(1)-,定A, B (称之为待定系数法) □2 215.设f(x) x2,求f(x)在区间[0,1]上的分段线性插值函数f h(x),并估计误差,取等距节点,且h 1/10.解f(x) X2,X i ih ,i 0,1, ,10,h 110第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间L 2[a,b]中讨论2. 离散意义下在n 维欧氏空间R n 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设 L 2[a,b]的 n 1 维子空间 P n =span {1,x,x 2 , x n }, 其中1, x,x 2 , x n 是L 2[a, b]的线性无关多项式系.n 对f L 2[a,b],设其最佳逼近多项式可表示为: a i x ii 0由(f *,) 0,P nn*即 (x —xHa j (f,x i ), i 0(1) n(*2)j 0其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组) .由{x i }i n 0的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一.11、求f (x) cos x , x [0,1]的一次和二次最佳平方逼近多项式 解: 设P 1*(x) a 0 a 1x , P ; (x) b 0 b 1x b 2x 2分别为f(x)的一次、二次最佳平方逼近多项式。

数值分析考试知识点总结

数值分析考试知识点总结

数值分析考试知识点总结数值分析是一门研究数值计算方法和数值计算误差的学科,它的研究对象是计算机数值计算和数值模拟方法的理论和技术。

一、误差分析数值计算是以实际问题为基础的分析过程,其目的是研究数值计算误差和误差的影响,以确保数值计算的准确性和可靠性。

数值计算误差主要包括截断误差和舍入误差两个部分。

1. 截断误差截断误差是由于在数值计算过程中,使用了近似代替精确值而引起的误差。

例如,在对连续函数的微分或积分进行数值计算时,所采用的近似公式都会引起截断误差。

截断误差可以通过增加计算步骤或者采用更加精确的计算方法来减小。

2. 舍入误差舍入误差是由于计算机对于无限小数进行截断或者舍入时引起的误差。

由于计算机是以有限的二进制数进行存储和运算,因此对于很小的数字或者非常大的数字,都会存在舍入误差。

舍入误差的大小与计算精度有关,可以通过提高计算精度来减小舍入误差。

二、插值和逼近插值和逼近是数值分析中常见的计算技术,用于利用已知的数据点来估计未知函数的值。

1. 插值插值是通过已知的数据点来估计未知函数在这些数据点之间的取值。

插值方法的目标是通过已知数据点构造一个函数,使得该函数在已知点上的取值与已知数据点的取值一致。

常见的插值方法包括拉格朗日插值多项式和牛顿插值多项式。

2. 逼近逼近是通过已知的数据点来估计未知函数的近似值,与插值不同的是,逼近方法不要求逼近函数必须在已知数据点上取特定的值。

常用的逼近方法包括最小二乘法逼近和样条逼近。

三、数值积分数值积分是通过数值计算来近似求解定积分的值,它是数值分析中的一个重要内容。

1. 复化数值积分复化数值积分是通过将积分区间划分成若干子区间,然后在每个子区间上进行数值积分来近似求解定积分的值。

复化数值积分方法包括复化梯形公式、复化辛普森公式以及复化辛普森三分法等。

2. 数值积分的误差分析在数值积分中,由于使用了近似方法,所以会引入数值积分误差。

要保证数值积分的准确性,需要对数值积分误差进行分析和评价。

数值分析总复习

数值分析总复习

样条插值;整体连续光滑,且不需知导数值。
插值问题提法:已知
x y f(x)
x0 y
x1 y
xn y
0
1
n
求一个三次分段函数 S(x) 使
1,
S(
xi
)
y i
x x 2, 在 [ , ] 上是三次多项式
i
i 1
C 3, S(x) 2 ( a,b )
i 0, 1, , n
计算三次样条算法
由边界条件 i , i , , i 0 ,1,, n
插值基函数方法
插值问题解的一般形式 :
n (x) a0 a1 x an xn
(1 )
实质上是在求多项式的 自然基底 Bn Span{1, x , ,xn}
张成的线性空间中的一 个点 —一个多项式 (1) ,由(2 18)
式知,解存在唯一 ,只要解方程组求出线 性组合系数 {ai}
就可以了 , 但计算量太大 .
定理2.5(余项) .
(2 - 35)
设H (x)是过 x0 , x1 的 Hermite 插值多项式 , C f f(x) 3 , ( 4 )(x)在 (a,b) 内存在, (a,b)是
(a,b)
含点 x0 , x1 的任一区间, 则对任意给定的
x (a,b) 总存在一点ξ (x)使
R(x)
f(x) H(x)
f
( 4 )(ξ
4!
)
(x
x0
)2(x
x1
)2
分段三次 Hermite 插值多项式及余项
∑ y h m H n
H (x) [ (x)
( x)]
i0
ii
ii
定理2.7(余项) :

