导数的概念(-)

合集下载

考研数学-专题5 导数的概念及应用

考研数学-专题5  导数的概念及应用

f (x), x 0;
F
(
x)
0, x 0;
f (x), x 0;
若 f (0) 1, 则
lim F(x) F(0) lim f (x) f (0) f (0) 1
x0
x
x0
x
lim F(x) F(0) lim f (x) f (0)
x0
x
x0
x
lim f (x) f (0) f (0) 1
x0
x0

lim ln[ f (x) ex ] ln 2
x0
x
从而 lim ln[ f (x) ex ] 0, lim f (x) f (0) 0,
x0
x0
当 x 0 时, ln[ f (x) ex ] ln[1 f (x) ex 1] ~ f (x) ex 1
则 lim ln[ f (x) ex ] lim f (x) ex 1 f (0) 1 ln 2
1
【例 2】已知 f (x) 在 x 0 处连续,且 lim[ f (x) ex ]x 2, 则 f (0) ( ) x0
(A)不存在
(B)等于 e2 ,
(C)等于 2,
(D)等于 1 ln 2
1
ln[ f ( x)e x ]
【解】 由于 lim[ f (x) ex ]x lim e x 2
3
f (x0 n ) f (x0 ) f (x0 )n n
(其中 lim 0 ) n
f
( x0
n ) f (x0 n n
n)
f
(
x0
)
n n
n n
n n n n
n n n n n n
0
则 lim n

导数

导数
函数的可导性与导函数
一般地,假设一元函数 y=f(x )在 点x0的某个邻域N(x0,δ)内有定义,当自变量取的增量Δx=x-x0时,函数相应增量为 △y=f(x0+△x)-f(x0),若函数增量△y与自变量增量△x之比当△x→0时的极限存在且有限,就说函数f(x)在x0点可导,并将这个极限称之为f在x0点的导数或变化率. “点动成线”:若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.
5.生活中的优化问题
6.实习作业
高阶导数
Word中创建导数公式
展开 编辑本段导数(derivative function)
导数的起源
(一)早期导数概念-----特殊的形式 大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们现在所说的导数f'(A)。 (二)17世纪----广泛使用的“流数术” 17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。 (三)19世纪导数----逐渐成熟的理论 1750年达朗贝尔在为法国科学家院出版的《百科全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示:{dy/dx)=lim(oy/ox)。1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达,导数的定义也就获得了今天常见的形式。

导数的概念

导数的概念

小结:
a.导数是从众多实际问题中抽象出来的具有相同的数 学表达式的一个重要概念,要从它的几何意义和物 理意义了认识这一概念的实质
b.要切实掌握求导数的三个步骤:(1)求函数的增 量;(2)求平均变化率;(3)取极限,得导数。
c.弄清“函数f(x)在点x0处的导数”、“导函数” 之 间的区别与联系。
时间内,物体的位移是:
s OA1 OA0 s(t0 t) s(t0 )
在时间段(t0 t) 内t0 , 物t 体的平均速度
为:
__
v
s(t0
t)
s(t0 )
s
(t0 t) t0 t
瞬时速度:
运动物体经过某一时 刻(某一位置)的速度,叫 做瞬时速度.
如果物体的运动规律是
s=s(t),那么物体在时刻t的 瞬时速度v,就是物体在t0到
例题6
求下列各式的值:
(1) lim f (x0 x) f (x0 ) ?
x0
x
(2) lim f (x0 2x) f (x0 ) ?
x0
x
(3) lim f (x0 x) f (x0 x) ?
x0
2x
(4) lim f (x) f (x0 ) ?
x x0
x x0
补充: 过切点 M(x0, y0)且与切线 垂直的直线叫做曲线 y = f(x) 在 点M 处的法线。
0
新疆 王新敞
奎屯
判断函数y=|3x-1|在x=1/3处是否可导.
解:y
|
3x
1 |
3x
1
1 3x
(x 1) (x 13);
1
31
lim
y
lim
[3( x) 1] (3 1)

