2020年山东省济南市中考数学试卷 解析版

合集下载

2020年山东省济南市中考数学试卷 (解析版)

2020年山东省济南市中考数学试卷 (解析版)

2020年山东省济南市中考数学试卷一、选择题(共12小题).1.﹣2的绝对值是()A.2B.﹣2C.±2D.2.如图所示的几何体,其俯视图是()A.B.C.D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×1064.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)9.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.511.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE =43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m12.已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3C.m≥3D.1≤m≤3二、填空题(共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.分解因式:2a2﹣ab=.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.代数式与代数式的值相等,则x=.16.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.17.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.18.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF=3,则tan∠B'AC′=.三、解答题(共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.计算:()0﹣2sin30°++()﹣1.20.解不等式组:,并写出它的所有整数解.21.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:等级次数频率不合格100≤x<120a合格120≤x<140b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.26.在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.27.如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x 轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.参考答案一、选择题(共12小题).1.﹣2的绝对值是()A.2B.﹣2C.±2D.【分析】根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可.解:﹣2的绝对值是2;故选:A.2.如图所示的几何体,其俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看所得到的图形判断即可.解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.故选:C.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将21500000用科学记数法表示为2.15×107,故选:B.4.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°【分析】由平行线的性质得∠ADC=∠BAD=35°,再由垂线的定义可得三角形ACD是直角三角形,进而得出∠ACD的度数.解:∵AB∥CD,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,也不是中心对称图形,故本选项不合题意;D、既是轴对称图形又是中心对称图形的,故本选项符合题意.故选:D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多45【分析】从折线图中获取信息,通过折线图和中位数、众数的定义及极差等知识求解.解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.7.下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:∵(﹣2a3)2=4a6,故选项A正确;∵a2•a3=a5,故选项B错误;∵3a+a2不能合并,故选项C错误;∵(a﹣b)2=a2﹣2ab+b2,故选项D错误;故选:A.8.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)【分析】根据轴对称的性质和平移规律求得即可.解:由坐标系可得B(﹣3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B'的坐标为(3,1+3),即(3,4),9.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.【分析】由m<﹣2得出m+1<0,1﹣m>0,进而利用一次函数的性质解答即可.解:∵m<﹣2,∴m+1<0,1﹣m>0,所以一次函数y=(m﹣1)x+1﹣m的图象经过一,二,四象限,故选:D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5【分析】由基本作图得到得EF垂直平分AB,则MB=MA,所以BM+MD=MA+MD,连接MA、DA,如图,利用两点之间线段最短可判断MA+MD的最小值为AD,再利用等腰三角形的性质得到AD⊥BC,然后利用三角形面积公式计算出AD即可.解:由作法得EF垂直平分AB,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.故选:D.11.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE =43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m【分析】首先证明四边形ACDF是矩形,求出AC,DF即可解决问题.解:∵FD⊥AB,AC⊥EB,∵AF∥EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∴AC=AB•sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.44(m),在Rt△DEF中,∵∠FDE=90°,∴tan∠E=,∴DE≈=2.8(m),故选:B.12.已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3C.m≥3D.1≤m≤3【分析】根据题意,x=﹣≤2,≥﹣3解:当对称轴在y轴的右侧时,,解得≤m<3,当对称轴是y轴时,m=3,符合题意,当对称轴在y轴的左侧时,2m﹣6>0,解得m>3,综上所述,满足条件的m的值为m≥.故选:A.二、填空题(共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.分解因式:2a2﹣ab=a(2a﹣b).【分析】直接提取公因式a,进而得出答案.解:2a2﹣ab=a(2a﹣b).故答案为:a(2a﹣b).14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.【分析】让白球的个数除以球的总数即为摸到白球的概率.解:共有球3+2=5个,白球有2个,因此摸出的球是白球的概率为:.故答案为:.15.代数式与代数式的值相等,则x=7.【分析】根据题意列出分式方程,求出解即可.解:根据题意得:=,去分母得:3x﹣9=2x﹣2,解得:x=7,经检验x=7是分式方程的解.故答案为:7.16.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为36.【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式计算即可.解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,∴×2=24π,解得r=6.则正六边形的边长为6.17.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为1米.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程求解即可.解:设道路的宽为x m,根据题意得:(10﹣x)(15﹣x)=126,解得:x1=1,x2=24(不合题意,舍去),则道路的宽应为1米;故答案为:1.18.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF=3,则tan∠B'AC′=.【分析】连接AF,设CE=x,用x表示AE、EF,再证明∠AEF=90°,由勾股定理得通过AF进行等量代换列出方程便可求得x,再进一步求出B′C′,便可求得结果.解:连接AF,设CE=x,则C′E=CE=x,BE=B′E=10﹣x,∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=∠D=90°,∴AE2=AB2+BE2=82+(10﹣x)2=164﹣20x+x2,EF2=CE2+CF2=x2+32=x2+9,由折叠知,∠AEB=∠AEB′,∠CEF=∠C′EF,∵∠AEB+∠AEB′+∠CEF+∠C′EF=180°,∴∠AEF=∠AEB′+∠C′EF=90°,∴AF2=AE2+EF2=164﹣20x+x2+x2+9=2x2﹣20x+173,∵AF2=AD2+DF2=102+(8﹣3)2=125,∴2x2﹣20x+173=125,解得,x=4或6,当x=6时,EC=EC′=6,BE=B′E=8﹣6=2,EC′>B′E,不合题意,应舍去,∴CE=C′E=4,∴B′C′=B′E﹣C′E=(10﹣4)﹣4=2,∵∠B′=∠B=90°,AB′=AB=8,∴tan∠B'AC′=.故答案为:.三、解答题(共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.计算:()0﹣2sin30°++()﹣1.【分析】直接利用负整数指数幂的性质以及零指数幂的性质等知识分别化简得出答案.解:原式1﹣2×+2+2=1﹣1+2+2=4.20.解不等式组:,并写出它的所有整数解.【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.解:,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,∴不等式组的所有整数解为0,1.21.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.【分析】利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【解答】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.22.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:等级次数频率不合格100≤x<120a合格120≤x<140b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=0.1,b=0.35;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是108°;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.【分析】(1)用调查总人数减去其他小组的频数即可求得a值;(2)根据调查的总人数和每一小组的频数即可确定中位数落在那个范围内;(3)用总人数乘以达标率即可.解:(1)根据频数分布直方图可知:a=4÷40=0.1,因为40×25%=10,所以b=(40﹣4﹣12﹣10)÷40=14÷40=0.35,故答案为:0.1;0.35;(2)如图,即为补全的频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×=108°;故答案为:108°;(4)因为2000×=1800,所以估计该校学生一分钟跳绳次数达到合格及以上的人数是1800.23.如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.【分析】(1)连接OC,根据切线的性质可得∠OCD=90°,再根据AD⊥DC,和半径线段即可证明AC是∠DAB的角平分线;(2)利用圆周角定理得到∠ACB=90°,再证明Rt△ADC∽Rt△ACB,对应边成比例即可求出AC的长.解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠ACD+∠ACO=90°,∵AD⊥DC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠ACO=∠DAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC是∠DAB的角平分线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠D=∠ACB=90°,∵∠DAC=∠BAC,∴Rt△ADC∽Rt△ACB,∴=,∴AC2=AD•AB=2×3=6,∴AC=.24.5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【分析】(1)根据题意和表格中的数据,可以得到相应的二元一次方程组,从而可以求得营业厅购进A、B两种型号手机各多少部;(2)根据题意,可以得到利润与A种型号手机数量的函数关系式,然后根据B型手机的数量不多于A型手机数量的2倍,可以求得A种型号手机数量的取值范围,再根据一次函数的性质,即可求得营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少.解:(1)设营业厅购进A、B两种型号手机分别为a部、b部,,解得,,答:营业厅购进A、B两种型号手机分别为6部、4部;(2)设购进A种型号的手机x部,则购进B种型号的手机(30﹣x)部,获得的利润为w元,w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.25.如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.【分析】(1)求出D(,2),再用待定系数法即可求解;(2)证明=,即可求解;(3)①当点F在点C的下方时,求出FH=1,CH=,求出点F(1,),则点G (3,),即可求解;②当点F在点C的上方时,同理可解.解:(1)∵B(2,2),则BC=2,而BD=,∴CD=2﹣=,故点D(,2),将点D的坐标代入反比例函数表达式得:2=,解得k=3,故反比例函数表达式为y=,当x=2时,y=,故点E(2,);(2)由(1)知,D(,2),点E(2,),点B(2,2),则BD=,BE=,故==,===,∴DE∥AC;(3)①当点F在点C的下方时,如下图,过点F作FH⊥y轴于点H,∵四边形BCFG为菱形,则BC=CF=FG=BG=2,在Rt△OAC中,OA=BC=2,OB=AB=2,则tan∠OCA===,故∠OCA=30°,则FH=FC=1,CH=CF•cos∠OCA=2×=,故点F(1,),则点G(3,),当x=3时,y==,故点G在反比例函数图象上;②当点F在点C的上方时,同理可得,点G(1,3),同理可得,点G在反比例函数图象上;综上,点G的坐标为(3,)或(1,3),这两个点都在反比例函数图象上.26.在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是∠EAB=∠CBA.线段BE与线段CF的数量关系是CF=BE;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.【分析】(1)①如图1中,连接BE,设DE交AB于T.首先证明BD=BE,再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明△CMF ≌△BMN(SAS)可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到△CBT,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT 是平行四边形,可得结论.(2)结论:BE=2CF.如图3中,取AB的中点T,连接CT,FT.证明△BAE∽△CTF可得结论.解:(1)①如图1中,连接BE,设DE交AB于T.∵CA=CB,∠CAB=45°,∴∠CAB=∠ABC=45°,∴∠ACB=90°,∵∠ADE=∠ACB=45°,∠DAE=90°,∴∠ADE=∠AED=45°,∴AD=AE,∵∠DAT=∠EAT=45°,∴AT⊥DE,DT=ET,∴AB垂直平分DE,∴BD=BE,∵∠BCD=90°,DF=FB,∴CF=BD,∴CF=BE.∵∠CBA=45°,∠EAB=45°,∴∠EAB=∠ABC.故答案为:∠EAB=∠ABC,CF=BE.②结论不变.解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.∵∠ACB=90°,CA=CB,AM=BM,∴CM⊥AB,CM=BM=AM,设AD=AE=y.FM=x,DM=a,则DF=FB=a+x,∵AM=BM,∴y+a=a+2x,∴y=2x,即AD=2FM,∵AM=BM,EN=BN,∴AE=2MN,MN∥AE,∴MN=FM,∠BMN=∠EAB=90°,∴∠CMF=∠BMN=90°,∴△CMF≌△BMN(SAS),∴CF=BN,∵BE=2BN,∴CF=BE.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到△CBT,连接DT,GT,BG.∵AD=AE,∠EAD=90°,EG=DG,∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,∵∠CAB=45°,∴∠CAG=90°,∴AC⊥AG,∴AC∥DE,∵∠ACB=∠CBT=90°,∴AC∥BT∥BD,∵AG=BT,∴DG=BT=EG,∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,∴BD与GT互相平分,∵点F是BD的中点,∴BD与GT交于点F,∴GF=FT,∵△GCT是等腰直角三角形,∴CF=FG=FT,∴CF=BE.(2)结论:BE=2CF.理由:如图3中,取AB的中点T,连接CT,FT.∵CA=CB,∴∠CAB=∠CBA=30°,∠ACB=120°,∵AT=TB,∴CT⊥AB,∴AT=CT,∴AB=2CT,∵DF=FB,AT=TB,∴TF∥AD,AD=2FT,∴∠FTB=∠CAB=30°,∵∠CTB=∠DAE=90°,∴∠CTF=∠BAE=60°,∵∠ADE=∠ACB=60°,∴AE=AD=2FT,∴==2,∴△BAE∽△CTF,∴==2,∴BE=2CF.27.如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x 轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.【分析】(1)用待定系数法即可求解;(2)若△ACD是以∠DCA为底角的等腰三角形,则可以分CD=AD或AC=AD两种情况,分别求解即可;(3)S1=AE×y M,2S2=ON•x M,即可求解.解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为y=﹣x2+2x+3,当x=0时,y=3,故点C(0,3);(2)当m=1时,点E(1,0),设点D的坐标为(1,a),由点A、C、D的坐标得,AC==,同理可得:AD=,CD=,①当CD=AD时,即=,解得a=1;②当AC=AD时,同理可得a=(舍去负值);故点D的坐标为(1,1)或(1,);(3)∵E(m,0),则设点M(m,﹣m2+2m+3),设直线BM的表达式为y=sx+t,则,解得,故直线BM的表达式为y=﹣x+,当x=0时,y=,故点N(0,),则ON=;S1=AE×y M=×(m+1)×(﹣m2+2m+3),2S2=ON•x M=×m=S1=×(m+1)×(﹣m2+2m+3),解得m=﹣2±(舍去负值),经检验m=﹣2是方程的根,故m=﹣2.。