数值分析笔记期末复习

数值分析笔记期末复习

第一章引论1、数值分析研究对象:数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

2、数值分析特点:①面向计算机,要根据计算机特点设计切实可行的有效算法②有可靠的理论分析,能任意逼近并达到精度要求,对近似计算要保证收敛性和数值稳定性③要有好的计算复杂性,时间复杂性好是指节省时间,空间复杂性好是指节省存贮量,这也是建立算法要研究的问题。

④要有数值试验,即任何一个算法除了从理论上要满足上述三点外,还要通过数值试验证明是行之有效的。

3、数值分析实质:是以数学问题为研究对象,不像纯数学那样只研究数学本身的理论,而是把理论与计算紧密结合,着重研究数学问题的数值方法及理论。

4、用计算机解决科学计算问题通常经历以下过程实际问题--数学模型(应用数学)--数值计算方法--程序设计--上机计算结果(计算数学)5、误差来源及分类1.模型误差——从实际问题中抽象出数学模型2.观测误差——通过测量得到模型中参数的值(通常根据测量工具的精度,可以知道这类误差的上限值。

)生的误差称为(截断误差)或(方法误差)生误差,这样产生的误差称为舍入误差5.有效数字(1)定义:若近似值x*的绝对误差限是某一位的半个单位,该位到x*的第一位非零数字一共有n位,则称近似值x*有n位有效数字,或说x*精确到该位。

注意:近似值后面的零不能随便省去!(3)性质:(1)有效数字越多,则绝对误差越小(2)有效数字越多,则相对误差越小有效数字的位数可刻画近似数的精确度!10、算法的数值稳定性概念及运算(1)定义:初始数据的误差或计算中的舍入误差在计算过程中的传播,因算法不同而异。

一个算法,如果计算结果受误差的影响小,就称该算法具有较好的数值稳定性11、设计算法的五个原则(一) 要避免相近两数相减(二) 要防止大数“吃掉”小数,注意保护重要数据(三) 注意简化计算步骤,减少运算次数,避免误差积累(秦九韶)(四) 要避免绝对值小的数作除数 (五) 设法控制误差的传播第二章 逼近问题1,函数逼近1、插值问题: 求一条曲线严格通过数据点2、曲线拟合问题: 求一条曲线在一定意义下靠近数据点 2,插值问题1、定义:求一个简单函数φ(x )作为f (x )我们称这样的问题为插值问题; 并称φ(x )为 f (x )的插值函数; f (x )为被插函数, x 0 , x 1, x 2, …,x n 是插值节(基)点;(),0,1,,i i x y i n ϕ==是插值原则.3,插值多项式1、定义:求一个次数不超过n (条件)(),0,1,,n i i P x y i n ==称Pn (x )为 f (x )的n 次插值多项式2、定理:在n+1个互异节点处满足插值原则且次数不超过n 的多项式Pn(x)存在并且唯一。

数值分析期末总结与体会

数值分析期末总结与体会

数值分析期末总结与体会数值分析是一门应用数学课程,主要研究数值计算方法和数值计算误差,并为实际问题提供数值计算解决方案。

在本学期的学习中,我深入学习了数值计算的基本概念与原理,并通过编程实践掌握了常见的数值计算方法。

在期末考试前夕,我对这门课的学习经历进行了总结与体会,下面是我对数值分析的期末总结与体会。

一、总结1. 知识掌握:在学习过程中,我通过系统的学习,掌握了课程中介绍的求根问题、插值问题、数值积分和数值微分等数值计算方法。

我了解了牛顿迭代法、二分法、割线法等求解非线性方程根的方法,熟悉了拉格朗日插值、牛顿插值等插值方法,学会了辛卜生插值多项式、三次样条插值等高级插值方法。

同时,我还学习了梯形法则、辛普森法则等数值积分算法,掌握了欧拉法、龙格-库塔法等数值微分算法。

2. 编程实践:在理论学习的基础上,我通过编写程序加深了对数值计算方法的理解与掌握。

我使用Python语言编写了求解非线性方程根、插值计算、数值积分和数值微分的代码,并通过实际运行验证了这些数值计算方法的正确性与有效性。

编程实践过程中,我深刻体会到了算法的重要性,不同的算法对于同一个数值计算问题,可能会有不同的效果。

3. 数值计算误差:在学习数值计算的过程中,我逐渐认识到数值计算误差的存在与产生机理。

由于计算机内部采用的是二进制表示法,而浮点数的二进制表示无法准确表示所有的实数,从而引入了舍入误差;另外,数值计算方法本身也存在精度误差,例如插值多项式的截断误差、数值积分的数值误差等。