高中数学第一课时-导数的概念

高中数学第一课时-导数的概念

5.1.2 导数的概念及其几何意义第一课时 导数的概念课标要求素养要求1.了解导数概念的实际背景.2.知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想.根据具体的实例得到导数的概念,求函数的导数,培养学生的数学抽象与数学运算素养.新知探究在实际生产生活中,我们需要研究一些物体的瞬时变化率,例如(1)摩托车的运动方程为s =8+3t 2,其中s 表示位移,t 表示时间,知道它在某一时刻的瞬时速度就可以更好地指导运动员进行比赛; (2)冶炼钢铁时需要测定铁水的瞬时温度来确定其质量标准; (3)净化饮用水时需要根据净化费用的瞬时变化率来控制净化成本.问题 上述实例中都涉及到某个量的瞬时变化率,在数学意义上,这些实际上是某个量的函数的瞬时变化率,它在数学上称为什么? 提示 函数的导数.1.平均变化率比值Δy Δx ,即Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数 导数是函数的平均变化率,当自变量的增量趋于0时的极限如果当Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0的导数(也称为瞬时变化率),记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx.拓展深化[微判断]1.函数在x =x 0处的导数反映了函数在区间[x 0,x 0+Δx ]上变化的快慢程度.(×) 提示 导数反映的是函数在某一点处的变化的快慢程度,非在某区间上的.2.函数y =f (x )在x =x 0处的导数值与Δx 的正、负无关.(√)3.设x =x 0+Δx ,则Δx =x -x 0,则Δx 趋近于0时,x 趋近于x 0,因此,f ′(x 0)= 0lim x ∆→ f (x 0+Δx )-f (x 0)Δx =0lim x x → f (x )-f (x 0)x -x 0.(√) [微训练]1.设函数y =f (x )=x 2-1,当自变量x 由1变为1.1时,函数的平均变化率为( ) A.2.1 B.1.1 C.2D.0解析 Δy Δx =f (1.1)-f (1)1.1-1=0.210.1=2.1.答案 A2.设f (x )=2x +1,则f ′(1)=________. 解析 f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx=0limx ∆→[2(1+Δx )+1]-(2×1+1)Δx =2.答案 2 [微思考]1.导数或瞬时变化率可以反映函数变化的什么特征?提示 导数或瞬时变化率可以反映函数在某一点处变化的快慢程度. 2.函数的平均变化率与瞬时变化率有什么区别和联系?提示 (1)平均变化率与瞬时变化率的区别:平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x=x0处变化的快慢.(2)平均变化率与瞬时变化率的联系:当Δx趋于0时,平均变化率ΔyΔx趋于一个常数,这个常数为函数在x=x0处的瞬时变化率,它是一个固定值.题型一求函数的平均变化率【例1】已知函数h(x)=-4.9x2+6.5x+10.(1)计算从x=1到x=1+Δx的平均变化率,其中Δx的值为①2;②1;③0.1;④0.01.(2)根据(1)中的计算,当Δx越来越小时,函数h(x)在区间[1,1+Δx]上的平均变化率有怎样的变化趋势?解(1)∵Δy=h(1+Δx)-h(1)=-4.9(Δx)2-3.3Δx,∴ΔyΔx=-4.9Δx-3.3.①当Δx=2时,ΔyΔx=-4.9Δx-3.3=-13.1;②当Δx=1时,ΔyΔx=-4.9Δx-3.3=-8.2;③当Δx=0.1时,ΔyΔx=-4.9Δx-3.3=-3.79;④当Δx=0.01时,ΔyΔx=-4.9Δx-3.3=-3.349.(2)当Δx越来越小时,函数f(x)在区间[1,1+Δx]上的平均变化率逐渐变大,并接近于-3.3.规律方法求平均变化率的主要步骤:(1)先计算函数值的改变量Δy=f(x2)-f(x1).(2)再计算自变量的改变量Δx=x2-x1.(3)得平均变化率ΔyΔx=f(x2)-f(x1)x2-x1.【训练1】求函数f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率,并求当x0=2,Δx=0.1时平均变化率的值.解函数f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为f (x 0+Δx )-f (x 0)(x 0+Δx )-x 0=[3(x 0+Δx )2+2]-(3x 20+2)Δx=6x 0·Δx +3(Δx )2Δx=6x 0+3Δx .当x 0=2,Δx =0.1时,函数y =3x 2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.题型二 导数定义的直接应用【例2】 利用导数的定义,求f (x )=x 2+1在x =1处的导数.解 Δy =f (1+Δx )-f (1)=(1+Δx )2+1-2=(Δx )2+2Δx +2-2, ∴ΔyΔx =(Δx )2+2Δx +2-2Δx ,∴f ′(1)= 0limx ∆→(Δx )2+2Δx +2-2Δx=0lim x ∆→(Δx )2+2ΔxΔx [(Δx )2+2Δx +2+2] =0limx ∆→Δx +2(Δx )2+2Δx +2+2=22.规律方法 求一个函数y =f (x )在x =x 0处的导数的步骤如下: (1)求函数值的变化量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)取极限,得导数f ′(x 0)=0lim x ∆→ΔyΔx .【训练2】 求函数y =x -1x 在x =1处的导数. 解 因为Δy =(1+Δx )-11+Δx -⎝ ⎛⎭⎪⎫1-11 =Δx +Δx1+Δx, 所以ΔyΔx =Δx +Δx 1+Δx Δx=1+11+Δx. 0lim x ∆→Δy Δx =0lim x ∆→⎝ ⎛⎭⎪⎫1+11+Δx =2,所以f ′(1)=2,即函数y =x -1x 在x =1处的导数为2. 题型三 导数概念的应用【例3】 已知f (x )在x 0处的导数f ′(x 0)=k ,求下列各式的值: (1) 0lim x ∆→f (x 0)-f (x 0-Δx )2Δx;(2) 0lim x ∆→f (x 0+Δx )-f (x 0-Δx )Δx .解 (1)∵0lim x ∆→f (x 0)-f (x 0-Δx )x 0-(x 0-Δx )=f ′(x 0),即0lim x ∆→f (x 0)-f (x 0-Δx )Δx=f ′(x 0)=k .∴0lim x ∆→ f (x 0)-f (x 0-Δx )2Δx =k2.(2)∵f (x 0+Δx )-f (x 0-Δx )(x 0+Δx )-(x 0-Δx ),即f (x 0+Δx )-f (x 0-Δx )2Δx为函数f (x )在区间[x 0-Δx ,x 0+Δx ]上平均变化率.∴当Δx →0时,f (x 0+Δx )-f (x 0-Δx )2Δx必趋于f ′(x 0)=k ,∴0lim x ∆→ f (x 0+Δx )-f (x 0-Δx )2Δx =k ,∴0lim x ∆→f (x 0+Δx )-f (x 0-Δx )Δx=2k .规律方法 由导数的定义可知,若函数y =f (x )在x =x 0处可导,则f ′(x )=lim x ∆→f (x 0+Δx )-f (x 0)Δx,它仅与x 0有关,与Δx 无关,因此使用导数的定义时要明确公式的形式,当分子为f (1-Δx )-f (1)时,分母也应该是(1-Δx )-1,要注意公式的变形.【训练3】 (1)若函数f (x )可导,则0lim x ∆→f (1-Δx )-f (1)2Δx 等于( )A.-2f ′(1)B.12f ′(1)C.-12f ′(1)D.f ′⎝ ⎛⎭⎪⎫12(2)已知函数f (x )可导,且满足0lim x ∆→f (3)-f (3+Δx )Δx=2,则函数y =f (x )在x =3处的导数为( ) A.-1 B.-2 C.1D.2解析 (1) 0lim x ∆→f (1-Δx )-f (1)2Δx=-120lim x ∆→ f [1+(-Δx )]-f (1)-Δx =-12f ′(1).(2)由题意,知f ′(3)=0lim x ∆→f (3+Δx )-f (3)Δx =-2,故选B.答案 (1)C (2)B一、素养落地1.在学习导数定义的过程中,培养了学生的数学抽象素养,在应用导数的定义求函数在某点处的导数,提升数学运算素养.2.在导数的定义中,增量Δx 的形式是多种多样的,但不论Δx 选择哪种形式,Δy 也必须选择相应的形式,利用函数f (x )在点x 0处可导的条件,可以将已给定的极限式恒等变形转化为导数定义的结构形式. 二、素养训练1.函数y =1在[2,2+Δx ]上的平均变化率是( ) A.0 B.1 C.2D.Δx解析 Δy Δx =1-1Δx =0. 答案 A2.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx 等于( )A.4B.4xC.4+2ΔxD.4+2(Δx )2解析 Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2-2Δx =4+2Δx .答案 C3.设函数f (x )=ax +3,若f ′(1)=3,则a 等于________. 解析 ∵f ′(1)=0lim x ∆→f (1+Δx )-f (1)Δx=0limx ∆→a (Δx +1)+3-(a +3)Δx =a ,又f ′(1)=3,∴a =3. 答案 34.已知函数f (x )=x ,则f ′(1)=________. 解析 f ′(1)= f (1+Δx )-f (1)Δx=0lim x ∆→1+Δx -1Δx =0limx ∆→11+Δx +1=12.答案 125.若0lim x ∆→ f (x 0)-f (x 0+3Δx )2Δx =1,求f ′(x 0).解 因为0limx ∆→f (x 0)-f (x 0+3Δx )2Δx=-32×0lim x ∆→f (x 0+3Δx )-f (x 0)3Δx =-32f ′(x 0)=1. 所以f ′(x 0)=-23.基础达标一、选择题1.如图,函数y =f (x )在A ,B 两点间的平均变化率是( )A.1B.-1C.2D.-2解析 Δy Δx =f (3)-f (1)3-1=1-32=-1.答案 B2.设函数f (x )在点x 0处附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( ) A.f ′(x )=a B.f ′(x )=b C.f ′(x 0)=aD.f ′(x 0)=b 解析 ∵Δy Δx =f (x 0+Δx )-f (x 0)Δx =a +b Δx .∴f ′(x 0)=0lim x ∆→f (x 0+Δx )-f (x 0)Δx =a .答案 C3.已知函数y =f (x )=2x ,且f ′(m )=-12,则m 的值为( ) A.-4 B.2 C.-2D.±2解析 ∵Δy Δx =f (m +Δx )-f (m )Δx =2m +Δx-2mΔx =-2m (m +Δx ),∴f ′(m )=0limx ∆→-2m (m +Δx )=-2m 2,∴-2m 2=-12,m 2=4,解得m =±2.答案 ±24.若可导函数f (x )的图象过原点,且满足0lim x ∆→ f (Δx )Δx =-1,则f ′(0)等于( )A.-2B.2C.-1D.1解析 ∵f (x )图象过原点,∴f (0)=0,∴f ′(0)=0lim x ∆→f (0+Δx )-f (0)Δx =0lim x ∆→ f (Δx )Δx =-1,故选C. 答案 C5.设f (x )为可导函数,且满足0lim x → f (1)-f (1-2x )2x =-1,则f ′(1)为( )A.1B.-1C.2D.-2解析 令x →0,则Δx =1-(1-2x )=2x →0,所以 f (1)-f (1-2x )2x=0lim x →f (1)-f (1-Δx )Δx 0lim x ∆→=f ′(1)=-1. 答案 B 二、填空题6.已知函数y =x 3-2,当x =2时,ΔyΔx =________. 解析 Δy Δx =(2+Δx )3-2-(23-2)Δx=(Δx )3+6(Δx )2+12Δx Δx =(Δx )2+6Δx +12.答案 (Δx )2+6Δx +127.已知函数y =f (x )=2x 2+1在x =x 0处的瞬时变化率为-8,则f (x 0)=________.解析 由题知-8=0lim x ∆→ΔyΔx =0lim x ∆→2(x 0+Δx )2+1-(2x 20+1)Δx =4x 0,得x 0=-2,所以f (x 0)=2×(-2)2+1=9. 答案 98.若f ′(x 0)=2,则0lim x ∆→f (x 0)-f (x 0+Δx )2Δx =________.解析 0limx ∆→f (x 0)-f (x 0+Δx )2Δx=-120lim x ∆→ f (x 0+Δx )-f (x 0)Δx=-12f ′(x 0)=-1. 答案 -1三、解答题9.一条水管中流过的水量y (单位:m 3)与时间t (单位:s)之间的函数关系为y =f (t )=3t .求函数y =f (t )在t =2处的导数f ′(2),并解释它的实际意义. 解 因为Δy Δt =f (2+Δt )-f (2)Δt =3(2+Δt )-3×2Δt =3,所以f ′(2)=0lim x ∆→ΔyΔt =3.f ′(2)的实际意义:水流在t =2时的瞬时流速为3 m 3/s. 10.求函数y =2x 2+4x 在x =3处的导数. 解 Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx =2Δx +16.∴y ′|x =3=0lim x ∆→ΔyΔx =0lim x ∆→(2Δx +16)=16.能力提升11.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),已知f ′(0)>0,且对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________.解析 由导数的定义,得f ′(0)=0limx ∆→f (Δx )-f (0)Δx=0lim x ∆→a (Δx )2+b (Δx )+c -cΔx =0lim x ∆→[a ·(Δx )+b ]=b >0.又⎩⎨⎧Δ=b 2-4ac ≤0,a >0,∴ac ≥b 24,∴c >0. ∴f (1)f ′(0)=a +b +c b ≥b +2ac b ≥2b b =2.当且仅当a =c =b2时等号成立. 答案 212.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?解 山路从A 到B 高度的平均变化率为 h AB =Δy Δx =10-050-0=15, 山路从B 到C 高度的平均变化率为 h BC =Δy Δx =15-1070-50=14, ∵h BC >h AB ,∴山路从B 到C 比从A 到B 要陡峭的多.创新猜想13.(多选题)若函数f (x )在x =x 0处存在导数,则0lim h f (x 0+h )-f (x 0)h的值( ) A.与x 0有关B.与h 有关C.与x 0无关D.与h 无关解析 由导数的定义可知,函数f (x )在x =x 0处的导数与x 0有关,与h 无关,故选AD.答案 AD14.(多空题)过曲线y =x 2+1上两点P (1,2)和Q (1+Δx ,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率k =________,当Δx =0.001时,割线的斜率k =________. 解析 ∵Δy =(1+Δx )2+1-(12+1)=2Δx +(Δx )2,∴Δy Δx =2+Δx ,∴割线斜率为2+Δx .当Δx =0.1时,割线PQ 的斜率k =2+0.1=2.1.当Δx =0.001时,割线PQ 的斜率k =2+0.001=2.001.答案 2.1 2.001高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