2020年山东济南中考数学试卷(解析版)

2020年山东济南中考数学试卷(解析版)

2020年山东济南中考数学试卷(解析版)一、选择题(本大题共12小题,每小题4分,共48分)1.的绝对值是( ).A. B. C. D.2.如图所示的几何体,其俯视图是( ).正面A. B. C. D.3.年月日,我国的北斗卫星导航系统()星座部署完成,其中一颗中高轨道卫星高度大约是米.将数字用科学记数法表示为( ).A. B. C. D.4.如图,,,,则( ).A.B.C.D.5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是( ).A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了至月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是( ).月份本数(本)A.每月阅读课外书本数的众数是B.每月阅读课外书本数的中位数是C.从到月份阅读课外书的本数逐月下降D.从到月份每月阅读课外书本数的最大值比最小值多7.下列运算正确的是( ).A.B.C.D.8.如图,在平面直角坐标系中,的顶点都在格点上,如果将先沿轴翻折,再向上平移个单位长度,得到,那么点的对应点的坐标为( ).A.B.C.D.9.若,则一次函数的图象可能是( ).A.B.C.D.10.如图,在中,,分别以点,为圆心,以适当的长为半径作弧,两弧分别交于,,作直线,为的中点,为直线上任意一点.若,的面积为,则长度的最小值为( ).A.B.C.D.11.如图,,区域为驾驶员的盲区,驾驶员视线与地面的夹角,视线与地面的夹角,点,为视线与车窗底端的交点,,,.若点到点的距离,则盲区中的长度是( ).(参考数据:,,,)A.B.C.D.12.已知抛物线与轴交于点,与直线交于点,当时,值随值的增大而增大.记抛物线在线段下方的部分为(包含,两点),为上任意一点,设的纵坐标为,若,则的取值范围是( ).A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)13.分解因式: .14.在一个不透明的袋子中装有个红球和个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是 .15.代数式与代数式的值相等,则 .16.如图,在正六边形中,分别以,为圆心,以边长为半径作弧,图中阴影部分的面积为,则正六边形的边长为 .17.如图,在一块长、宽的矩形空地上,修建两条同样宽的相互垂直的道路,剩余部分栽种花草,要使绿化面积为,则修建的路宽应为.绿地18.如图,在矩形纸片中,,,将沿翻折,使点落在处,为折痕;再将沿翻折,使点恰好落在线段上的点处,为折痕,连接.若,则.三、解答题(本大题共9小题,共78分)19.计算:.20.解不等式组:,并写出它的所有整数解.①②21.如图,在平行四边形中,对角线,相交于点,过点的一条直线分别交,于点,.求证:.(1)(2)(3)(4)22.促进青少年健康成长是实施”健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:等级次数频率不合格合格良好优秀次数人数优秀良好合格不合格请结合上述信息回答下列问题: ,.请补全频数分布直方图.在扇形统计图中,“良好”等级对应的圆心角的度数是 .若该校有名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.如图,为⊙的直径,点是⊙上一点,与⊙相切于点,过点作,连接,.(1)(2)求证:是的平分线.若,,求的长.(1)(2)24.时代的到来,将给人类生活带来巨大改变,现有,两种型号的手机,进价和售价如下表所示:价格型号进价(元部)售价(元部)某营业厅购进,两种型号手机共花费元,手机销售完成后共获得利润元.营业厅购进,两种型号手机各多少部?若营业厅再次购进,两种型号手机共部,其中型手机的数量不多于型手机数量的倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?(1)(2)(3)25.如图,矩形的顶点,分别落在轴,轴的正半轴上,顶点,反比例函数的图象与,分别交于,,.求反比例函数关系式和点的坐标.写出与的位置关系并说明理由.点在直线上,点是坐标系内一点,当四边形为菱形时,求出点的坐标并判断点是否在反比例函数图象上.备用图12(1)(2)26.在等腰中,,为直角三角形,,,连接,,点是的中点,连接.当时.如图,当顶点在边上时,请直接写出与的数量关系是 ,线段与线段的数量关系是 .图如图,当顶点在边上时,()中线段与线段的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由.图学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰底边上的高,并取的中点,再利用三角形全等或相似有关知识来解决问题;思路二:取的中点,连接,,并把绕点逆时针旋,再利用旋转性质、三角形全等或相似有关知识来解决问题.当时,如图,当顶点在边上时,写出线段与线段的数量关系,并说明理由.图图(1)(2)图(3)27.如图,抛物线过点,点,与轴交于点,在轴上有一动点,过点作直线轴,交抛物线于点.求抛物线的解析式及点坐标.当时,是直线上的点且在第一象限内,若是以为底角的等腰三角形,求点的坐标.如图,连接并延长交轴于点,连接,,设的面积为,的面积为,若,求的值.【答案】解析:的绝对值是.故选.解析:俯视图为.解析:用科学记数法表示为.解析:∵,,∴,∴,又∵,∴,∴,B1.C2.B3.C4.∴,,选项错误,不符合题意,舍弃.故选.解析:如图,根据题意可得,的坐标为.解析:∵,∴,,∴函数中,随的增大而减小,且交轴于正半轴.故选:.解析:如图,连接,D5.B6.A7.C8.D9.D10.∵,为的中点,∴.∴.∴.∵是的垂直平分线,∴点关于的对称点是点.∴当且,,三点共线时,长度最短,即.解析:在中,,由题可知四边形为矩形,∴.在中,.解析:∵将抛物线化为顶点式为,当时,值随值得增大而增大,∴,解得.∵为上任意一点,的纵坐标为,,∴当时,,即,解得,∴的取值范围为.解析:B11.A12.13.,故答案为:.解析:白球概率,∴答案为:.解析:,∴,,,∴.经检验,是分式方程的解.∴答案为:.解析:∵六边形内角和为,∴,,,,∴.∴,且,∴,∴正六边形的边长为.故答案为:.14.白球个数总个数15.16.扇形扇形阴影扇形扇形17.解析:设修建的路宽应为,则,则,∴,∴,,,又∵,∴取,∴路宽应为.∴答案为:.18.解析:如图,连接,由翻折可知,≌,≌,∴.设的长为,则,,在中,,即,在中,,即,∴,解得(舍去)或,又∵,∴.解析:.故答案为:.解析:,解不等式①:,∴,解不等式②:,,,,∴,∴,又∵取整数,故为或,故答案为:;整数解为或..19.;整数解为或.20.①②(1)(2)解析:∵平行四边形的对角线,相交于点,∴,,∴,在和中,∴≌,∴.解析:由柱状图可知,的人有人,∴频率,的人有人,由饼状图可知,优秀占总人数的,∴的有人,故,∴频率,故答案为:;.证明见解析.21.(1) ; (2)画图见解析.(3)(4)人.22.(3)(4)(1)次数人数良好的有人,∴,∴“良好”等级对应的圆心角的度数为.故答案为:.(人),∴该校学生一分钟跳绳次数达到合格及以上的人数为:人.解析:如图,连接,∵与⊙相切于点,∴.∵,∴,∴.∵,∴,(1)证明见解析.(2).23.(2)(1)(2)∴,∴平分.∵是⊙的直径,∴,∴.∵,∴,∴,∴,∵,,∴,∴.解析:设购进型手机部,型手机部.由题意得,,解方程组得.答:营业厅购进型手机部,型手机部.设计划购进型部,则型手机部,手机售出后获得总利润为元.由题意得,,由题意得,解得.∵随的增大而减小,∴当时,取得最大值,最大值.答:当购进型手机部,型手机部时,获得最大利润元.(1)营业厅购进型手机部,型手机部.(2)当购进型手机部,型手机部时,获得最大利润元.24.(1),.25.(1)(2)(3)解析:∵,,∴,∴反比例函数关系式,∴.∵,,∴,,∴,,,,∴,∴.Ⅰ.如图,当在的上方,交轴于点.图∵,∴,∴,∵四边形为菱形,∴,∴,,∴,∴.∴点恰好落在反比例函数图象上.Ⅱ.如图,当在的下方,交轴于点,由答案知,,(2),证明见解析.(3),,是.1(1)图∵四边形为菱形,∴,∴,,∴,,∴.∴点恰好落在反比例函数图象上.综上所述,,,且恰好落在反比例函数图象上.解析:∵,∴,又∵,∴,∴,在与中,,∴≌,∴,又∵在直角三角形中,为斜边中点,12(1) ;仍然成立,证明见解析.(2),证明见解析.26.2(2)∴,∴,即.如图,过点作于点,并延长交于点,连接,∵,,∴,∴,.∵,,∴.∵,∴,∴,∴,∴≌,∴,∴.如图,过点作于点,连接.∵,,∴,∴,,∵,∴,,(1)(2)∴,∴.∵,,∴,∴,∴,∴,∴.解析:由题意知,解得,∴,∴的坐标为.故答案为:,.分两种情况讨论:①如图,当时,图设,则,解得,∴,②如图,当时,(1),.(2)或.(3).27.(3)图由题意得,,解得,又点在第一象限,∴,综上,或.设,由题意得,,∴,∴,∴,∵,∴,∵,即,∴,又∵点在第一象限,∴.故答案为:.。