掌握数值计算误差的产生原因和估计方法,对于正确评估数值计算结果的精度至关重要。

4. 应用实例:在学习过程中,我们还分析了各种实际问题,并通过数值计算方法得到了解决方案。

例如,在求根问题中,我们可以利用牛顿迭代法估计气体状态方程的参数;在插值问题中,我们可以使用拉格朗日插值方法恢复图像;在数值积分中,我们可以利用梯形法则或辛普森法则计算定积分;在数值微分中,我们可以应用欧拉法或者龙格-库塔法求解微分方程等。

数值分析-第五版-考试总结

数值分析-第五版-考试总结

第一章:数值分析与科学计算引论截断误差:近似解与精确解之间的误差。

近似值的误差e∗(x为准确值):e∗=x∗−x近似值的误差限ε∗:|x∗−x |≤ε∗近似值相对误差e r∗(e r∗较小时约等):e r∗=e∗x≈e∗x∗近似值相对误差限εr∗:εr∗=ε∗|x∗|函数值的误差限ε∗(f(x∗)):ε∗(f(x∗))≈|f′(x∗)| ε∗(x∗)近似值x∗=±(a1.a2a3⋯a n)×10m有n位有效数字:ε∗=12×10m−n+1εr∗=ε∗|x∗|≤12a1×10−n+1第二章:插值法1.多项式插值P(x)=a0+a1x+⋯+a n x n 其中:P(x i)=y i ,i=0,1,⋯,n{a0+a1x0+⋯+a n x0n=y0 a0+a1x1+⋯+a n x1n=y1⋮a0+a1x n+⋯+a n x n n=y n 2.拉格朗日插值L n(x)=∑y k l k(x)nk=0=∑y kωk+1(x)(x−x k)ωn+1′(x k) nk=0n次插值基函数:l k(x)=(x−x0)⋯(x−x k−1)(x−x k+1)⋯(x−x n)(x k−x0)⋯(x k−x k−1)(x k−x k+1)⋯(x k−x n),k=0,1,⋯,n引入记号:ωn+1(x)=(x−x0)(x−x1)⋯(x−x n)余项:R n(x)=f(x)−L n(x)=f(n+1)(ξ)(n+1)!ωn+1(x) ,ξ∈(a,b)3.牛顿插值多项式:P n(x)=f(x0)+f[x0,x1](x−x0)+⋯+f[x0,x1,⋯,x n](x−x0)⋯(x−x n−1) n阶均差(把中间去掉,分别填在左边和右边):f[x0,x1,⋯,x n−1,x n]=f[x1,⋯,x n−1,x n]−f[x0,x1,⋯,x n−1]x n−x0余项:R n(x)=f[x,x0,x1,⋯,x n]ωn+1(x) 4.牛顿前插公式(令x=x0+tℎ,计算点值,不是多项式):P n(x0+tℎ)=f0+t∆f0+t(t−1)2!∆2f0+⋯+t(t−1)⋯(t−n−1)n!∆n f0n阶差分:∆n f0=∆n−1f1−∆n−1f0余项:R n(x)=t(t−1)⋯(t−n)ℎn+1(n+1)!f(n+1)(ξ) ,ξ∈(x0,x n)5.泰勒插值多项式:P n(x)=f(x0)+f′(x0)(x−x0)+⋯+f(n)(x0)n!(x−x0)nn阶重节点的均差:f[x0,x0,⋯,x0]=1n!f(n)(x0)6.埃尔米特三次插值:P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2)其中,A的标定为:P′(x1)=f′(x1)7.分段线性插值:Iℎ(x)=x−x k+1x k−x k+1f k+x−x kx k+1−x kf k+1第三章:函数逼近与快速傅里叶变换1. S(x)属于 n维空间φ:S(x)=∑a jφjnj=02.范数:‖x‖∞=max1≤i≤n |x i| and maxa≤i≤b|f(x)|‖x‖1=∑|x i|ni=1 and∫|f(x)|badx‖x‖2=(∑x i2ni=1)12 and (∫f2(x)badx)123.带权内积和带权正交:(f,φk)=∑ω(x i)f(x i)φk(x i)mi=0 and ∫ρ(x)f(x)φk(x)badx(f(x),g(x))=∫ρ(x) f(x)g(x)dxba=0 4.最佳逼近的分类(范数的不同、是否离散):最优一致(∞-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖∞=minP∈H n‖f(x)−P(x)‖∞最佳平方(2-范数)逼近多项式P∗(x):‖f(x)−P∗(x)‖22=minP∈H n‖f(x)−P(x)‖22最小二乘拟合(离散点)P∗(x):‖f−P∗‖22=minP∈Φ‖f−P∗‖225.