高等数学-导数的概念

高等数学-导数的概念
内有定义,如果当 →
0− 时,极限
(0 +)−(0 )



→0
在,则称此极限值为函数 = ()在0 处的左导数,记为
−′ (0 )
=
(0 +)−(0 )


→0
=
()−(0 )

.

→0
0
16
01 导数的定义
4.左导数和右导数
′ 在点0 处的函数值,即 ′ (0 ) = ′ ()|=0 .
12
01 导数的定义
例2 求函数() = ( > 0)的导数.
根据导数定义,使用分子有理化得
( + ) − ()
+ −

() =
=
→0

→0

如果 ′ (0 ) = ∞,曲线 = ()在点(0 , (0 ))处的
切线为垂直于轴的直线 = 0 .
19
02 导数的意义
结论 1 曲线 = ()上点(0 , 0 )处的切线方程为
− 0 = ′ (0 )( − 0 ) .
2 如果 ′ (0 ) ≠ 0,曲线 = ()在点 0 , 0
(0 + ) − (0)

=
→0
→0

=
1
()3
−0

1
2
→0 ()3
O
x
= +∞,
即导数为无穷大(导数不存在).
26
→0
= ()在
点0 处可导,并称这个极限值为函数 = ()在点0 处的导数,
记作
′ (0 ), ′ |=0 ,