2020年山东省济南市中考数学评价检测试题(一)(附详细解析)

2020年山东省济南市中考数学评价检测试题(一)(附详细解析)
25.如图1,在平面直角坐标系xOy中,双曲线 与直线y=ax+b(a≠0)交于A、B两点,直线AB分别交x轴、y轴于C、D两点,E为x轴上一点.已知OA=OC=OE,A点坐标为(3,4).
(1)将线段OE沿x轴平移得线段O′E′(如图1),在移动过程中,是否存在某个位置使|BO′﹣AE′|的值最大?若存在,求出|BO′﹣AE′|的最大值及此时点O′的坐标;若不存在,请说明理由;
三、解答题
19.计算:
20.解不等式组
21.如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.
(1)求证:AB=AF;
(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.
22.2020年2月22日深圳地铁10号线华南城站试运行,预计今年6月正式开通.在地铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元;已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.
11.为加快5G网络建设,某移动通信公司在一个坡度为2:1的山腰上建了一座5G信号通信塔AB,在距山脚C处水平距离39米的点D处测得通信塔底B处的仰角是35°,测得通信塔顶A处的仰角是49°,(参考数据:sin35°≈0.57,tan35°≈0.70,sin49°≈0.75,tan49°≈1.15),则通信塔AB的高度约为( )
24.2018年,国家卫生健康委员会和国家教育部在全国开展了儿童青少年近视调查工作,调查数据显示,全国儿童青少年近视过半.某校初三学习小组为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成下面的两幅不完整的统计图:

2019-2020济南市数学中考试卷及答案

2019-2020济南市数学中考试卷及答案

可以反映水面升高的速度;因为 D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面 积小,所以在均匀注水的前提下是先快后慢; 故选 D. 【点睛】 此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.
12.A
解析:A 【解析】 【分析】 先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】
19.在函数 y 3 的图象上有三个点(﹣2,y1),(﹣1,y2),( 1 ,y3),则 y1,
x
2
y2,y3 的大小关系为_____.
20.若式子 x 3 在实数范围内有意义,则 x 的取值范围是_____.
三、解答题
21.甲、乙两公司为“见义勇为基金会”各捐款 60000 元.已知甲公司的人数比乙公司的人 数多 20℅,乙公司比甲公司人均多捐 20 元.甲、乙两公司各有多少人? 22.在□ABCD,过点 D 作 DE⊥AB 于点 E,点 F 在边 CD 上,DF=BE,连接 AF,BF.
A.1
B. 2 3
C. 2 2
D. 5 2
10.如图,P 为平行四边形 ABCD 的边 AD 上的一点,E,F 分别为 PB,PC 的中点,△PEF,
△PDC,△PAB 的面积分别为 S, S1 , S2 .若 S=3,则 S1 S2 的值为( )
A.24
B.12
C.6
D.3
11.均匀的向一个容器内注水,在注水过程中,水面高度 h 与时间 t 的函数关系如图所
4.D
解析:D 【解析】
由题意得:
y1
k x1
k x2
y2
,故选 D.
5.A
解析:A 【解析】
【分析】 先求出不等式组的解集,再在数轴上表示出来即可. 【详解】

2020年山东省济南市中考数学试卷(含答案解析)

2020年山东省济南市中考数学试卷(含答案解析)