正交多项式递推关系:φn+1(x)=(x−αn)φn(x)−βnφn−1(x)φ0(x)=1,φ−1(x)=0αn=(xφn(x),φn(x))(φn(x),φn(x)),βn=(φn(x),φn(x))(φn−1(x),φn−1(x))6.勒让德多项式:正交性:∫P n(x)P m(x)dx 1−1={0 ,m≠n22n+1, m=n奇偶性:P n(−x)=(−1)n P n(x)递推关系:(n +1)P n+1(x )=(2n +1)xP n (x )−nP n−1(x)7.切比雪夫多项式:递推关系:T n+1(x )=2xT n (x )−T n−1(x )正交性:∫n m √1−x 21−1=∫cos nθcos mθπdx ={0 , m ≠n π2 , m =n ≠0π , m =n =0T n (x )在[−1,1]上有n 个零点:x k =cos2k −12nπ,k =1,⋯,n T n+1(x )在[a,b ]上有n +1个零点:(最优一致逼近)x k =b −a 2cos 2k +12(n +1)π+b +a2,k =0,1,⋯,n 首项x n 的系数:2n−18.最佳平方逼近:‖f (x )−S ∗(x)‖22=min S(x)∈φ‖f (x )−S(x)‖22=min S(x)∈φ∫ρ(x)[f (x )−S (x )]2dx ba法方程:∑(φk ,φj )a j nj=0=(f,φk )正交函数族的最佳平方逼近:a k ∗=(f,φk )(φk ,φk )9.最小二乘法:‖δ‖22=min S(x)∈φ∑ω(x i )[S (x i )−y i ]2mi=0法方程:∑(φk ,φj )a j nj=0=(f,φk )正交多项式的最小二乘拟合:a k∗=(f,P k )(P k ,P k )第四章 数值积分与数值微分1.求积公式具有m 次代数精度求积公式(多项式与函数值乘积的和),对于次数不超过m 的多项式成立,m +1不成立∫f(x)dx b a=∑A k f(x k )nk=02.插值型求积公式I n =∫L n (x)dx b a=∑∫l k (x)dx baf(x k )nk=0=∑A k f(x k )nk=0R [f ]=∫[f (x )− L n (x)]dx ba =∫R n (x)dx ba =∫f (n+1)(ξ)(n +1)!ωn+1(x)dx ba3.求积公式代数精度为m 时的余项R [f ]=∫f (x )dx ba −∑A k f (x k )nk=0=1(m +1)![∫x m+1dx ba−∑A k x k m+1nk=0]4.牛顿-柯特斯公式:将[a,b ]划分为n 等份构造出插值型求积公式I n =(b −a)∑C k (n)f(x k )nk=05.梯形公式:当n=1时,C 0(1)=C 1(1)=12T =b −a 2[f (a )+f(b)],R n (f )=−b −a12(b −a )2f ′′(η) 6.辛普森公式:当n=2时,C 0(2)=16,C 1(2)=46,C 2(2)=16S =b −a 6[f (a )+4f (a +b 2)+f(b)],R n (f )=−b −a 180(b −a 2)4f (4)(η) 7.复合求积公式:ℎ=b−a n,x k =a +kℎ,x k+1/2=x k +ℎ2复合梯形公式:T n =ℎ2[f (a )+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 12ℎ2f ′′(η)复合辛普森公式:S n =ℎ6[f (a )+4∑f(x k+1/2)n−1k=0+2∑f(x k )n−1k=1+f(b)],R n (f )=−b −a 180(ℎ2)4f (4)(η)8.高斯求积公式(求待定参数x k 和A k ):(1)求高斯点(x k ):令 ωn+1(x )=(x −x 0)(x −x 1)⋯(x −x n )与任何次数不超过n 的多项式p(x)带权ρ(x)正交,即则∫p(x)ωn+1(x )ρ(x)dx ba =0,由n +1个方程求出高斯点x 0,x 1⋯x n 。