导数的概念及其意义、导数的运算

导数的概念及其意义、导数的运算

§3.1 导数的概念及其意义、导数的运算学习目标了解导数的概念、掌握基本初等函数的导数. 2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f (ax +b ))的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或0'|x x y =.f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)函数y =f (x )的导函数 f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ).5.复合函数的定义及其导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (3)f ′(x 0)=[f (x 0)]′.( × )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( × ) 教材改编题1.函数f (x )=e x +1x 在x =1处的切线方程为________.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1, 又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1, 即切线方程为y -(e +1)=(e -1)(x -1), 即y =(e -1)x +2.2.已知函数f (x )=x ln x +ax 2+2,若f ′(e)=0,则a =________. 答案 -1e解析 f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.3.若f (x )=ln(1-x )+e 1-x ,则f ′(x )=________. 答案1x -1-e 1-x题型一 导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e xC.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 答案 AD解析 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝⎛⎭⎫π3sin x ,则f ⎝⎛⎭⎫π6=________. 答案 π236+2π3解析 f ′(x )=2x +f ′⎝⎛⎭⎫π3cos x , ∴f ′⎝⎛⎭⎫π3=2π3+12f ′⎝⎛⎭⎫π3, ∴f ′⎝⎛⎭⎫π3=4π3, ∴f ⎝⎛⎭⎫π6=π236+2π3.教师备选1.函数y =sin 2x -cos 2x 的导数y ′等于( )A .22cos ⎝⎛⎭⎫2x -π4B .cos 2x +sin xC .cos 2x -sin 2xD .22cos ⎝⎛⎭⎫2x +π4 答案 A解析 y ′=2cos 2x +2sin 2x =22cos ⎝⎛⎭⎫2x -π4. 2.(2022·济南模拟)已知函数f ′(x )=e x sin x +e x cos x ,则f (2 021)-f (0)等于( ) A .e 2 021cos 2 021 B .e 2 021sin 2 021 C.e2 D .e答案 B解析 因为f ′(x )=e x sin x +e x cos x , 所以f (x )=e x sin x +k (k 为常数), 所以f (2 021)-f (0)=e 2 021sin 2 021.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解. (3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于( )A .1B .2C .3D .4 答案 C解析 当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3.(2)已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a =________. 答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.答案 5x -y +2=0 解析 y ′=⎝⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为__________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( )A .4B .3C .2D .1 答案 A解析 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=a x ,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.(2)(2022·广州模拟)过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 答案 (1,+∞)解析 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y =0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解, 令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea<e ,解得a >1,即实数a 的取值范围是(1,+∞). 教师备选1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3)答案 C解析 设切点P (x 0,y 0), f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1, ∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上, ∴y 0=x 30-x 0+3, ∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3. ∴切点P 为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M 是曲线y =ln x +12x 2+(1-a )x 上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是( )A .[2,+∞)B .[4,+∞)C .(-∞,2]D .(-∞,4]答案 C解析 因为y =ln x +12x 2+(1-a )x ,所以y ′=1x +x +1-a ,因为曲线在M 点处的切线的倾斜角均是不小于π4的锐角,所以y ′≥tan π4=1对于任意的x >0恒成立,即1x +x +1-a ≥1对任意x >0恒成立, 所以x +1x ≥a ,又x +1x≥2,当且仅当x =1x ,即x =1时,等号成立,故a ≤2,所以a 的取值范围是(-∞,2].思维升华 (1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”. 跟踪训练2 (1)(2022·南平模拟)若直线y =x +m 与曲线y =e x -2n相切,则( )A .m +n 为定值 B.12m +n 为定值 C .m +12n 为定值D .m +13n 为定值答案 B解析 设直线y =x +m 与曲线y =e x -2n切于点(x 0,02e x n -),因为y ′=e x-2n,所以02e x n -=1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m , 即12m +n =12. (2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是______. 答案 [2,+∞)解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x≥24x ·1x=4, 当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3 答案 D解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)(2022·韶关模拟)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为________. 答案 ⎣⎡⎭⎫e24,+∞ 解析 由y =ax 2(a >0),得y ′=2ax , 由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线, 设公切线与曲线C 1切于点(x 1,ax 21), 与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e2x x +, 记f (x )=12e2x x +, 则f ′(x )=122e(2)4x x x+-, 当x ∈(0,2)时,f ′(x )<0,f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )min =e 24.∴a 的取值范围是⎣⎡⎭⎫e 24,+∞.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a 的取值范围为________. 答案 ⎝⎛⎭⎫e 24,+∞ 解析 由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a =1121e2x x +有两个不同的解. ∵函数f (x )=12e2x x+在(0,2)上单调递减, 在(2,+∞)上单调递增,且f (x )min =f (2)=e 24,又x →0时,f (x )→+∞, x →+∞时,f (x )→+∞, ∴a >e 24.教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于( )A .1B .2C .3D .3或-1 答案 D解析 设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x =1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于( )A .-1B .-2C .1D .2 答案 B解析 已知曲线y =e x 在点(x 1,1e x )处的切线方程为 y -1e x =1e x (x -x 1),即1111e e e ,xxxy x x =-+曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得1112121e ,e e 1ln ,x x x x x x ⎧=⎪⎨⎪-=-+⎩ 得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+11lnex =-1-x 1, 则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)(2022·青岛模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为( ) A .2 B .5 C .1 D .0答案 C解析 根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________. 答案 y =e x 或y =x +1解析 设直线l 与f (x )=e x 的切点为(x 1,y 1), 则y 1=1e x ,f ′(x )=e x , ∴f ′(x 1)=1e x , ∴切点为(x 1,1e x ), 切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1), 即y =1e x ·x -x 11e x +1e x ,①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2), ∴y 2=ln x 2+2, g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2), 切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②由题意知,①与②相同,∴111121221e e ,e e ln 1,x x x x x x x x -⎧=⎪⎨⎪-+==+⇒⎩③④ 把③代入④有111e e x x x -+=-x 1+1, 即(1-x 1)(1e x -1)=0, 解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ; 当x 1=0时,切线方程为y =x +1, 综上,直线l 的方程为y =e x 或y =x +1.课时精练1.(2022·营口模拟)下列函数的求导正确的是( ) A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln 10)′=110D .(e 2x )′=2e x 答案 B解析 (x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对; (ln 10)′=0,∴C 错; (e 2x )′=2e 2x ,∴D 错.2.(2022·黑龙江哈师大附中月考)曲线y =2cos x +sin x 在(π,-2)处的切线方程为( ) A .x -y +π-2=0 B .x -y -π+2=0 C .x +y +π-2=0 D .x +y -π+2=0答案 D解析 y ′=-2sin x +cos x ,当x =π时,k =-2sin π+cos π=-1,所以在点(π,-2)处的切线方程,由点斜式可得y +2=-1×(x -π),化简可得x +y -π+2=0.3.(2022·长治模拟)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 4.已知点A 是函数f (x )=x 2-ln x +2图象上的点,点B 是直线y =x 上的点,则|AB |的最小值为( ) A. 2 B .2 C.433 D.163答案 A解析 当与直线y =x 平行的直线与f (x )的图象相切时,切点到直线y =x 的距离为|AB |的最小值.f ′(x )=2x -1x =1,解得x =1或x =-12(舍去),又f (1)=3,所以切点C (1,3)到直线y =x 的距离即为|AB |的最小值,即|AB |min =|1-3|12+12= 2.5.设曲线f (x )=a e x +b 和曲线g (x )=cos πx2+c 在它们的公共点M (0,2)处有相同的切线,则b+c -a 的值为( ) A .0 B .π C .-2 D .3 答案 D解析 ∵f ′(x )=a e x ,g ′(x )=-π2sin πx2,∴f ′(0)=a ,g ′(0)=0,∴a =0,又M (0,2)为f (x )与g (x )的公共点,∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.(2022·邢台模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( ) A.⎣⎡⎭⎫0,3π4 B.⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π C.⎝⎛⎭⎫π2,3π4 D.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 答案 B解析 ∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π), ∴α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π. 7.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2) 答案 BCD解析 f ′(x 0)的几何意义是f (x )在x =x 0处的切线的斜率.由图知f ′(2)>f ′(3)>0, 故A 错误,B 正确. 设A (2,f (2)),B (3,f (3)), 则f (3)-f (2)=f (3)-f (2)3-2=k AB ,由图知f ′(3)<k AB <f ′(2),即f ′(3)<f (3)-f (2)<f ′(2),故C ,D 正确.8.(多选)(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,3π4上是凸函数的是( ) A .f (x )=-x 3+3x +4 B .f (x )=ln x +2x C .f (x )=sin x +cos x D .f (x )=x e x 答案 ABC解析 对A ,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3, f ″(x )=-6x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故A 为凸函数; 对B ,f (x )=ln x +2x ,f ′(x )=1x +2,f ″(x )=-1x2,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故B 为凸函数; 对C ,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故C 为凸函数; 对D ,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )>0,故D 不是凸函数. 9.(2022·马鞍山模拟)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =________. 答案 -1解析 因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x , f ′(π)=cos π-π·sin π=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1.10.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =________.答案 2解析 f ′(x )=-(ax -1)′(ax -1)2+e xcos x -e xsin x =-a(ax -1)2+e x cos x -e x sin x , ∴f ′(0)=-a +1=-1,则a =2.11.(2022·宁波镇海中学质检)我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=2e x,则f ′(x )=________,其在点(0,1)处的切线方程为________.答案 22e xx y =1 解析 ∵f (x )=2e x ,故f ′(x )=(x 2)′2e x =22e x x ,则f ′(0)=0.故曲线y =f (x )在点(0,1)处的切线方程为y =1.12.已知函数f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为____________________. 答案 (-∞,-1)∪(3,+∞)解析 因为f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根,则Δ=4a 2-12⎝⎛⎭⎫23a +1>0,即a 2-2a -3>0, 解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若f (x )在[a ,b ]上满足以下条件:①在[a ,b ]上图象连续,②在(a ,b )内导数存在,则在(a ,b )内至少存在一点c ,使得f (b )-f (a )=f ′(c )(b -a )(f ′(x )为f (x )的导函数).则函数f (x )=x e x -1在[0,1]上这样的c 点的个数为( ) A .1 B .2 C .3 D .4 答案 A解析 函数f (x )=x e x -1, 则f ′(x )=(x +1)e x -1, 由题意可知,存在点c ∈[0,1], 使得f ′(c )=f (1)-f (0)1-0=1,即(1+c )e c -1=1,所以e c -1=11+c ,c ∈[0,1],作出函数y =e c -1和y =11+c的图象,如图所示,由图象可知,函数y =e c-1和y =11+c的图象只有一个交点,所以e c -1=11+c ,c ∈[0,1]只有一个解,即函数f (x )=x e x -1在[0,1]上c 点的个数为1.14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e b D .0<b <e a答案 D解析 方法一 设切点(x 0,y 0),y 0>0, 则切线方程为y -b =0e x (x -a ),由⎩⎨⎧y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解. 设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ), 由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增, 当x >a 时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (a )=e a (1-a +a )=e a , 当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0, 当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线 ,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方, 得0<b <e a .15.若曲线y =14sin 2x +32cos 2x 在A (x 1,y 1),B (x 2,y 2)两点处的切线互相垂直,则|x 1-x 2|的最小值为( ) A.π3 B.π2 C.2π3 D .π 答案 B解析 ∵y =14sin 2x +32cos 2x=14sin 2x +32×1+cos 2x2 =12sin ⎝⎛⎭⎫2x +π3+34, ∴y ′=cos ⎝⎛⎭⎫2x +π3, ∴曲线的切线斜率在[-1,1]范围内, 又曲线在两点处的切线互相垂直,故在A (x 1,y 1),B (x 2,y 2)两点处的切线斜率必须一个是1,一个是-1.不妨设在A 点处切线的斜率为1, 则有2x 1+π3=2k 1π(k 1∈Z ),2x 2+π3=2k 2π+π(k 2∈Z ),则可得x 1-x 2=(k 1-k 2)π-π2=k π-π2(k ∈Z ),∴|x 1-x 2|min =π2.16.(2022·南昌模拟)已知曲线C 1:y =e x +m ,C 2:y =x 2,若恰好存在两条直线l 1,l 2与C 1,C 2都相切,则实数m 的取值范围是____________. 答案 (-∞,2ln 2-2)解析 由题意知,l 1,l 2的斜率存在,设直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,设l 1与C 1,C 2的切点坐标分别为(x 1,y 1),(x 2,y 2), 则⎩⎨⎧k 1=1e x m+=2x 2(k 1>0),k 1x 1+b 1=1e x m+,k 1x 2+b 1=x 22,可得⎩⎪⎨⎪⎧x 1=ln k 1-m ,x 2=k 12,k 1(x 2-x 1)=x 22-1ex m+,故k 1⎝⎛⎭⎫k 12-ln k 1+m =k 214-k 1, 整理得m =ln k 1-k 14-1,同理可得,当直线l 2:y =k 2x +b 2与C 1,C 2都相切时, 有m =ln k 2-k 24-1,综上所述,只需m =ln k -k4-1(k >0)有两解,令f (k )=ln k -k4-1,则f ′(k )=1k -14=4-k4k ,故当f ′(k )>0时,0<k <4, 当f ′(k )<0时,k >4,所以f (k )在(0,4)上单调递增,在(4,+∞)上单调递减, 故f (k )max =f (4)=ln 4-44-1=2ln 2-2,所以只需满足m <2ln 2-2即可.。