2020年山东省济南市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.−2的绝对值是()A. 2B. −2C. ±2D. √22.如图所示的几何体,其俯视图是()A. B. C. D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A. 0.215×108B. 2.15×107C. 2.15×106D. 21.5×1064.如图,AB//CD,AD⊥AC,∠BAD=35°,则∠ACD=()A. 35°B. 45°C. 55°D. 70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A. 每月阅读课外书本数的众数是45B. 每月阅读课外书本数的中位数是58C. 从2到6月份阅读课外书的本数逐月下降D. 从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是()A. (−2a3)2=4a6B. a2⋅a3=a6C. 3a+a2=3a3D. (a−b)2=a2−b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A′B′C′,那么点B的对应点B′的坐标为()A. (1,7)B. (0,5)C. (3,4)D. (−3,2)9.若m<−2,则一次函数y=(m+1)x+1−m的图象可能是()A. B. C. D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A. 52B. 3C. 4D. 511.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF//BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A. 2.6mB. 2.8mC. 3.4mD. 4.5m12.已知抛物线y=x2+(2m−6)x+m2−3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M 的纵坐标为t,若t≥−3,则m的取值范围是()A. m≥32B. 32≤m≤3 C. m≥3 D. 1≤m≤3二、填空题(本大题共6小题,共24.0分)13.分解因式:2a2−ab=______.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是______.15.代数式3x−1与代数式2x−3的值相等,则x=______.16.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为______.17.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为______米.18.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B′处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB′上的点C′处,EF为折痕,连接AC′.若CF=3,则tan∠B′AC′=______.三、解答题(本大题共9小题,共78.0分)19.计算:(π2)0−2sin30°+√4+(12)−1.20.解不等式组:{4(2x−1)≤3x+1①2x >x−32②,并写出它的所有整数解.21.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:等级次数频率不合格100≤x<120a合格120≤x<140b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=______,b=______;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是______;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2√3),反比例函数y=kx(x>0)的图象与BC,AB分别交于D,E,BD=12.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.26.在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=12∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是______.线段BE与线段CF的数量关系是______;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.27.如图1,抛物线y=−x2+bx+c过点A(−1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.答案和解析1.【答案】A【解析】解:−2的绝对值是2;故选:A.根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数−a,解答即可.此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.故选:C.根据俯视图是从物体上面看所得到的图形判断即可.本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3.【答案】B【解析】解:将21500000用科学记数法表示为2.15×107,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:∵AB//CD,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°−35°=55°,故选:C.由平行线的性质得∠ADC=∠BAD=35°,再由垂线的定义可得三角形ACD是直角三角形,进而得出∠ACD 的度数.本题主要考查了平行线的性质以及垂线的定义,属于基础题型.5.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,也不是中心对称图形,故本选项不合题意;D、既是轴对称图形又是中心对称图形的,故本选项符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了轴对称与中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.【答案】B【解析】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.从折线图中获取信息,通过折线图和中位数、众数的定义及极差等知识求解.本题考查折线统计图、众数及中位数的定义等知识点,掌握众数、中位数的定义,并能从统计图中得到必要的信息是解决本题的关键.7.【答案】A【解析】解:∵(−2a3)2=4a6,故选项A正确;∵a2⋅a3=a5,故选项B错误;∵3a+a2不能合并,故选项C错误;∵(a−b)2=a2−2ab+b2,故选项D错误;故选:A.根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.本题考查积的乘方、同底数幂的乘法、合并同类项、完全平方公式,解答本题的关键是明确它们各自的计算方法.8.【答案】C【解析】解:由坐标系可得B(−3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B′的坐标为(3,1+3),即(3,4),故选:C.根据轴对称的性质和平移规律求得即可.此题主要考查了坐标与图形的变化--对称和平移,关键是掌握点的坐标的变化规律.9.【答案】D【解析】解:∵m<−2,∴m+1<0,1−m>0,所以一次函数y=(m−1)x+1−m的图象经过一,二,四象限,故选:D.由m<−2得出m+1<0,1−m>0,进而利用一次函数的性质解答即可.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限.b> 0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【答案】D【解析】解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=12⋅BC⋅AD=10,∴AD=10×24=5,∴BM+MD长度的最小值为5.故选:D.由基本作图得到得EF垂直平分AB,则MB=MA,所以BM+MD=MA+MD,连接MA、DA,如图,利用两点之间线段最短可判断MA+MD的最小值为AD,再利用等腰三角形的性质得到AD⊥BC,然后利用三角形面积公式计算出AD即可.本题考查了作图−基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.11.【答案】B【解析】解:∵FD⊥AB,AC⊥EB,∴DF//AC,∵AF//EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∴AC=AB⋅sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.44(m),在Rt△DEF中,∵∠FDE=90°,∴tan∠E=DFDE,∴DE≈1.120.4=2.8(m),故选:B.首先证明四边形ACDF是矩形,求出AC,DF即可解决问题.本题考查解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.12.【答案】A【解析】解:当对称轴在y 轴的右侧时,{2m −6<0−2m−62≤24(m 2−3)−(2m−6)24≥−3,解得32≤m <3,当对称轴是y 轴时,m =3,符合题意,当对称轴在y 轴的左侧时,2m −6>0,解得m >3, 综上所述,满足条件的m 的值为m ≥32. 故选:A .根据题意,x =−b2a ≤2,4ac−b 24a≥−3本题考查二次函数图形与系数的关系,二次函数图象上的点的坐标特征,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.13.【答案】a(2a −b)【解析】解:2a 2−ab =a(2a −b). 故答案为:a(2a −b).直接提取公因式a ,进而得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.【答案】25【解析】解:共有球3+2=5个,白球有2个, 因此摸出的球是白球的概率为:25. 故答案为:25.让白球的个数除以球的总数即为摸到白球的概率.本题考查了概率公式:随机事件A 的概率P(A)=事件A 可能出现的结果数除以所有可能出现的结果数.15.【答案】7【解析】解:根据题意得:3x−1=2x−3, 去分母得:3x −9=2x −2, 解得:x =7,经检验x =7是分式方程的解.故答案为:7.根据题意列出分式方程,求出解即可.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16.【答案】36【解析】解:∵正六边形的内角是120度,阴影部分的面积为24π, 设正六边形的边长为r , ∴120π×r 2360×2=24π,解得r =6.则正六边形的边长为6.根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式计算即可.本题考查了扇形面积的计算.本题的关键是根据多边形的内角和公式求出扇形的圆心角.17.【答案】1【解析】解:设道路的宽为x m ,根据题意得: (10−x)(15−x)=126,解得:x 1=1,x 2=24(不合题意,舍去), 则道路的宽应为1米; 故答案为:1.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程求解即可.此题主要考查了一元二次方程的应用,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.18.【答案】14【解析】解:连接AF ,设CE =x ,则C′E =CE =x ,BE =B′E =10−x , ∵四边形ABCD 是矩形,∴AB =CD =8,AD =BC =10,∠B =∠C =∠D =90°, ∴AE 2=AB 2+BE 2=82+(10−x)2=164−20x +x 2, EF 2=CE 2+CF 2=x 2+32=x 2+9, 由折叠知,∠AEB =∠AEB′,∠CEF =∠C′EF ,∵∠AEB+∠AEB′+∠CEF+∠C′EF=180°,∴∠AEF=∠AEB′+∠C′EF=90°,∴AF2=AE2+EF2=164−20x+x2+x2+9=2x2−20x+173,∵AF2=AD2+DF2=102+(8−3)2=125,∴2x2−20x+173=125,解得,x=4或6,当x=6时,EC=EC′=6,BE=B′E=8−6=2,EC′>B′E,不合题意,应舍去,∴CE=C′E=4,∴B′C′=B′E−C′E=(10−4)−4=2,∵∠B′=∠B=90°,AB′=AB=8,∴tan∠B′AC′=B′C′A′B′=28=14.故答案为:14.连接AF,设CE=x,用x表示AE、EF,再证明∠AEF=90°,由勾股定理得通过AF进行等量代换列出方程便可求得x,再进一步求出B′C′,便可求得结果.本题主要考查了矩形的性质,折叠的性质,勾股定理,解直角三角形的性质,关键是利用勾股定理列出方程.19.【答案】解:原式1−2×12+2+2=1−1+2+2=4.【解析】直接利用负整数指数幂的性质以及零指数幂的性质等知识分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:{4(2x−1)≤3x+1①2x>x−32②,解不等式①得:x≤1,解不等式②得:x>−1,∴不等式组的解集为−1<x≤1,∴不等式组的所有整数解为0,1.【解析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.21.【答案】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD//BC,∴∠EAC=∠FCO,在△AOE和△COF中{∠EAO=∠FCOAO=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴AE=CF.【解析】利用平行四边形的性质得出AO=CO,AD//BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.此题主要考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.22.【答案】0.10.35108°【解析】解:(1)根据频数分布直方图可知:a=4÷40=0.1,因为40×25%=10,所以b=(40−4−12−10)÷40=14÷40=0.35,故答案为:0.1;0.35;(2)如图,即为补全的频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×1240=108°;故答案为:108°;(4)因为2000×40−440=1800,所以估计该校学生一分钟跳绳次数达到合格及以上的人数是1800.(1)用调查总人数减去其他小组的频数即可求得a值;(2)根据调查的总人数和每一小组的频数即可确定中位数落在那个范围内;(3)用总人数乘以达标率即可.此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是根据直方图得到进一步解题的有关信息.23.【答案】解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠ACD+∠ACO=90°,∵AD⊥DC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠ACO=∠DAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC是∠DAB的角平分线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠D=∠ACB=90°,∵∠DAC=∠BAC,∴Rt△ADC∽Rt△ACB,∴ADAC=ACAB,∴AC2=AD⋅AB=2×3=6,∴AC=√6.【解析】(1)连接OC,根据切线的性质可得∠OCD=90°,再根据AD⊥DC,和半径线段即可证明AC是∠DAB 的角平分线;(2)利用圆周角定理得到∠ACB=90°,再证明Rt△ADC∽Rt△ACB,对应边成比例即可求出AC的长.本题考查了切线的性质:圆的切线垂直于经过切点的半径,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.24.【答案】解:(1)设营业厅购进A、B两种型号手机分别为a部、b部,{3000a+3500b=32000(3400−3000)a+(4000−3500)b=4400,解得,{a=6b=4,答:营业厅购进A、B两种型号手机分别为6部、4部;(2)设购进A种型号的手机x部,则购进B种型号的手机(30−x)部,获得的利润为w元,w=(3400−3000)x+(4000−3500)(30−x)=−100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30−x≤2x,解得,x≥10,∵w=−100x+15000,k=−100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30−x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.【解析】(1)根据题意和表格中的数据,可以得到相应的二元一次方程组,从而可以求得营业厅购进A、B 两种型号手机各多少部;(2)根据题意,可以得到利润与A种型号手机数量的函数关系式,然后根据B型手机的数量不多于A型手机数量的2倍,可以求得A种型号手机数量的取值范围,再根据一次函数的性质,即可求得营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少.本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.25.【答案】解:(1)∵B(2,2√3),则BC=2,而BD =12,∴CD =2−12=32,故点D(32,2√3),将点D 的坐标代入反比例函数表达式得:2√3=k32,解得k =3√3,故反比例函数表达式为y =3√3x,当x =2时,y =3√32,故点E(2,3√32);(2)由(1)知,D(32,2√3),点E(2,3√32),点B(2,2√3),则BD =12,BE =√32,故BD BC=122=14,EB AB=√322√3=14=BD BC, ∴DE//AC ;(3)①当点F 在点C 的下方时,如下图,过点F 作FH ⊥y 轴于点H ,∵四边形BCFG 为菱形,则BC =CF =FG =BG =2, 在Rt △OAC 中,OA =BC =2,OB =AB =2√3, 则tan∠OCA =AO CO=22√3=√33,故∠OCA =30°,则FH =12FC =1,CH =CF ⋅cos∠OCA =2×√32=√3,故点F(1,√3),则点G(3,√3), 当x =3时,y =3√3x=√3,故点G 在反比例函数图象上;②当点F 在点C 的上方时, 同理可得,点G(1,3√3),同理可得,点G 在反比例函数图象上;综上,点G 的坐标为(3,√3)或(1,3√3),这两个点都在反比例函数图象上.【解析】(1)求出D(32,2√3),再用待定系数法即可求解; (2)证明EBAB =BD BC,即可求解;(3)①当点F 在点C 的下方时,求出FH =1,CH =√3,求出点F(1,√3),则点G(3,√3),即可求解;②当点F 在点C 的上方时,同理可解.此题为反比例函数综合题,涉及到菱形的性质、解直角三角形、矩形的性质、平行线分线段成比例等知识点,此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.26.【答案】∠EAB =∠CBA CF =12BE【解析】解:(1)①如图1中,连接BE ,设DE 交AB 于T .∵CA =CB ,∠CAB =45°, ∴∠CAB =∠ABC =45°,∴∠ACB =90°,∵∠ADE =12∠ACB =45°,∠DAE =90°,∴∠ADE =∠AED =45°, ∴AD =AE ,∵∠DAT =∠EAT =45°, ∴AT ⊥DE ,DT =ET , ∴AB 垂直平分DE , ∴BD =BE ,∵∠BCD =90°,DF =FB , ∴CF =12BD ,∴CF =12BE.∵∠CBA=45°,∠EAB=45°,∴∠EAB=∠ABC.故答案为:∠EAB=∠ABC,CF=12BE.②结论不变.解法一:如图2−1中,取AB的中点M,BE的中点N,连接CM,MN.∵∠ACB=90°,CA=CB,AM=BM,∴CM⊥AB,CM=BM=AM,设AD=AE=y.FM=x,DM=a,则DF=FB=a+x,∵AM=BM,∴y+a=a+2x,∴y=2x,即AD=2FM,∵AM=BM,EN=BN,∴AE=2MN,MN//AE,∴MN=FM,∠BMN=∠EAB=90°,∴∠CMF=∠BMN=90°,∴△CMF≌△BMN(SAS),∴CF=BN,∵BE=2BN,∴CF=12BE.解法二:如图2−2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到△CBT,连接DT,GT,BG.∵AD=AE,∠EAD=90°,EG=DG,∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,∵∠CAB=45°,∴∠CAG=90°,∴AC⊥AG,∴AC//DE,∵∠ACB=∠CBT=90°,∴AC//BT//BD,∵AG=BT,∴DG=BT=EG,∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,∴BD与GT互相平分,∵点F是BD的中点,∴BD与GT交于点F,∴GF=FT,∵△GCT是等腰直角三角形,∴CF=FG=FT,∴CF=12BE.(2)结论:BE=2√3CF.理由:如图3中,取AB的中点T,连接CT,FT.∵CA=CB,∴∠CAB=∠CBA=30°,∠ACB=120°,∵AT=TB,∴CT⊥AB,∴AT=√3CT,∴AB=2√3CT,∵DF=FB,AT=TB,∴TF//AD,AD=2FT,∴∠FTB=∠CAB=30°,∵∠CTB=∠DAE=90°,∴∠CTF=∠BAE=60°,∵∠ADE=12∠ACB=60°,∴AE=√3AD=2√3FT,∴ABCT =AEFT=2√3,∴△BAE∽△CTF,∴BECF =BACT=2√3,∴BE=2√3CF.(1)①如图1中,连接BE,设DE交AB于T.首先证明BD=BE,再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2−1中,取AB的中点M,BE的中点N,连接CM,MN.证明△CMF≌△BMN(SAS)可得结论.解法二:如图2−2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到△CBT,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.(2)结论:BE=2√3CF.如图3中,取AB的中点T,连接CT,FT.证明△BAE∽△CTF可得结论.本题属于相似形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.27.【答案】解:(1)将点A、B的坐标代入抛物线表达式得{−1−b+c=0−9+3b+c=0,解得{b=2c=3,故抛物线的表达式为y=−x2+2x+3,当x=0时,y=3,故点C(0,3);(2)当m=1时,点E(1,0),设点D的坐标为(1,a),由点A、C、D的坐标得,AC=√(0+1)2+(3−0)2=√10,同理可得:AD=√a2+4,CD=√1+(a−3)2,①当CD=AD时,即√a2+4=√1+(a−3)2,解得a=1;②当AC=AD时,同理可得a=±√6(舍去负值);故点D的坐标为(1,1)或(1,√6);(3)∵E(m,0),则设点M(m,−m2+2m+3),设直线BM的表达式为y=sx+t,则{−m2+2m+3=sm+t0=3s+t,解得{s=−1m+1t=3m+1,故直线BM的表达式为y=−1m+1x+3m+1,当x=0时,y=3m+1,故点N(0,3m+1),则ON=3m+1;S1=12×AE×y M=12×(m+1)×(−m2+2m+3),2S2=ON⋅x M=3m+1×m=S1=12×(m+1)×(−m2+2m+3),解得m=−2±√7(舍去负值),经检验m=√7−2是方程的根,故m=√7−2.【解析】(1)用待定系数法即可求解;(2)若△ACD是以∠DCA为底角的等腰三角形,则可以分CD=AD或AC=AD两种情况,分别求解即可;(3)S1=12×AE×y M,2S2=ON⋅x M,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、面积的计算等,其中(2),要注意分类求解,避免遗漏.。