数值分析-第五版-考试总结

数值分析-第五版-考试总结

第一章:数值分析与科学计算引论截断误差:近似解与精确解之间的误差。

近似值的误差〔为准确值〕:近似值的误差限:近似值相对误差〔较小时约等〕:近似值相对误差限:函数值的误差限:近似值有n位有效数字:第二章:插值法其中:2.拉格朗日插值次插值基函数:引入记号:余项:3.牛顿插值多项式:阶均差〔把中间去掉,分别填在左边和右边〕:余项:4.牛顿前插公式〔令,计算点值,不是多项式〕:阶差分:余项:5.泰勒插值多项式:阶重节点的均差:6.埃尔米特三次插值:其中,A的标定为:7.分段线性插值:第三章:函数逼近与快速傅里叶变换1. 属于维空间:2.范数:3.带权内积和带权正交:4.最正确逼近的分类〔范数的不同、是否离散〕:最优一致〔-范数〕逼近多项式:最正确平方〔-范数〕逼近多项式:最小二乘拟合〔离散点〕:5.正交多项式递推关系:6.勒让德多项式:正交性:奇偶性:递推关系:7.切比雪夫多项式:递推关系:正交性:在上有个零点:在上有个零点:〔最优一致逼近〕首项的系数:8.最正确平方逼近:法方程:正交函数族的最正确平方逼近:9.最小二乘法:法方程:正交多项式的最小二乘拟合:第四章数值积分与数值微分1.求积公式具有次代数精度求积公式〔多项式与函数值乘积的和〕,对于次数不超过的多项式成立,不成立2.插值型求积公式时的余项4.牛顿-柯特斯公式:将划分为等份构造出插值型求积公式5.梯形公式:当n=1时,6.辛普森公式:当n=2时,7.复合求积公式:复合梯形公式:复合辛普森公式:8.高斯求积公式〔求待定参数和〕:〔1〕求高斯点〔〕:令与任何次数不超过的多项式带权正交,即那么,由个方程求出高斯点。

〔2〕求待定参数:,也为次数不超过的多项式。

9.高斯-勒让德求积公式:取权函数为的勒让德多项式的零点即为求积公式的高斯点。

10.高斯-切比雪夫求积公式:取权函数为的切比雪夫多项式的零点即为求积公式的高斯点。

第五章解线性方程组的直接方法1.矩阵的附属范数:2.条件数:第六章解线性方程组的迭代法1.迭代法:2.迭代法收敛:存在。

数值分析期末复习总结(优选.)

数值分析期末复习总结(优选.)

线性插值多项式(一次插值多项式)
n=2
L2 ( x) =
y0
(x ( x0
− −
x1 )( x − x2 ) x1 )( x0 − x2 )
+
y1
(x ( x1
− −
x0 )( x − x2 ) x0 )( x1 − x2 )
+
y2
(x ( x2
− −
x0 )( x − x1 ) x0 )( x2 − x1 )
f ( x=) f ( x0 ) + ( x − x0 ) f [x, x0]
1
f [ x, x0 ] = f [ x0 , x1] + ( x − x1 ) f [ x, x0 , x1]
2
……
f [ x, x0 , ... , xn−1] = f [ x0 , ... , xn ] + ( x − xn ) f [ x, x0 , ... , xn ] n−1
19
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函
数 lk(x) 都需重新计算,不太方便。
解决办法
设计一个可以逐次生成插值多项式的算法,即 n 次插值多项式 可以通过 n-1 次插值多项式生成 —— Newton 插值法
20
新的基函数
设插值节点为 x0 , … , xn ,考虑插值基函数组 ϕ0(x) = 1 ϕ1( x)= x − x0 ϕ2( x) = ( x − x0 )( x − x1 )
18
插值余项
几点说明
余项公式只有当 f(x) 的高阶导数存在时才能使用
ξx 与 x 有关,通常无法确定, 实际使用中通常是估计其上界