大学导数知识点总结

大学导数知识点总结

大学导数知识点总结一、导数的概念导数是微积分中一个非常重要的概念,它是某一函数在某一点上的变化率。

在几何意义上,导数表示了曲线在某一点的切线斜率;在物理学中,导数表示了物体在某一时刻的速度和加速度。

因此,导数在数学、物理、经济等领域中都有着非常广泛的应用。

设y=f(x),x为自变量,y为因变量。

如果函数f(x)在点x=a处的导数存在,则称函数f(x)在点x=a处可导,记作f'(a)。

导数f'(a)就是函数f(x)在点x=a处的瞬间变化率,也就是函数的斜率。

导数的计算是微积分中的一个重要内容,它可以通过极限的方法来求得。

二、导数的计算方法求导数的过程即为求函数的瞬间变化率的过程,常用的方法有以下几种:1. 函数的基本求导公式:包括多项式函数、指数函数、对数函数、三角函数等求导公式。

这些基本求导公式是求导的起点,通过它们可以得到更复杂函数的导数。

2. 导数的四则运算:如果函数f(x)和g(x)都在点x=a处可导,那么f(x)与g(x)的和、差、积、商函数在点x=a处的导数可分别表示为(f+g)'(a)、(f-g)'(a)、(fg)'(a)、(f/g)'(a)。

3. 复合函数求导:对于复合函数f(g(x)),可以利用链式法则求导,即先对最外层函数求导,再乘以内层函数的导数。

4. 隐函数求导:对于以x和y为自变量的方程,如果y不能表示为x的函数形式,则称y是x的隐函数。

对隐函数求导需要利用隐函数求导的公式。

5. 参数方程求导:对参数方程x=x(t)和y=y(t)所确定的轨迹求切线斜率时,需要计算dy/dx=y'(t)/x'(t)。

6. 反函数求导:如果函数y=f(x)在一段区间内是单调、连续、可导的,并且f'(x)≠0,则其反函数在对应区间内也是可导的,且有f^(-1)'(y)=1/f'(x),即反函数的导数等于原函数导数的倒数。

导数的概念

导数的概念

导数的概念
一.导数的概念:
在数学中,函数()y f x =在0x 点处的瞬时变化率也叫函数在0x 处的导数,通常用符号 记作: 。

二.问题解决:
例1:一条水管中流过的水量y (单位:m 3)是时间x (单位:s )的函数()3y f x x ==,求函数()y f x =
在2x =处的导数'(2)f ,并解释它的实际意义。

例2:一名食品加工厂的工人上班后开始连续工作,生产的食品量量y (单位:kg )是时间x (单位:h )的函数()y f x =。

假设函数()y f x =在1x =和3x =处的导数分别为'(1)4f =和'(3) 3.5f =,试解释它们的实际意义。

二.当堂检测:
1.服药后,人体血液中药物的质量浓度y (单位:ug/mL )来表示,它是时间t (单位:min )的函数,表示为()y f t =,假设函数()y f t =在10t =和100t =处的导数分别为'(10) 1.5f =和'(100)0.6f =-,试解释它们的实际意义。