2020年山东省济南市中考数学试题及答案

2020年山东省济南市中考数学试题及答案

2020年山东省济南市中考数学试题及答案数学试卷本卷须知:1.本试题分第一卷和第二卷两部分,第一卷共2页,满48分;第二卷共6页,总分值72分.本试题共8页,总分值120分,考试时刻为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内.3.第一卷为选择题,每题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦洁净后,再选涂其他答案,答案写在试卷上无效.4.考试期间,一律不得使用运算器;考试终止,应将本试卷和答题卡一并交回.第一卷〔选择题共48分〕一、选择题〔本大题共12个小题,每题4分,共48分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.3的相反数是〔〕A .3B .3C .13D .132.图中几何体的主视图是〔〕3.如图,AB CD ∥,直线EF 与AB 、CD 分不相交于G 、H .60AGE ∠,那么EHD ∠的度数是〔〕A .30B .60C .120D .1504.估量20的算术平方根的大小在〔〕A .2与3之间B .3与4之间C .4与5之间D .5与6之间5.2009年10月11日,第十一届全运会将在漂亮的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈〝三足鼎立〞、〝东荷西柳〞布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是〔保留三个有效数字〕〔〕A .535.910平方米B .53.6010平方米C .53.5910平方米D .435.910平方米ACE B FDHG〔第3题图〕正面〔第2题图〕A .B .C .D .6.假设12x x ,是一元二次方程2560xx 的两个根,那么12x x +的值是〔〕A .1B .5C .5D .67.〝只要人人都献出一点爱,世界将变成美好的人间〞.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情形进行了统计,并绘制成了统计图.依照右图提供的信息,捐款金额..的众数和中位数分不是〔〕A .20、20B .30、20C .30、30D .20、308.不等式组213351x x ≤的解集在数轴上表示正确的选项是〔〕9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如下图,它的底面半径6cm OB,高8cm OC .那么那个圆锥漏斗的侧面积是〔〕A .230cm B .230cmC .260cmD .2120cm 10.如图,矩形ABCD 中,35ABBC ,.过对角线交点O 作OE AC 交AD 于E ,那么AE 的长是〔〕A .1.6B .2.5C .3D .3.411.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,假设a b Rt GEF∥,△从如下图的位置动身,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积〔S 〕随时刻〔t 〕变化的图象大致是〔〕1 2 0A .B .1 2C .1 2D .1 2〔第9题图〕BACO ABCDOE〔第10题图〕捐款人数金额〔元〕5 1015 20 613208320 3050100〔第7题图〕1012.在平面直角坐标系中,关于平面内任一点a b ,,假设规定以下三种变换:1313;f a b a b f 如①,=,.,,,1331;g a b b a g 如②,=,.,,,1313h a b a b h 如③,=,.,,,.按照以上变换有:233232f g f,,,,那么53f h ,等于〔〕A .53,B .53,C .53,D .53,GDCEFA Bba〔第11题图〕stOA .stOB .C .stOD .stO本卷须知:1.第二卷共6页.用蓝、黑钢笔或圆珠笔直截了当答在考试卷上.2.答卷前将密封线内的项目填写清晰.考试时刻,一律不得使用运算器.第二卷〔非选择题共72分〕二、填空题〔本大题共5个小题,每题3分,共15分.把答案填在题中横线上〕13.分解因式:29x.14.如图,O 的半径5cm OA ,弦8cm AB ,点P 为弦AB 上一动点,那么点P 到圆心O 的最短距离是cm .15.如图,AOB ∠是放置在正方形网格中的一个角,那么cos AOB ∠的值是.16.〝五一〞期间,我市某街道办事处举行了〝迎全运,促和谐〞中青年篮球友谊赛.获得男子篮球冠军球队的五名主力队员的身高如下表:〔单位:厘米〕号码 4 7 910 23 身高178180182181179那么该队主力队员身高的方差是厘米2.17.九年级三班小亮同学学习了〝测量物体高度〞一节课后,他为了测得右图所放风筝的高度,进行了如下操作:〔1〕在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD ∠;〔2〕依照手中剩余线的长度出风筝线BC 的长度为70米;〔3〕量出测倾器的高度1.5AB 米.依照测量数据,运算出风筝的高度CE 约为米.〔精确到0.1米,3 1.73〕三、解答题〔本大题共7个小题,共57分.解承诺写出文字讲明、证明过程或演算步骤〕18.〔本小题总分值7分〕〔1〕运算:2121x x〔2〕解分式方程:2131xx .19.〔本小题总分值7分〕OAPB〔第14题图〕OAB〔第15题图〕ADB EC60°〔第17题图〕〔1〕,如图①,在ABCD 中,E 、F 是对角线BD 上的两点,且BFDE .求证:AE CF .〔2〕,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD ∠,求EBO ∠和C ∠的度数.20.〔本小题总分值8分〕有3张不透亮的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b .〔1〕写出k 为负数的概率;〔2〕求一次函数ykx b 的图象通过二、三、四象限的概率.〔用树状图或列表法求解〕21.〔本小题总分值8分〕AECD F B〔第19题图①〕ACDBEO〔第19题图②〕123正面背面自2018年爆发全球金融危机以来,部分企业受到了不同程度的阻碍,为落实〝促民生、促经济〞政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由差不多保证工资和计件奖励工资两部分组成〔计件奖励工资=销售每件的奖励金额×销售的件数〕.下表是甲、乙两位职工今年五月份的工资情形信息:职工甲乙月销售件数〔件〕200 180 月工资〔元〕18001700〔1〕试求工资分配方案调整后职工的月差不多保证工资和销售每件产品的奖励金额各多少元?〔2〕假设职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?22.〔本小题总分值9分〕:如图,正比例函数y ax 的图象与反比例函数k yx的图象交于点32A ,.〔1〕试确定上述正比例函数和反比例函数的表达式;〔2〕依照图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?〔3〕M m n ,是反比例函数图象上的一动点,其中03m ,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判定线段BM 与DM 的大小关系,并讲明理由.23.〔本小题总分值9分〕如图,在梯形ABCD 中,354245AD BC ADDC AB B∥,,,,∠.动点M从B 点动身沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点动身沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时刻为t 秒.〔1〕求BC 的长.〔2〕当MN AB ∥时,求t 的值.〔3〕试探究:t 为何值时,MNC △为等腰三角形. A DCBMN〔第23题图〕〔第22题图〕y xOADMCB24.〔本小题总分值9分〕:抛物线20y axbx c a的对称轴为1x,与x 轴交于A B ,两点,与y 轴交于点C ,其中30A ,、02C ,.〔1〕求这条抛物线的函数表达式.〔2〕在对称轴上存在一点P ,使得PBC △的周长最小.要求出点P 的坐标.〔3〕假设点D 是线段OC 上的一个动点〔不与点O 、点C 重合〕.过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试讲明S 是否存在最大值,假设存在,要求出最大值;假设不存在,请讲明理由.济南市2018年高中时期学校招生考试数学试题参考答案及评分标准一、选择题〔本大题共12个小题,每题4分,共48分〕题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCCBBCCCDBB二、填空题〔本大题共5个小题,每题3分,共15分〕13.33x x 14.315.2216.217.62.1三、解答题〔本大题共7个小题,共57分〕18.〔本小题总分值7分〕〔1〕解:2121x x=22122x x x ········································································ 2分=23x··························································································· 3分A CxyBO〔第24题图〕〔2〕解:去分母得:213x x ······························································ 1分解得1x··················································································· 2分检验1x是原方程的解 ································································ 3分因此,原方程的解为1x ···························································· 4分19.〔本小题总分值7分〕〔1〕证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC ,∥.∴ADE FBC ∠∠ ···································································· 1分在ADE △和CBF △中,∵AD BC ADE FBC DE BF ,∠∠,∴ADE CBF △≌△··································································· 2分∴AE CF ················································································ 3分〔2〕解:∵DE 是O 的直径∴90DBE ∠··········································································· 1分∵30ABD ∠∴903060EBO DBE ABD ∠∠∠································· 2分∵AC 是O 的切线∴90CAO ∠··········································································· 3分又260AOC ABD ∠∠∴180180609030C AOC CAO ∠∠∠ ················· 4分20.〔本小题总分值8分〕解:〔1〕k 为负数的概率是23··············································································· 3分〔2〕画树状图或用列表法:第二次第一次1231〔1,2〕〔1,3〕2〔2,1〕〔2,3〕3〔3,1〕〔3,2〕·························································· 5分AECDFB〔第19题图①〕ACDBEO〔第19题图②〕231 321123开始第一次第二次共有6种情形,其中满足一次函数y kx b 通过第二、三、四象限,即00k b,的情形有2种········································································ 6分因此一次函数y kx b 通过第二、三、四象限的概率为2163 ·························· 8分21.〔本小题总分值8分〕解:〔1〕设职工的月差不多保证工资为x 元,销售每件产品的奖励金额为y 元 ···········1分由题意得20018001801700x y x y······································································3分解那个方程组得8005x y·········································································4分答:职工月差不多保证工资为800元,销售每件产品的奖励金额5元.·······················5分〔2〕设该公司职工丙六月份生产z 件产品 ··························································6分由题意得80052000z ≥ ······································································7分解那个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 ·························································8分22.解:〔1〕将32A ,分不代入kyy ax x,中,得2323k a ,∴263k a ,·················································································2分∴反比例函数的表达式为:6yx ·························································3分正比例函数的表达式为23y x ···························································4分〔2〕观看图象,得在第一象限内,当03x 时,反比例函数的值大于正比例函数的值.····················6分〔3〕BMDM ···············································································7分理由:∵132OMB OAC S S k △△∴33612OMBOACOBDC OADMS S S S △△矩形四边形即12OCOB ∵3OC ∴4OB ·························································································8分即4n 〔第22题图〕yxOADMCB∴632m n ∴3333222MB MD ,∴MBMD ···················································································9分23.〔本小题总分值9分〕解:〔1〕如图①,过A 、D 分不作AK BC 于K ,DH BC 于H ,那么四边形ADHK 是矩形∴3KHAD .················································································1分在Rt ABK △中,2sin 454242AKAB .2cos454242BK AB ·························································2分在Rt CDH △中,由勾股定理得,22543HC ∴43310BCBKKHHC ················································3分〔2〕如图②,过D 作DG AB ∥交BC 于G 点,那么四边形ADGB 是平行四边形∵MNAB∥∴MN DG ∥∴3BG AD ∴1037GC ·············································································4分由题意知,当M 、N 运动到t 秒时,102CN t CM t ,.∵DG MN∥∴NMC DGC ∠∠又C C∠∠∴MNC GDC △∽△∴CN CMCD CG ···················································································5分即10257t t 解得,5017t ···················································································6分〔3〕分三种情形讨论:①当NC MC 时,如图③,即102t t〔第23题图①〕ADCBKH〔第23题图②〕ADCBGMN∴103t·························································································7分②当MN NC 时,如图④,过N 作NEMC 于E 解法一:由等腰三角形三线合一性质得11102522ECMCtt在Rt CEN △中,5cos EC tcNC t 又在Rt DHC △中,3cos 5CH cCD ∴535t t 解得258t ······················································································8分解法二:∵90CC DHCNEC ∠∠,∴NEC DHC △∽△∴NC ECDC HC 即553t t ∴258t ·························································································8分③当MN MC 时,如图⑤,过M 作MF CN 于F 点.1122FC NC t解法一:〔方法同②中解法一〕132cos 1025t FC CMCt解得6017t解法二:∵90CC MFCDHC ∠∠,∴MFC DHC △∽△∴FC MCHC DCADCBMN〔第23题图③〕〔第23题图④〕AD CBM NH E〔第23题图⑤〕ADCBH N MF即1102235tt ∴6017t综上所述,当103t、258t或6017t时,MNC △为等腰三角形 ···············9分24.〔本小题总分值9分〕解:〔1〕由题意得129302baa b cc·····························································2分解得23432ab c∴此抛物线的解析式为224233y x x ················································3分〔2〕连结AC 、BC .因为BC 的长度一定,因此PBC △周长最小,确实是使PC PB 最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x 的交点即为所求的点P .设直线AC 的表达式为y kx b那么302k b b,················································4分解得232k b∴此直线的表达式为223y x.·························································5分把1x 代入得43y∴P 点的坐标为413, ···································································6分〔3〕S 存在最大值·············································································7分〔第24题图〕OACxyBEPD理由:∵DE PC ∥,即DE AC ∥.∴OED OAC △∽△.∴OD OE OC OA ,即223m OE .∴333322OE m AE OE m,,方法一:连结OPOEDPOEPODOEDPDOE SS S S S S △△△△四边形=13411332132223222m m m m=23342m m ··············································································8分∵304∴当1m时,333424S 最大····················································9分方法二:OAC OED AEP PCDSS S S S △△△△=1131341323212222232mm m m =22333314244mmm ·······················································8分∵304∴当1m 时,34S 最大···································································9分。