数值分析期末复习要点总结

数值分析期末复习要点总结

数值分析期末复习要点总结数值分析是一门研究用数值方法来解决数学问题和科学工程问题的学科。

它包括数值计算、数值逼近、数值求解以及数值模拟等内容。

本文将从数值计算的基础知识、数值逼近方法、数值求解方法以及数值模拟方法等方面进行复习要点总结。

一、数值计算的基础知识1. 计算误差:绝对误差、相对误差、有效数字、舍入误差等等。

2. 机器精度:机器数、舍入误差、截断误差等等。

3. 数值稳定性:条件数、病态问题等等。

4. 误差分析:前向误差分析、后向误差分析等等。

二、数值逼近方法1. 插值方法:拉格朗日插值、Newton插值、Hermite插值等等。

2. 曲线拟合:最小二乘法、Chebyshev逼近等等。

3. 数值微分:前向差分、后向差分、中心差分等等。

4. 数值积分:梯形法则、Simpson法则等等。

三、数值求解方法1. 非线性方程求解:二分法、牛顿迭代法、弦截法等等。

2. 线性方程组求解:直接法(Gauss消元法、LU分解法)和迭代法(Jacobi法、Gauss-Seidel法)。

3. 特征值和特征向量:幂法、反幂法、QR分解法等等。

4. 非线性最优化问题:牛顿法、拟牛顿法、梯度下降法等等。

四、数值模拟方法1. 常微分方程数值解法:Euler法、改进Euler法、Runge-Kutta法等等。

2. 偏微分方程数值解法:差分法、有限元法、有限差分法等等。

3. 数值优化方法:线性规划、非线性规划、整数规划等等。

五、数值计算软件1. MATLAB基础:向量、矩阵、符号计算等等。

2. MATLAB数值计算工具箱:插值与拟合工具箱、符号计算工具箱等等。

3. 其他数值计算软件:Python、R、Octave等等。

总结数值分析是一门重要的数学学科,它为解决实际问题提供了有效的数值方法。

在数值计算的基础知识中,我们需要了解计算误差、机器精度和数值稳定性等概念,同时也需要掌握误差分析的方法。

数值逼近方法包括插值、曲线拟合、数值微分和数值积分等内容,其中插值和拟合是常见的逼近方法。

数值分析-第五版-考试总结

数值分析-第五版-考试总结

第一章:数值分析与科学计算引论截断误差:近似 解与精确解之间的误差。

近似值的误差:(.为准确值):e*-x*-x近似值的误差限一: 1疋近似值相对误差(较小时约等)近似值相对误差限 :函数值的误差限 :苗⑺“ Ifool 叱)近似值;一士心:化叙…®)"八■有n 位有效数字:第二章:插值法P (对J =0.1/*%?] Oo + %呵+…+偽!曙=九 % +如股+…+ %!珥=Y1 % +舸斗1 +…+ %坊=儿 2•拉格朗日插值 (x- x k )6J n+1(x k ) .次插值基函数: (X- x)-(x-x fc -i)(x-曲十 1)…a — X JJ ) (Xk - X 0)-(X k - X k_i) (x k - x k¥1)-(x k - X…)1•多项式插值其中:P(x) = a()+ OjX + …+ a n ^I>k — O.L —.n = _xl(r -n+l引入记号:^n+l(X)={X-Xo)(A?-粗)…(#- Xj余项:=f(x} - SG)=:;:;詁+W > 5 e 3:3•牛顿插值多项式: ^nW = /(^0)+f 必珀("叼)+・”+/■[和巧严如(龙-坯”心-*_』〔阶均差(把中间去掉,分别填在左边和右边) :店”“皿]丿杯Fmr gd余项:4•牛顿前插公式(令心'小,计算点值,不是多项式):PQ +t h )=/o +帧 + 忖A 讥 + - + 心1)::*%°〔阶差分:AVo = A n "7i -余项:严(和E 3J5•泰勒插值多项式:•阶重节点的均差:6.埃尔米特三次插值:p (x ) -f (^X Q )十打和尤』仗—如+f 1叼公1也](JC-衍)(工一 Xi ) +人(尤-叼)(黑-衍)o — x 2)其中,A 的标定为:咋沪f (社)7.分段线性插值:第三章:函数逼近与快速傅里叶变换p n (x) = 7(X Q ) + f(x Q )(x -和)+ “•+警(U血屯“匈1.-:-属于’.维空间:5(玄)=。

数值分析复习总结

数值分析复习总结

数值分析复习总结数值分析课本重点知识点第一章P4定义一P5定义二P6定理1P7例题3P10条件数(1)绝对误差(限)和相对误差(限)公式(2)有效数字(3)条件数及其公式第二章P26定理2(以及余项推导过程)P36两个典型的埃尔米特插值(1)拉格朗日插值多项式(包括其直线公式和抛物线公式)(2)插值余项推导及误差分析(估计)(3)两个典型的埃尔米特插值(4)三次样条插值的概念第三章P63例题3(1)最佳平方逼近公式的计算(2)T3(x)的表达式第四章P106复合梯形公式P107复合辛普森求积公式P108例题3(1)复合公式及其余项(2)判断一个代数的精确度第五章P162定义3向量的范数P165定理17P169定义8(1)左中右矩形公式(2)LU分解(3)谱半径和条件数(4)向量的范数第六章P192定理9第1条P192例题8第七章P215不动点和不动点迭代法P218定理3P228弦截法P229定理6第九章P280欧拉法与后退欧拉法P283改进欧拉公式数值分析课后点题答案第一章数值分析误差第二章插值法第三章函数逼近所以无解19。