2.设x (单位:km )表示从一条河流的某一处到某源头的距离,y (单位:km )表示这一点的海拔高度,y 是x 的函数()y f x =。

假设函数()y f x =在100x =处的导数为'(100)0.1f =-,试解释它的实际意义。

导数的概念

导数的概念
王新 敞 wx ckt@ 12 6.co m
三 导数的应用 (一)利用导数判断函数单调性及求解单调区间。
1.导数和函数单调性的关系: (1)若 f ¢ (x)>0 在(a,b)上恒成立,则 f(x)在(a,b)上是增函数, f ¢ (x)>0 的解集与定义域的 交集的对应区间为增区间; (2)若 f ¢ (x)<0 在(a,b)上恒成立,则 f(x)在(a,b)上是减函数, f ¢ (x)<0 的解集与定义域 的交集的对应区间为减区间。 2.利用导数求解多项式函数单调性的一般步骤:
f (x0 ) )处的切线方程为 y -
f (x0 ) =
f
(x )(x - x ) / 0
0
新疆 王新敞
奎屯
2.导数的物理意义: 导数是物体变速直线运动的瞬时速度,也叫做瞬时变化率。
(三)概念部分题型:
1.利用定义求函数 y = f (x) 的导数
主要有三个步骤:
(1)求函数的改变量 Dy
=
f (x + Dx) -
x= x0
,即
f
/
(x0 )
=
lim
Dx®0
f (x0
+ Dx) Dx
f (x0 )
2 导函数的定义:如果函数 y = f (x) 在开区间 (a, b) 内的每点处都有导数,此时对于每
一个 x Î (a,b) ,都对应着一个确定的导数 f / (x) ,从而构成了一个新的函数 f / (x) , 称这
(二)导数的四则运算
1.和差: (u±v)¢ =u¢±v¢
2.积: (uv)¢ = u¢v + uv¢
3.商:
(u )¢ v
=

高数导数的概念

高数导数的概念
应用
高阶导数在研究函数的极值、拐点、曲线的弯曲程度等方面有重要 应用。
导数的物理应用
定义
导数是微积分的基本概念之一, 它描述了函数值随自变量变化的 速率。在物理学中,导数可以用 来描述物理量随时间或空间的变 化率。
计算方法
通过物理定律和公式,可以推导 出各种物理量的导数,从而得到 它们的变化率。
应用
应用
导数在经济学中有广泛的应用,如边际分析、最优化问题、需求弹性等都需要用到导数。
THANKS
感谢观看
导数可以用来求函数的极值,通过求导并 令导数为0,可以找到函数的极值点。
VS
详细描述
首先求出函数的导数,然后令导数等于0, 解出对应的自变量值,这些点就是函数的 极值点。在极值点处,函数可能会取得极 大值或极小值。
利用导数求曲线的切线方程
总结词
详细描述
利用导数可以求出曲线上某一点的切线方程, 通过求导可以找到切线的斜率。
导数的几何意义
总结词
导数的几何意义是切线的斜率,表示函数图像在某一点的切 线。
详细描述
在二维平面坐标系中,函数图像上某一点的切线斜率即为该 点的导数值。导数大于零表示切线斜率为正,函数在该点处 单调递增;导数小于零表示切线斜率为负,函数在该点处单 调递减。
导数的物理意义
总结词
导数的物理意义是描述物理量随时间变化的速率。
通过解这个导数方程,可以得到该变 量的导数。
03
导数的应用
利用导数研究函数的单调性
总结词
导数可以用来判断函数的单调性,通过导数的正负来判断函数在某区间内的增减性。
详细描述
如果函数在某区间的导数大于0,则函数在此区间内单调递增;如果导数小于0,则函数在此区间内单调递 减。

导数的概念及运算

导数的概念及运算

x0 x x0
x
存在,则称f(x)在点x0处可导,并称此极限为函数
y=f(x)在点x0处的导数,记为f (x)或y |x=x0.
说明:
1.导数是一个特殊的极限;
2. f (x)为函数所表示的曲线在相应点M(x0, f(x0))处的切线
斜率, 其切线方程为:y- f(x0)= f (x0)(x-x0);
v2
3.复合函数的导数:
设函数 u=(x) 在点 x 处有导数 ux=(x),函数 y=f(u) 在点 x 的对应点 u 处有导数 yu=f (u),则复合函数y=f((x)) 在点 x 处有导数, 且 yx=yu·ux 或写作 fx((x))=f(u)(x)。
即复合函数对自变量的导数, 等于已知函数对中间变 量的导数, 乘以中间变量对自变量的导数.
导数的概念及运算
麻城一中 彭稳章
一、基本内容
(一)导数的概念:
y
y=f(x)
Q
y 就是割线PQ的斜率
△y
x
P △x
0
M x
lim y 就是过P点切线的斜率 x0 x
概念:
如果函数y=f(x)在x0处增量△y与自变量的增
量△x的比值 y ,当△x→0时的极限 x
lim y lim f (x0 x) f (x0)
切线的方程为y 11x 18或y 17 (x 3) 15 4
即为:11x y 18 0或17x 4 y 8 0.
说明:
求切线方程应注意: ①判断点A是否在函数图象上; ②审题:在A(x0,f(x0))处切线
y-f(x0)=f(x0)(x-x0)过A(x0,f(x0)),先设切 点,再按上述方法求解。

3.1 导数的概念及几何意义、导数的运算

3.1 导数的概念及几何意义、导数的运算

∴x2=-2x1,∴f
'(x2)=3 x22=12 x12.∴
f f
'(x1) = 1 .
'(x2 ) 4
(2)由题意,得f '(x)=2x.
设直线与曲线相切于点(x0,y0), 则所求切线的斜率k=2x0,
由题意知2x0= y0 0 = y0 ①.
x0 1 x0 1
林老师网络编辑整理
12
又y0= x02 ②,所以由①②解得x0=0或x0=-2, 所以k=0或k=-4, 所以所求切线方程为y=0或y=-4(x+1), 即y=0或4x+y+4=0. 答案 (1) 1 (2)y=0或4x+y+4=0
2
2
(4)y'
=
cos ex
x

'=(cos
x)
'ex cos (ex )2
x(ex
)'
=-
sin
x cos ex
x.
林老师网络编辑整理
9
栏目索引
栏目索引
方法二 求曲线y=f(x)的切线方程
1.求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程,则点P(x0,y0)为切点,
'(x1)(x0 x1),
点A(x1,y1),代入方程y-y1=f '(x1)(x-x1),化简即得所求的切线方程.
林老师网络编辑整理
10
栏目索引
例2 (1)(2018江苏淮安高三期中)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,
f(x1))处的切线与该曲线交于另一点Q(x2, f(x2)),记f '(x)为函数f(x)的导

数学分析5.1导数的概念(讲义)

数学分析5.1导数的概念(讲义)