济南市中考数学试卷及答案(Word解析版)

济南市中考数学试卷及答案(Word解析版)

济南中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)(•济南)下列计算正确的是()A.=9B.=﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=2考点:负整数指数幂;绝对值;算术平方根;零指数幂.分析:对各项分别进行负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,然后选出正确选项即可.解答:解:A 、()﹣2=9,该式计算正确,故本选项正确;B 、=2,该式计算错误,故本选项错误;C、(﹣2)0=1,该式计算错误,故本选项错误;D、|﹣5﹣3|=8,该式计算错误,故本选项错误;故选A.点评:本题考查了负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,属于基础题,掌握各知识点运算法则是解题的关键.2.(3分)(•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:28.3亿=28.3×108=2.83×109.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°考点:平行线的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.解答:解:∵CD=CE,∴∠D=∠DEC,∵∠D=74°,∴∠C=180°﹣74°×2=32°,∵AB∥CD,∴∠B=∠C=32°.故选B.点评:本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.5.(3分)(•济南)图中三视图所对应的直观图是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的答:长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.点评:本题考查了三视图的概念.易错易混点:学生易忽略圆柱的高与长方体的高的大小关系,错选B.6.(3分)(•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多考点:函数的图象.分析:利用图象可得出,甲,乙的速度,以及所行路程等,注意利用所给数据结合图形逐个分析.解答:解:结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.点评:本题考查了函数的图象,关键是会看函数图象,要求同学们能从图象中得到正确信息.7.(3分)(•济南)下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形考点:命题与定理.分析:根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.解答:解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.点评:此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.8.(3分)(•济南)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+1考点:二次函数的性质;一次函数的性质;反比例函数的性质.分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.解答:解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,错误;B、y=x2﹣1(x>0),故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧(x<0),y随着x的增大而减小,正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,错误;D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,错误;故选B.点评:本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.9.(3分)(•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是()A.B.C.D.考点:列表法与树状图法.分析:由在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,n次抛掷所出现的点数之和大于n2,则算过关;可得能过第二关的抛掷所出现的点数之和需要大于5,然后根据题意列出表格,由表格求得所有等可能的结果与能过第二关的情况,再利用概率公式求解即可求得答案.解答:解:∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于n2,则算过关;∴能过第二关的抛掷所出现的点数之和需要大于5,列表得:6 7 8 9 10 11 125 6 7 8 9 10 114 5 6 7 8 9 103 4 5 6 7 8 92 3 4 5 6 7 81 2 3 4 5 6 71 2 3 4 5 6∵共有36种等可能的结果,能过第二关的有26种情况,∴能过第二关的概率是:=.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算.分析:首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半圆+S△AOB﹣S扇形AOB可求出阴影部分的面积.解答:解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=.故选C.点评:本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式,仔细观察图形,得出阴影部分面积的表达式.11.(3分)(•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.12.(3分)(•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵÷6=335…3,∴当点P第次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(•济南)cos30°的值是.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入计算即可.解答:解:cos30°=×=.故答案为:.点评:本题考查了特殊角的三角函数值,属于基础题,掌握几个特殊角的三角函数值是解题的关键.14.(4分)(•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.15.(4分)(•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年甲9.8 9.9 10.1 10 10.2乙9.4 10.3 10.8 9.7 9.8经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.考点:方差.分析:根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出两种水稻的产量的方差,再进行比较即可.解答:解:甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.124.∴0.02<0.124,∴产量比较稳定的小麦品种是甲,故答案为:甲点评:此题考查了方差,用到的知识点是方差和平均数的计算公式,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(4分)(•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到=x﹣2,去分母化为一元二次方程得到x2﹣2x﹣1=0,根据根与系数的关系得到a+b=2,ab=﹣1,然后变形+得,再利用整体思想计算即可.解答:解:根据题意得=x﹣2,化为整式方程,整理得x2﹣2x﹣1=0,∵函数y=与y=x﹣2图象交点的横坐标分别为a,b,∴a、b为方程x2﹣2x﹣1=0的两根,∴a+b=2,ab=﹣1,∴+===﹣2.故答案为﹣2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了一元二次方程根与系数的关系.17.(4分)(•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正确,利用解三角形求正方形的面积等知识可以判断④的正误.解答:解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,∵在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAD≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.点评:本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(•济南)先化简,再求值:÷,其中a=﹣1.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为乘法后代入求值.解答:解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.点评:本题考查了分式的化简求值,熟悉通分、约分及因式分解是解题的关键.19.(8分)(•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.08.0<x≤9.5 合计2 50(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?考点:频数(率)分布直方图;频数(率)分布表.分析:(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与 6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)本题答案不唯一.例如:从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨.解答:解:(1)频数分布表如下:分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.01358.0<x≤9.5合计250 频数分布直方图如下:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.点评:本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.考点:切线的判定与性质;直角三角形斜边上的中线;平行四边形的性质.专题:计算题.分析:(1)连接BD,由ED为圆O的直径,利用直径所对的圆周角为直角得到∠DBE为直角,由BCOE为平行四边形,得到BC与OE平行,且BC=OE=1,在直角三角形ABD中,C为AD的中点,利用斜边上的中线等于斜边的一半求出AD的长即可;(2)连接OB,由BC与OD平行,BC=OD,得到四边形BCDO为平行四边形,由AD为圆的切线,利用切线的性质得到OD垂直于AD,可得出四边形BCDO为矩形,利用矩形的性质得到OB垂直于BC,即可得出BC为圆O的切线.解答:解:(1)连接BD,则∠DBE=90°,∵四边形BCOE为平行四边形,∴BC∥OE,BC=OE=1,在Rt△ABD中,C为AD的中点,∴BC=AD=1,则AD=2;(2)连接OB,∵BC∥OD,BC=OD,∴四边形BCDO为平行四边形,∵AD为圆O的切线,∴OD⊥AD,∴四边形BCDO为矩形,∴OB⊥BC,则BC为圆O的切线.点评:此题考查了切线的判定与性质,直角三角形斜边上的中线性质,以及平行四边形的判定与性质,熟练掌握切线的判定与性质是解本题的关键.21.(10分)(•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?考点:反比例函数的应用;分式方程的应用.专题:应用题.分析:(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;解答:解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x≤3,∴y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:解得:x=2.5或x=﹣3经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3.点评:本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.22.(10分)(•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值表2.a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:改变第4列改变第2行(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则①如果操作第三列,则第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,,解得a=1,此时2﹣2a2,=0,2a2=2,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数.23.(10分)(•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.考点:四边形综合题.专题:计算题.分析:(1)分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形ABD与三角形ACE全等,利用全等三角形的对应边相等即可得证;(2)BE=CD,理由与(1)同理;(3)根据(1)、(2)的经验,过A作等腰直角三角形ABD,连接CD,由AB=AD=100,利用勾股定理求出BD的长,由题意得到三角形DBC为直角三角形,利用勾股定理求出CD的长,即为BE的长.解解:(1)完成图形,如图所示:答:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.点评:此题考查了四边形综合题,涉及的知识有:全等三角形的判定与性质,等边三角形,等腰直角三角形,以及正方形的性质,勾股定理,熟练掌握全等三角形的判定与性质是解本题的关键.24.(12分)(•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标;②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD=S△PCN+S△PDN就可以表示出三角形PCD 的面积,运用顶点式就可以求出结论.解答:解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴l=﹣=﹣1,∴E点的坐标为(﹣1,0).如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.∴,∴MP=3EM.∵P的横坐标为t,∴P(t,﹣t2﹣2t+3).∵P在二象限,∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=﹣3(与C重合,舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P(﹣2,3).∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);②设直线CD的解析式为y=kx+b,由题意,得,解得:,∴直线CD的解析式为:y=x+1.设PM与CD的交点为N,则点N的坐标为(t,t+1),∴NM=t+1.∴PN=PM﹣NM=t2﹣2t+3﹣(t+1)=﹣t2﹣+2.∵S△PCD=S△PCN+S△PDN,∴S△PCD=PM•CM+PN•OM=PN(CM+OM)=PN•OC=×3(﹣t2﹣+2)=﹣(t+)2+,∴当t=﹣时,S△PCD的最大值为.点评:本题考查了相似三角形的判定及性质的运用,待定系数法求函数的解析式的运用,三角形的面积公式的运用,二次函数的顶点式的运用,解答本题时,先求出二次函数的解析式是关键,用函数关系式表示出△PCD的面积由顶点式求最大值是难点.。

【真题】2020年山东省济南市数学中考试题含答案(Word版)

【真题】2020年山东省济南市数学中考试题含答案(Word版)