观测物体的直线运动,得出以下数据:时间t(s) 0 0.9 1.9 3.0 3.9 5.0 距离s(m)10305080110求运动方程。

解:被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程 s a bt =+ 令{}1,span t Φ=22012201016,53.63,(,)14.7,(,)280,(,)1078,s s =====则法方程组为614.728014.753.631078a b = ??? ?从而解得7.85504822.25376a b =-??=? 故物体运动方程为22.253767.855048S t =-20。

已知实验数据如下:i x 19 25 31 38 44 j y19.032.349.073.397.8用最小二乘法求形如2s a bx =+的经验公式,并计算均方误差。

数值分析-第五版-考试总结培训资料

数值分析-第五版-考试总结培训资料

收集于网络,如有侵权请联系管理员删除
精品文档
第八章 矩阵特征值计算 1.格什戈林圆盘:以 为圆心,以 为半径的所有圆盘
2. 的每个特征值必属于某个圆盘之中:
3. 有 个圆盘组成一个连通的并集 , 与和余下 的 个特征值。 4.幂法:
设 的特征值满足条件: 任取非零向量 ,构造向量序列, 假设:
个圆盘是分离的,则 内恰包含
第七章 非线性方程与方程组的数值解法 1.二分法:1)计算 在有根区间 的端值 ,
2)计算区间中点值
3)判断 2.不动点迭代法:
或者
收集于网络,如有侵权请联系管理员删除
3.不动点迭代法收敛:
精品文档
4. 在 上存在不动点 :(压缩映射)
5. 不动点迭代法收敛性:满足上条,则不动点迭代法收敛,误差为:
7.复合求积公式:
收集于网络,如有侵权请联系管理员删除
复合梯形公式: 复合辛普森公式:
精品文档
8.高斯求积公式(求待定参数 和 ): (1)求高斯点( ):令
与任何次数不超过 的多项
式 带权 正交,即则 。
,由 个方程求出高斯点
(2)求待定参数 : 9.高斯-勒让德求积公式:取权函数为 式的高斯点。
数值分析-第五版-考 试总结
精品文档
第一章:数值分析与科学计算引论 截断误差:近似解与精确解之间的误差。 近似值的误差 ( 为准确值):
近似值的误差限 :
近似值相对误差 ( 较小时约等):
近似值相对误差限 :
函数值的误差限 近似值
: 有 n 位有效数字:
1.多项式插值 其中:
第二章:插值法
收集于网络,如有侵权请联系管理员删除
精品文档
第三章:函数逼近与快速傅里叶变换 1. 属于 维空间 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于 31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(, 221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子)例题:4.改变下列表达式使计算结果比较精确:(1);1||,11211<<+--+x xxx 对(2) ;1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □ 第二章拉格朗日插值公式(即公式(1))∑==ni i i n x l y x p 0)()(插值基函数(因子)可简洁表示为)()()()()()(0i n i n nij j j i j i x x x x x x x x x l ωω'-=--=∏≠= 其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 00)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式))(())(())(())(())(())(()(1202102210120120102102x x x x x x x x y x x x x x x x x y x x x x x x x x y x P ----⨯+----⨯+----⨯= 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为)()()(0101x x c x f x p -+=其中],[)()(1001011x x f x x x f x f c =--=⇒ )](,[)()(01001x x x x f x f x p -+=(2) 过点210,,x x x 的二次插值多项式为))(()()(10212x x x x c x p x p --+=其中],,[)()()()(21002010112122x x x f x x x x x f x f x x x f x f c =------=⇒ ))(](,,[)()(1021012x x x x x x x f x p x p --+=))(](,,[)](,[)(102100100x x x x x x x f x x x x f x f --+-+=重点是分段插值: 例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1(2解(2):方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅= 可得: )21()(23-=x x x L 方法二. 令)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则: ii ii i i i i h x x x x x f x x x x x f x f --+--⋅=++++1111)()()(h ihx h i h h i x h i -++-+-⋅=22))1(()1()( 100)1(10)12(+-+=i i x i 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*⇒ ∑===-ni j i i n j x x a f 0*)1(0,0),(即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中⎰⎰⎰⋅==⋅=+b ab abai iji jijidx x x f x f dx x dx x x x x)(),( ,),(称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。