第五章导数和微分1 导数的概念一、导数的定义定义1:设函数y=f(x)在点x0的某邻域内有定义,若极限存在,则称函数f在点x0处可导,并称该极限为函数f在点x0处的导数,记作f’(x0). 若该极限不存在,则称f在点x0处不可导.令x=x0+△x,△y=f(x0+△x)-f(x0),则:==f’(x0).∴导数是函数增量△y与自变量增量△x之比的极限. 这个增量比称为函数关于自变量的平均变化率(又称为差商),而导数f’(x0)则为f在x0处关于x的变化率.注:显然常量函数f(x)=C在任何一点x的导数都等于零.例1:求函数f(x)=x2在点x=1处的导数,并求曲线在点(1,1)处的切线方程.解:f’(1)===2.∴曲线在点(1,1)处的切线方程为:y-1=2(x-1),即y=2x-1.例2:证明函数f(x)=|x|在点x=0处不可导.证:f’(0)=,∵=1,=-1,∵不存在,∴f在点x=0处不可导.设f(x)在点x0可导,则ε=f’(x0)-是当△x→0时的无穷小量,于是ε·△x=o(△x),即△y=f’(x0)△x+o(△x),称为f在点x0的有限增量公式.该公式对△x=0仍成立.定理5.1:若函数f在点x0可导,则f在点x0连续.注:可导是连续的充分而非必要条件.例3:证明函数f(x)=x2D(x)仅在点x0=0处可导,其中D(x)为狄利克雷函数.证:当x0≠0时,由归结原理可得f在x= x0处不连续,∴f在x= x0处不可导.当x0=0时,∵D(x)有界,∴f’(0)==xD(x)=0.即f仅在点x0=0处可导.定义2:设函数y=f(x)在点x0的某右邻域(x0, x0+δ)上有定义,若右极限=(0<△x<δ)存在,则称该极限值为f在点x0的右导数,记作f’+(x0). 类似地,定义左导数为f’-(x0)==.右导数和左导数统称为单侧导数.定理5.2:若函数f在点x0的某右邻域内有定义,则f’(x0)存在的充要条件是:f’+(x0)与f’-(x0)都存在,且f’+(x0)=f’-(x0).例4:设f(x)=,讨论f(x)在x=0处的左右导数与导数.解:f’+(0)===0.f’-(x0) ===1.∵f’+(x0)≠f’-(x0),∴f在x=0处不可导.二、导函数若函数在区间I上每一点都可导(区间端点只考虑单侧导数),则称f为I上的可导函数. 对每一个x∈I,都有一个导数f’(x)(或单侧导数)与之对应,函数f’就称为f 在I上的导函数,简称为导数. 记作f’, y’或,即:f’(x)=, x∈I注:f’(x0)可写作:y’或例5:证明:(1)(x n)’=nx n-1,n为正整数;(2)(sinx)’=cosx,(cosx)’=-sinx;(3)(log a x)’=log a e (a>0,a≠1,x>0),特别的(ln x)’=.证:(1)对于y=x n, ==x n-1+x n-2△x +…+△x n-1,∴(x n)’==(x n-1+x n-2△x +…+△x n-1)=x n-1=nx n-1.(2)∵==,由cosx在R上连续可得:(sinx)’==cosx.又==,由sinx在R上连续可得:(cosx)’== -sinx.(3)∵=log a=log a,又由log a x的连续性可得:(log a x)’=log a=log a=log a e.当a=e时,ln e=1,∴(ln x)’=.三、导数的几何意义曲线y=f(x)在点(x0,y0)的切线方程为:y-y0=f’(x0)(x-x0).即函数f在点x0的导数f’(x0)是曲线fy=(x)在点(x0,y0)的切线斜率.若α表示这条切线与x轴正方向的夹角,则f’(x0)=tanα.例6:求曲线y=x3在点P(x0,y0)处的切线方程与法线方程.解:y’=3x2, ∴f’(x0)=3x02==.当x0≠0时,曲线在点P(x0,y0)处的切线方程为y-y0=f’(x0)(x-x0),即y=3x02x-2y0;法线方程为y-y0=(x-x0),即y=x y0.当x0=0时,切线方程为y=0,法线方程为x=0.定义3:若函数f在点x0的某邻域U(x0)内对一切x∈U(x0)有f(x0)≥f(x)或f(x0)≤f(x),则称f在点x0取得极大(小)值,称点x0为极大(小)值点. 极大值和极小值统称为极值,极大值点、极小值点统称为极值点.例7:证明:若f’+(x0)>0,则存在δ>0. 对任何x∈(x0,x0+δ),有f(x0)<f(x).证:∵f’+(x0)=>0,由保号性可知,存在δ>0,对一切x∈(x0,x0+δ),有>0,∴对任何x∈(x0,x0+δ),有f(x0)<f(x).定理5.3(费马定理):设函数f在点x0的某邻域内有定义,且在点x0可导,若点x0为f的极值点,则必有f’(x0)=0.我们称满足方程f’(x0)=0的点为稳定点. 稳定点不一定是极值点。

初中数学中的导数知识有哪些

初中数学中的导数知识有哪些

初中数学中的导数知识有哪些在初中数学学习中,导数是一项重要的概念和技巧,它为我们理解和解决数学问题提供了有力的工具。

那么,让我们来系统地了解一下初中数学中的导数知识。

一、导数的概念导数是函数在某一点处的局部变化率,表示函数在该点附近的趋势。

在数学中,如果函数 f 在点 x 处的导数存在,我们用 f'(x) 或 dy/dx 表示。

二、导数的计算方法1. 导数基本公式根据导数的定义和基本公式,我们可以计算各种常见函数的导数。

比如,对于常数函数 f(x) = c,导数总是等于 0;对于幂函数 f(x) = x^n,导数为 f'(x) = n * x^(n-1)。

此外,我们还有求和差、积和商的导数法则。

2. 利用导数计算函数在某点的斜率导数的概念使我们能够计算函数在某一点的斜率。

对于函数 f(x),若其导数 f'(x) 存在,则 f'(x) 即为函数曲线在点 (x, f(x)) 处的斜率。

3. 高阶导数函数的导数还可以进行进一步的求导操作,得到高阶导数。

高阶导数的计算通过多次求导可完成,比如 f''(x) 表示 f'(x) 的导数,f'''(x) 表示f''(x) 的导数。

三、导数的几何意义导数不仅具有计算意义,还有一定的几何意义。

在坐标平面上,函数 f(x) 的导数 f'(x) 表示函数曲线在对应点的切线斜率。

导数的几何意义使我们能够更好地理解函数的图像以及其局部特征。

四、应用领域导数的应用十分广泛,不仅限于数学中,还涉及其他学科和实际问题。

以下是一些常见的应用领域:1. 极值问题导数在求解函数的最大值和最小值问题时起到重要作用。

通过计算函数的导数,并分析导数的零点、变号等信息,我们可以确定函数的极值点及其对应的函数值。

2. 切线和法线导数可用于确定函数曲线在某一点的切线和法线方程。

通过求解导数为某一特定值的方程,我们可以找到曲线与切线或法线的交点。

导数的概念及几何意义

导数的概念及几何意义

导数的概念及几何意义导数是微积分中的一个重要概念,它描述了函数在其中一点上的变化率。

导数的几何意义是一个函数在其中一点上的斜率或切线的斜率。

假设有一个函数y=f(x),表示自变量x与因变量y之间的关系。

在函数图像上,选取其中一个点P(x,f(x)),然后再选取另一个与点P非常接近的点Q(x+△x,f(x+△x))。

△x表示x的一个小的增量。

这两个点的连线被称为割线,割线的斜率可以表示为:斜率=(f(x+△x)-f(x))/△x当△x逐渐接近于0时,割线的斜率会趋近于一个特定的值,这个值就是函数在点P处的导数。