山东省济南市2020年学业水平考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.(2020济南,1,4分)4的算术平方根是( )A .2B .-2C .±2D . 2 【答案】A 2.(2020济南,2,4分)如图所示的几何体,它的俯视图是( )正面A .B .C .D . 【答案】D 3.(2020济南,3,4分)2020年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A .0.76×104B .7.6×103C .7.6×104D .76×102 【答案】B 4.(2020济南,4,4分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是( )A B C D 【答案】D 5.(2020济南,5,4分)如图,AF 是∠BAC 的平分线,DF ∥AC ,若∠1=35°,则∠BAF 的度数为( ) A .17.5° B .35° C .55° D .70°【答案】B 6.(2020济南,6,4分)下列运算正确的是( ) A .a 2+2a =3a 3 B .(-2a 3)2=4a 51ABCDFC .(a +2)(a -1)=a 2+a -2D .(a +b )2=a 2+b 2 【答案】C 7.(2020济南,7,4分)关于x 的方程3x -2m =1的解为正数,则m 的取值范围是( ) A .m <-12 B .m >-12 C .m >12 D .m <12【答案】B8.(2020济南,8,4分)在反比例函数y =-2x 图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 2 【答案】C 9.(2020济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1)【答案】C 10.(2020济南,10,4分)下面的统计图大致反应了我国2012年至2020年人均阅读量的情况.根据统计图提供的信息,下列推断不合理...的是( ) A .与2020年相比,2020年我国电子书人均阅读量有所降低 B .2012年至2020年,我国纸质书的人均阅读量的中位数是4.57C .从2020年到2020年,我国纸质书的人均阅读量逐年增长D .2020年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多【答案】B 11.(2020济南,11,4分)如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( ) A .6π-92 3 B .6π-9 3 C .12π-92 3 D .9π4【答案】A12.(2020济南,11,4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线y =mx 2-4mx +4m -2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2【答案】B【解析】解:∵y =mx 2-4mx +4m -2=m (x -2)2-2且m >0,∴该抛物线开口向上,顶点坐标为(2,-2),对称轴是直线x =2.由此可知点(2,0)、点(2,-1)、顶点(2,-2)符合题意. 方法一:①当该抛物线经过点(1,-1)和(3,-1)时(如答案图1),这两个点符合题意. 将(1,-1)代入y =mx 2-4mx +4m -2得到-1=m -4m +4m -2.解得m =1. 此时抛物线解析式为y =x 2-4x +2.由y =0得x 2-4x +2=0.解得x 1=2-2≈0.6,x 2=2+2≈3.4.阅读量/本年份电子书纸质书201720162015201420132012O 62345 4.394.774.564.584.65 4.662.352.483.22 3.26 3.213.12AB CDO (A ) ABO∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-1)、(2,-2)这7个整点符合题意. ∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大,】答案图1(m =1时) 答案图2( m =12时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y =mx 2-4mx +4m -2得到0=0-4m +0-2.解得m =12.此时抛物线解析式为y =12x 2-2x .当x =1时,得y =12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x =3时,得y =12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意, ∴m =12不符合题.∴m >12.综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点,故答案选B .方法二:根据题目提供的选项,分别选取m =12,m =1,m =2,依次加以验证.①当m =12时(如答案图3),得y =12x 2-2x .由y =0得12x 2-2x =0.解得x 1=0,x 2=4.∴x 轴上的点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)符合题意. 当x =1时,得y =12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x =3时,得y =12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意, ∴m =12不符合题.∴选项A 不正确.答案图3( m =12时) 答案图4(m =1时) 答案图5(m =2时)②当m =1时(如答案图4),得y =x 2-4x +2.由y =0得x 2-4x +2=0.解得x 1=2-2≈0.6,x 2=2+2≈3.4. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 当x =1时,得y =1-4×1+2=-1.∴点(1,-1)符合题意. 当x =3时,得y =9-4×3+2=-1.∴点(3,-1) 符合题意.综上可知:当m =1时,点(1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-2) 、(2,-1)都符合题意,共有7个整点符合题意, ∴m =1符合题. ∴选项B 正确.③当m =2时(如答案图5),得y =2x 2-8x +6. 由y =0得2x 2-8x +6=0.解得x 1=1,x 2=3. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.综上可知:当m =2时,点(1,0)、(2,0)、(3,0)、(2,-2) 、(2,-1)都符合题意,共有5个整点符合题意, ∴m =2不符合题.二、填空题(本大题共6小题,每小题4分,共24分)13.(2020济南,13,4分)分解因式:m 2-4=____________; 【答案】(m +2)(m -2) 14.(2020济南,14,4分)在不透明的盒子中装有5个黑色棋子和若于个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是14,则白色棋子的个数是=____________; 【答案】15 15.(2020济南,15,4分)一个正多边形的每个内角等于108°,则它的边数是=____________; 【答案】516.(2020济南,16,4分)若代数式x -2x -4的值是2,则x =____________;【答案】6 17.(2020济南,17,4分)A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发____________小时后和乙相遇.【答案】165.【解析】y 甲=4t (0≤t ≤4);y 乙=⎩⎨⎧2(t -1)(1≤t ≤2)9(t -2)t (2<t ≤4);由方程组⎩⎨⎧y =4t y =9(t -2)解得⎩⎨⎧t =165y =645. ∴答案为165.18.(2020济南,18,4分)如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB =EF ,FG =2,GC =3.有以下四个结论:①∠BGF =∠CHG ;②△BFG ≌△DHE ;③tan ∠BFG =12;④矩形EFGH 的面积是43.其中一定成立的是____________.(把所有正确结论的序号填在横线上)F【答案】①②④.【解析】设EH =AB =a ,则CD =GH =a . ∵∠FGH =90°,∴∠BGF +∠CGH =90°. 又∵∠CGH +∠CHG =90°,∴∠BGF =∠CHG …………………………………故①正确.同理可得∠DEH =∠CHG . ∴∠BGF =∠DEH . 又∵∠B =∠D =90°,FG =EH ,∴△BFG ≌△DHE …………………………………故②正确. 同理可得△AFE ≌△CHG .∴AF =CH . 易得△BFG ∽△CGH .∴BF CG =FG GH .∴BF 3=2a .∴BF =6a. ∴AF =AB -BF =a -6a .∴CH =AF =a -6a .在Rt △CGH 中,∵CG 2+CH 2=GH 2,∴32+( a -6a )2=a 2.解得a =2 3.∴GH =2 3.∴BF = a -6a = 3.在Rt △BFG 中,∵cos ∠BFG =BF FG =32,∴∠BFG =30°. ∴tan ∠BFG =tan30°=33.…………………………………故③正确. 矩形EFGH 的面积=FG ×GH =2×23=43…………………………………故④正确.三、解答题(本大题共9小题,共78分)19.(2020济南,19,6分)计算:2-1+│-5│-sin30°+(π-1)0.解:2-1+│-5│-sin30°+(π-1)0.=12+5-12+1=620.(2020济南,20,6分)解不等式组:⎩⎪⎨⎪⎧3x +1<2x +3 ①2x >3x -12 ② 解:由① ,得3x -2x <3-1. ∴x <2. 由② ,得 4x >3x -1. ∴x >-1.∴不等式组的解集为-1<x <2.21.(2020济南,21,6分)如图,在□ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且 AE =CF ,连接EF 交BD 于点O .求证:OB =O D .证明:∵□ABCD中,∴AD=BC,AD∥B C.∴∠ADB=∠CB D.又∵AE=CF,∴AE+AD=CF+B C.∴ED=F B.又∵∠EOD=∠FOB,∴△EOD≌△FO B.∴OB=O D.22.(2020济南,22,8分)本学期学校开展以“感受中华传统买德”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?解:(1)设参观历史博物馆的有x人,则参观民俗展览馆的有(150-x)人,依题意,得10x+20(150-x)2000.10x+3000-20x=2000.-10x=-1000.∴x=100.∴150-x=50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000-150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.23.(2020济南,23,8分)如图AB是⊙O的直径,P A与⊙O相切于点A,BP与⊙O相较于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.C【解析】解:(1)方法一:连接AD (如答案图1所示). ∵BA 是⊙O 直径,∴∠BDA =90°.∵⌒BD =⌒BD ,∴∠BAD =∠C =60°.∴∠ABD =90°-∠BAD =90°-60°=30°.CC第23题答案图1 第23题答案图2方法二:连接DA 、OD (如答案图2所示),则∠BOD =2∠C =2×60°=120°. ∵OB =OD ,∴∠OBD =∠ODB =12(180°-120°)=30°.即∠ABD =30°.(2)∵AP 是⊙O 的切线,∴∠BAP =90°. 在Rt △BAD 中,∵∠ABD =30°, ∴DA =12BA =12×6=3.∴BD =3DA =33.在Rt △BAP 中,∵cos ∠ABD =AB PB ,∴cos30°=6PB =32.∴BP =43.∴PD =BP -BD =43-33=3.24.(2020济南,24,10分)某校开设了“3D ”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1 、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a =________,b =_______; (2)“D ”对应扇形的圆心角为_______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数; (4)小明和小亮参加校本课程学习,若每人从“A ”、“B ”、“C ”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率. 解:(1)a =36÷0.45=80. b =16÷80=0.20.(2)“D ”对应扇形的圆心角的度数为:8÷80×360°=36°.(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为: 2000×0.25=500(人). (4)列表格如下:3种,所以两人恰好选中同一门校本课程的概率为:39=13.25.(2020济南,25,10分)如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数y=kx (x >0)的图象恰好经过C 、D 两点,连接AC 、B D . (1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数y =kx (x >0)的图象上的一个点,若△CMN是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.第25题图 第25题备用图【解析】解:(1)将点A (1,0)代入y =ax +2,得0=a +2.∴a =-2. ∴直线的解析式为y =-2x +2.将x =0代入上式,得y =2.∴b =2.∴点B (0,2). (2)由平移可得:点C (2,t )、D (1,2+t ). 将点C (2,t )、D (1,2+t )分别代入y =kx,得⎩⎨⎧t =k 22+t =k 1.解得⎩⎨⎧k =4t =2. ∴反比例函数的解析式为y =4x ,点C (2,2)、点D (1,4).分别连接BC 、AD (如答案图1).∵B (0,2)、C (2,2),∴BC ∥x 轴,BC =2. ∵A (1,0)、D (1,4),∴AD ⊥x 轴,AD =4. ∴BC ⊥A D .∴S 四边形ABDC =12×BC ×AD =12×2×4=4.第25题答案图1(3)①当∠NCM =90°、CM =CN 时(如答案图2所示),过点C 作直线l ∥x 轴,交y 轴于点G .过点M 作MF ⊥直线l 于点F ,交x 轴于点H .过点N 作NE ⊥直线l 于点E . 设点N (m ,0)(其中m >0),则ON =m ,CE =2-m . ∵∠MCN =90°,∴∠MCF +∠NCE =90°. ∵NE ⊥直线l 于点E ,∴∠ENC +∠NCE =90°.∴∠MCF =∠EN C .又∵∠MFC =∠NEC =90°,CN =CM ,∴△NEC ≌△CFM . ∴CF =EN =2,FM =CE =2-m .∴FG =CG +CF =2+2=4.∴x M =4. 将x =4代入y =4x,得y =1.∴点M (4,1).l第25题答案图2 第25题答案图3 ②当∠NMC =90°、MC =MN 时(如答案图3所示),过点C 作直线l ⊥y 轴与点F ,则CF=x C =2.过点M 作MG ⊥x 轴于点G ,MG 交直线l 与点E ,则MG ⊥直线l 于点E ,EG =y C =2. ∵∠CMN =90°,∴∠CME +∠NMG =90°.∵ME ⊥直线l 于点E ,∴∠ECM +∠CME =90°.∴∠NMG =∠ECM .又∵∠CEM =∠NGM =90°,CM =MN ,∴△CEM ≌△MGN .∴CE =MG ,EM =NG .设CE =MG =a ,则y M =a ,x M =CF +CE =2+a .∴点M (2+a ,a ). 将点M (2+a ,a ) 代入y =4x ,得a =42+a.解得a 1=5-1,a 2=-5-1.∴x M=2+a=5+1.∴点M(5+1,5-1).综合①②可知:点M的坐标为(4,1)或(5+1,5-1).26.(2020济南,26,12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.第26题图1 第26题图2【解析】解:(1) ∠ADE=30°.(2) (1)中的结论是否还成立证明:连接AE(如答案图1所示).∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.又∵∠ACM=∠ACB,∴∠B=∠ACM=30°.又∵CE=BD,∴△ABD≌△ACE.∴AD=AE,∠1=∠2.∴∠2+∠3=∠1+∠3=∠BAC=120°.即∠DAE=120°.又∵AD =AE ,∴∠ADE =∠AED =30°.答案图1 答案图2(3) ∵AB =AC ,AB =6,∴AC =6. ∵∠ADE =∠ACB =30°且∠DAF =∠CAD ,∴△ADF ∽△AC D.∴AD AC =AF AD .∴AD 2=AF ·A C .∴AD 2=6AF .∴AF =AD 26.∴当AD 最短时,AF 最短、CF 最长.易得当AD ⊥BC 时,AF 最短、CF 最长(如答案图2所示),此时AD =12AB =3.∴AF 最短=AD 26=326=32.∴CF 最长=AC - AF 最短=6-32=92.27.(2020济南,27,12分)如图1,抛物线y =ax 2+bx +4过A (2,0)、B (4,0)两点,交y 轴于点C ,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D ,连接AC 、B C .点P 是该抛物线上一动点,设点P 的横坐标为m (m >4).(1)求该抛物线的表达式和∠ACB 的正切值; (2)如图2,若∠ACP =45°,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM ⊥CD ,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.第27题图1 第27题图2 第27题图3【解析】 解:(1)将点A (2,0)和点B (4,0)分别代入y =ax 2+bx +4,得⎩⎨⎧0=4a +2x +40=16a +4b +4.解得⎩⎪⎨⎪⎧a =12b =-3.∴该抛物线的解析式为y =12x 2-3x +4.将x =0代入上式,得y =4.∴点C (0,4),OC =4.在Rt △AOC 中,AC =OA 2+OC 2=22+42=2 5.设直线AC 的解析式为y =kx +4,将点A (2,0)代入上式,得0=2k +4.解得k =-2. ∴直线AC 的解析式为y =-2x +4.同理可得直线BC 的解析式为y =-x +4. 求tan ∠ACB 方法一:过点B 作BG ⊥CA ,交CA 的延长线于点G (如答案图1所示),则∠G =90°.∵∠COA =∠G =90°,∠CAO =∠BAG ,∴△GAB ∽△OA C.∴BG AG =OC OA =42=2.∴BG =2AG . 在Rt △ABG 中,∵BG 2+AG 2=AB 2,∴(2AG )2+AG 2=22.AG =25 5.∴BG =455,CG =AC +AG =25+255=125 5.在Rt △BCG 中,tan ∠ACB =BG CQ =4551255=13.第27题答案图1 第27题答案图2求tan ∠ACB 方法二:过点A 作AE ⊥AC ,交BC 于点E (如答案图2所示),则k AE ·k AC =-1.∴-2k AE =-1.∴k AE =12.∴可设直线AE 的解析式为y =12x +m .将点A (2,0)代入上式,得0=12×2+m .解得m =-1.∴直线AE 的解析式为y =12x -1.由方程组⎩⎪⎨⎪⎧y =12x -1y =-x +4 解得⎩⎨⎧x =103y =23.∴点E (103,23). ∴AE =⎝⎛⎭⎫2-1032+⎝⎛⎭⎫0-232=235.在Rt △AEC 中,tan ∠ACB =AE AC =23525=13.求tan ∠ACB 方法三:过点A 作AF ⊥BC ,交BC 点E (如答案图3所示),则k AF ·k BC =-1. ∴-k AF =-1.∴k AF =1.∴可设直线AF 的解析式为y =x +n .将点A (2,0)代入上式,得0=2+n .解得n =-2.∴直线AF 的解析式为y =x -2.由方程组⎩⎨⎧y =x -2y =-x +4 解得⎩⎨⎧x =3y =1.∴点F (3,1).∴AF =(3-2)2+(1-0)2=2,CF =(3-0)2-(1-4)2=3 2.在Rt △AEC 中,tan ∠ACB =AF CF =232=13.第27题答案图3(2)方法一:利用“一线三等角”模型将线段AC 绕点A 沿顺时针方向旋转90°,得到线段AC ′,则 AC ′=AC ,∠C ′AC =90°,∠CC ′A =∠ACC ′=45°. ∴∠CAO +∠C ′AB =90°. 又∵∠OCA +∠CAO =90°, ∴∠OCA =∠C ′A B .过点C ′作C ′E ⊥x 轴于点E .则∠C ′EA =∠COA =90°. ∵∠C ′EA =∠COA =90°,∠OCA =∠C ′AB ,AC ′=AC ,∴△C ′EA ≌△AO C .∴C ′E =OA =2,AE =OC =4. ∴OE =OA +AE =2+4=6. ∴点C ′(6,2).设直线C ′C 的解析式为y =hx +4.将点C ′(6,2)代入上式,得2=6h +4.解得h =-13.∴直线C ′C 的解析式为y =-13x +4.∵∠ACP =45°,∠ACC ′=45°,∴点P 在直线C ′C 上.设点P 的坐标为(x ,y ),则x 是方程12x 2-3x +4=-13x +4的一个解.将方程整理,得3x 2-14x =0.解得x 1=163,x 2=0(不合题意,舍去).将x 1=163代入y =-13x +4,得y =209.∴点P 的坐标为(163,209).第27题答案图4 第27题答案图5(2)方法二:利用正方形中的“全角夹半角”模型.过点B 作BH ⊥CD 于点H ,交CP 于点K ,连接AK .易得四边形OBHC 是正方形. 应用“全角夹半角”可得AK =OA +HK .设K (4,h ),则BK =h ,HK =HB -KB =4-h ,AK =OA +HK =2+(4-h )=6-h .在Rt △ABK 中,由勾股定理,得AB 2+BK 2=AK 2.∴22+ h 2=(6-h )2.解得h =83.∴点K (4,83).设直线CK 的解析式为y =hx +4.将点K (4,83)代入上式,得83=4h +4.解得h =-13.∴直线CK 的解析式为y =-13x +4.设点P 的坐标为(x ,y ),则x 是方程12x 2-3x +4=-13x +4的一个解.将方程整理,得3x 2-14x =0.解得x 1=163,x 2=0(不合题意,舍去).将x 1=163代入y =-13x +4,得y =209.∴点P 的坐标为(163,209).(3)四边形ADMQ 是平行四边形.理由如下: ∵CD ∥x 轴,∴y C =y D =4.将y =4代入y =12x 2-3x +4,得 4=12x 2-3x +4.解得x 1=0,x 2=6.∴点D (6,4).根据题意,得P (m ,12m 2-3m +4),M (m ,4),H (m ,0).∴PH =12m 2-3m +4),OH =m ,AH =m -2,MH =4.①当4<m <6时(如答案图5所示),DM =6-m∵△OAN ∽△HAP ,∴ON PH =OA AH .∴ON 12m 2-3m +4=2m -2.∴ON =m 2-6m +8m -2=(m -4)(m -2)m -2=m -4.∵△ONQ ∽△HMP ,∴ON HM =OQ HQ .∴ON 4=OQm -OQ .∴m -44=OQm -OQ.∴OQ =m -4.∴AQ =OA -OQ =2-(m -4)=6-m .∴AQ = DM =6-m .又∵AQ ∥DM ,∴四边形ADMQ 是平行四边形.第27题答案图6 第27题答案图7②当m >6时(如答案图6所示),同理可得:四边形ADMQ 是平行四边形.综合①、②可知:四边形ADMQ是平行四边形.。