内积 ⎰⋅=10)()(),(dx x g x f g f计算如下内积:1)1,1(= , 21),1(=x , 31),1(2=x31),(=x x , 41),(2=x x , 51),(22=x x0),1(=f , 22),(π-=f x , 222),(π-=f x建立法方程组:(1) ⎪⎪⎩⎪⎪⎨⎧-=+=+210102)31(21021πa a a a ,得:2012π=a ,2124π-=a于是 x x P 22*12412)(ππ-=(2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=++=++2210221021025141312413121031)21(ππb b b b b b b b b解得: 2012π=b , 2124π-=b , 02=b , 于是: x x P 2222412)(ππ-=. □第四章1 为什么要进行数值积分?常用哪些公式,方法? 答: 梯形复化求积公式和simpson 复化求积公式.2: 方法好坏的判断: 代数精度 误差分析 1.代数精度的概念定义 若求积公式∑⎰=≈ni i i bax f w dx x f 0)()( (*)对所有次数m ≤的多项式是精确的,但对1+m 次多项式不精确,则称(*)具有m 次代数精度。

等价定义若求积公式(*)对m x x x ,,,,12 是精确的,但对1+m x 不精确,则(*)具有m 次代数精度。

3: 误差 1等距剖分下的数值求积公式: 公式特点:节点预先给定,均匀分布,系数ni w i )1(0,=待定利用插值多项式)(x p n 近似代替)(x f ,即得插值型求积公式Newton-Cotes 公式2 给定节点数下的具有最佳逼近性质(具有最高次代数精度)的数值求积公式:Gauss 求积公式 公式特点:系数n i w i )1(0,=和节点n i x i )1(0,=均待定3 分段插值多项式)(x n φ近似代替)(x f (分段求积)复化求积公式复化求积公式通过高次求积公式提高精度的途径不行,类似函数插值 分而治之: 分段+低次求积公式---------- 称为复化求积法 两类低次(4≤n )求积公式:1. Newton -Cotes 型:矩形、梯形、Simpson 、Cotes 公式分别称为复化矩形、梯形、辛甫生、柯特斯公式2. Gauss 型: 一点、两点、三点Gauss 求积公式称为复化一点、两点、三点Gauss 公式复化梯形公式(n T )n ab h b f x f a f h x f x f x f x f x f x f hT n k k n n n -=++=++++++≡∑-=- )],()(2)([2 )]}()([)]()([)]()({[21112110 复化辛甫生公式: (每个k e 上用辛甫生公式求积))]()(2)(4)([6)]}()(4)([)]()(4)([)]()(4)({[61111211021212321b f x f x f a f hx f x f x f x f x f x f x f x f x f hS n k k n k k n n n n +++=+++++++++≡∑∑-==---na b h -=其中,2/1-k x 为ke 的中点 复化辛甫生公式是最常用的数值求积方法。

常采用其等价形式:⎰∑⎭⎬⎫⎩⎨⎧++-≈=-bank k k x f x f b f a f h dx x f 1)](2)(4[)()(6)(21复化柯特斯公式[ )](7)(32)(12)(32)(14)(7[90)]}(7)(32)(12)(32)(7[)](7)(32)(12)(32)(7()](7)(32)(12)(32)(7{[9011111112110412143412143472345432141b f x f x f x f x f a f hx f x f x f x f x f x f x f x f x f x f x f x f x f x f x f hC nk k nk k n k k n k k n n n n n n +++++=+++++++++++++++≡∑∑∑∑=-=-=--=----其中,na b h -=,21-k x为],[1k k x x -的中点,41-k x ,43-k x 为],[1k k x x -的四等分的分点自适应复化求积法计算时,要预先给定n 或步长h ,在实际中难以把握因为,h 取得太大则精度难以保证,h 太小则增加计算工作量.自适应复化梯形法的具有计算过程如下: 步1 )]()([2,,11b f a f hT a b h n +←-←← 步2∑=-←nk k x f T 1)(21T h T T 22112+←步3 判断ε<-||12T T ?若是,则转步5; 步4 21,2/,2T T h h n n ←←←,转步2; 步5 输出 2T .第五章1: 常用方法:(1).直接解法:Gauss 逐步(顺序)消去法、 Gauss主元素法、矩阵分解法等;(2).迭代解法:构造某种极限过程去逐步逼近方程组的解 ①.经典迭代法Jacobi 迭代法、Seidel Gauss -迭代法、逐次超松弛(SOR )迭代法等;②. Krolov 子空间的迭代法 根据A 的对称性,又分为:A 对称正定------- 共轭梯度法A 非对称--------- BICG 、 GMRes(最小残量法)③.解一类特定背景问题的迭代法 多重网格法2: 几类迭代法优缺点比较:3: 迭代方法目标: 求解b Ax = 其中,A 非奇异。

相关文档
最新文档