数学表达式可以表示为:f'(x) = lim(△x→0) (f(x + △x) - f(x)) / △x导数也可以用微分法的符号(dx / dx)表示。

导数可以表示函数的变化率,即在特定点上函数的斜率。

导数的值可以为正、负或零。

导数的几何意义是函数的图像在其中一点上的切线的斜率。

切线是函数图像上与这个点非常接近的直线。

切线的斜率与点的导数值相等。

当导数值大于0时,说明函数图像在该点上是递增的,切线是向上的。

当导数值小于0时,说明函数图像在该点上是递减的,切线是向下的。

当导数值等于0时,说明函数图像在该点上是平的,切线是水平的。

导数还可以提供其他有用的几何信息。

例如,函数在其中一点上的导数值越大,函数曲线在该点附近弯曲得越急。

函数的导数也可以帮助确定函数的拐点。

拐点是函数图像的曲线从凹向上凸或从凸向上凹的点。

导数的计算方法有很多种。

有些函数可以通过求导公式直接计算导数,这些被称为可导函数。

例如,如果函数是关于x的幂函数,如f(x) =x^n,其中n是一个常数,那么它的导数可以通过将指数降低1并将结果乘以原指数来计算,即f'(x) = nx^(n-1)。

还有一些常见的函数,如正弦函数、余弦函数和指数函数,它们也有特定的求导公式。

除了直接求导的公式之外,还可以使用导数的基本性质来求导。

高二数学导数的定义及其几何意义的应用例题+方法总结+课后作业

高二数学导数的定义及其几何意义的应用例题+方法总结+课后作业

导数的概念及几何意义知识点一、导数的概念1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000lim lim=注意:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数. (4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示.知识点二、导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示:当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.注意:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.知识点三、导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.题型一、导数定义的应用例1. 用导数的定义,求函数()y f x==x =1处的导数.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - .【变式2】求函数 2()3f x x =在x =1处的导数.【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.例2. 已知函数()24f x x=,求()f x '.【变式1】求函数y =在(0,)+∞内的导函数. 【变式2】已知()f x =,求'()f x ,'(2)f .例3(1)若0'()2f x =,则000()()lim2k f x k f x k→--=________.()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.题型二、求曲线的切线方程方法总结:1.求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 2.求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程.例4.求曲线21y x =+在点()12P ,处的切线方程.【变式】求曲线215y x x=++上一点2x =处的切线方程.例5.求曲线()3f x x =经过点(1,1)P 的切线方程.例6.过点(1,-1)且与曲线y =x 3-2x 相切的直线方程为( )A .x -y -2=0或5x +4y -1=0B .x -y -2=0C .x -y -2=0或4x +5y +1=0D .x -y +2=0【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.题型三、导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率).课后作业1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是3.设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=A. 0B.1C.2D.34.若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=5.若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是6.在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b=7.设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2) 8.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 9.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 110.已知点P 在曲线y=14x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是。

导数的定义

导数的定义

N N t0 t N t 0 t t
它在△t趋于0时的极限(如果存在的话)就是细 胞在t0时刻的增值速度,即
N t0 t N t0 N v t0 lim lim t 0 t 0 t t
2011/10/27 第一节 导数的概念 6
则称函数 f (x) 在点 x0 处可导, 极限值 a 称为 f (x) 在
点 x0 处的导数. 记为
f ( x0 ) a, y'| x x0 a,
2011/10/27
dy d f ( x0 ) a, dx dx
x x0
a.
10
第一节 导数的概念
如果函数 f (x) 在点 x0 处可导, 则
第二章 一元函数微分学
第二章
一、导数的概念
一元函数微分学
二、函数的求导法则
三、高阶导数 四、隐函数及参数方程参数所确定函数的导数 五、微分
2011/10/27 2
第一节 导数的基本概念(The Derivative)
一、导数的背景 二、导数的定义 三、导数的几何意义及应用
2011/10/27 第一节 导数的概念 3
y f ( x0 x) f ( x0 ) lim lim . x 0 x x 0 x
2011/10/27 第一节 导数的概念 9
二.导数的概念
1. 导数的定义
定义2 设函数 f (x) 在 U(x0) 有定义, 且 x0+x U(x0).
f ( x0 x) f ( x0 ) y lim a 存在, 如果极限 lim x 0 x 0 x x
x
即 f (0) f (0), 函数y f ( x )在x 0点不可导.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 导数与极限 §2.1 导数的概念
10 导数问题的提出 (1)非等速直线运动的瞬时速度的计算问题
设物体作非等速直线运动,其运动方程
为s = f (t), 计算物体在 t = t0 时的瞬时速度 v (t0) 考虑时间段[ t0 , t0+t ] 此时间段物体移动的路程:
s = f (t0+ t ) - f ( t0 )
x
x
导数 f '(x0 ) 表示函数 y f ( x) 在 x0 处的增加率
30 导数计算举例
例 求函数 y = mx+b 在 x 处的导数
解 y'( x) lim y( x x) y( x)
x0
x
m( x x) b (mx b)
lim
x0
x
lim m m x0
例 求函数 y 1 在 x 0 处的导数
lim
x0
f (x0
x) x
f (x0 )
也可记为 y x x0
dy dx x x0
df ( x) dx x x0
说明:(1)瞬时速度: v(t0 ) f '(t0 )
曲线 C : y=f (x) 在点 A ( x0 , y0 ) 处的切线斜率:
k tan f '( x0 )
(2)若记 M {x f ( x)在x处可导} , 则对任意的
x
解 当 x0时
y( x x) y( x)
y'( x) lim
x0
x
1 1
lim x x x
x0
x
1
1
lim [
x0
x( x
] x)
x2
如何定义曲线在A点处的 y 切线?
设点 A (x0, y0) , A '(x0 x , f (x0 x))
沿曲线C
如果 A´
A
o
y f (x) T' A' T
CA
x0 x0 x x
割线 AT´绕点A旋转而趋向极限位置 AT
我们称直线 AT为曲线 C 在点 A 处的切线
曲线在A 点处的切线的斜率:来自在此时间段物体的平均速度:
v(t0 )
s t
f (t0 t) t
f (t0)
物体在 t0 时刻的瞬时速度
v(t0
)
lim
t 0
s t
lim f (t0 t) f (t0 )
t 0
t
(2)曲线切线的计算问题
设曲线 C: y =f (x), 计算曲线在点 A( x0 , y0 ) 处的切线方程
类似量的计算问题 , 例如
加速度:速度关于时间 t 的差商的极限;
角速度:角度关于时间 t 的差商的极限;
电流:电量关于时间 t 的差商的极限;
20 导数的定义 定义 设函数 y= f(x)在点 x0 的某个邻域
N( x0)内有定义,当自变量 x 在 x0 处取得增x(点 x0+x 仍在该邻域内)时,相应的函数 y 取得增量
k tan lim tg
x0
lim f ( x0 x) f ( x0 )
x0
x
可以发现:尽管以上两个问题具有不同的背景,但 数学上都面临相同的问题:
计算函数 f (x) 在点 x0 处的差商的极限
lim f ( x0 x) f ( x0 )
x0
x
类似地人们发现许多物理量的计算也将遇到
x M ,唯一确定一导数值 f '(x) 与之对应 ,
此函数称为 f (x) 的导函数, 记为 f '( x)
(当 x 为定点时, f '(x) 指 f (x) 在 x 处的导数值,
当 x 为变量时, f '(x)指 f (x) 的导函数 )
(3) y f ( x0 x) f ( x0 ) 表示平均增加率
y = f (x0+x) f (x0) , 如果y 与x之比的极限
lim y lim f ( x0 x) f ( x0 )
x0 x x0
x
存在, 则称函数 y = f (x)在点 x0 处可导, 并称此极限 值为函数 y = f (x )在点 x0 处的导数, 记为 f '(x0) , 即
f '(x0 )
相关文档
最新文档