2020年山东省济南市中考数学试题及答案

2020年山东省济南市中考数学试题及答案

2020年山东省济南市中考数学试题及答案选择题部分共48分一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-2的绝对值是A.2B.-2C.±2D.22.如图所示的几何体,其俯视图是A.B.C.D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为A.0.215×108B.2.15×107C.2.15×106D.21.5×1064.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=A.35°B.45°C.55°D.70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是A.(-2a3)2=4a6B.a2·a3=a6C.3a+a2=3a3D.(a-b)2=a2-b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为A.(1,7)B.(0,5)C.(3,4)D.(-3,2)9.若m<-2,则一次函数y=(m+1)x+1-m的图象可能是A.B.C.D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E、F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD 长度的最小值为A.5B.3C.4D.5211.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE 与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m12.已知抛物线y=x2+(2m-6)x+m2-3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB 下方的部分为G (包含A 、B 两点),M 为G 上任意一点,设M 的纵坐标为t ,若t ≥-3,则m 的取值范围是A .m ≥32B .32≤m ≤3C .m ≥3D .1≤m ≤3非选择题部分共102分二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.分解因式:2a 2-ab =.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.代数式3x -1与代数式2x -3的值相等,则x =.16.如图,在正六边形ABCDEF 中,分别以C ,F 为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.17.如图,在一块长15m 、宽10m 的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m 2,则修建的路宽应为米.18.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan ∠B 'AC =.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)计算:(π2)0-2sin30°+4+(12)-1.20.(本小题满分6分)x-1)≤3x+1①2x>x-32②,并写出它的所有整数解.21.(本小题满分6分)如图,在 ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.(本小题满分8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生机极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:请结合上述信息完成下列问题:(1)a=______,b=______;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是______;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟铁绳次数达到合格及以上的人数.23.(本小题满分8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,B C.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(本小题满分10分)5G 时代的到来,将给人类生活带来巨大改变.现有A 、B 两种型号的5G 手机,进价和售价如下表所示:某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.(本小题满分10分)如图,矩形OABC 的顶点A ,C 分别落在x 轴,y 轴的正半轴上,顶点B (2,23),反比例函数y =k x (x >0)的图象与BC ,AB 分别交于D ,E ,BD =12.(1)求反比例函数关系式和点E 的坐标;(2)写出DE 与AC 的位置关系并说明理由;(3)点F 在直线AC 上,点G 是坐标系内点,当四边形BCFG为菱形时,求出点G 的坐标并判断点G 是否在反比例函数图象上.26.(本小题满分12分)在等腰△ABC 中,AC =BC ,△ADE 是直角三角形,∠DAE =90°,∠ADE =12∠ACB ,连接BD ,BE ,点F 是BD 的中点,连接CF .(1)当∠CAB =45°时.①如图1,当顶点D 在边AC 上时,请直接写出∠EAB 与∠CBA 的数量关系是.线段BE 与线段CF 的数量关系是;②如图2,当顶点D 在边AB 上时,(1)中线段BE 与线段CF 的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;型号/价格进价(元/部)售价(元/部)A30003400B 35004000第25题图第25题备用图学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.第26题图1第26题图2第26题图327.(本小题满分12分)如图1,抛物线y=-x2+bx+c过点A(-1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.数学试题参考答案1-10ACBCD BACDD11-12BA13.a(2a-b);14.25;15.7;16.6;17.1;18.1 419.解:原式=420.解:解不等式①,得x≤1解不等式②,得x>-1∴原不等式组的解集是-1<x≤1∴整数解为0,1。

山东省济南市2020年中考数学一模试卷解析版

山东省济南市2020年中考数学一模试卷解析版

度数是( )
A. 75°
B. 60°
C. 45°
D. 30°
5. 有理数 a,b 在数轴上表示如图所示,则下列各式中正确的是( )
A. ab>0
B. a+b<0
C. b<a
6. 下面在线学习平台的图标中,是轴对称图形的是( )
D. |b|>|a|
A.
B.
C.
D.
7. 下列运算正确的是( )
A. x2+x=x3
23. 如图,已知 AB 是⊙O 的直径,DC 与⊙O 相切于点 C,交 AB 的延长线于点 D. (1)求证:∠BAC=∠BCD; (2)若 BD=4,DC=6,求⊙O 的半径.
24. 钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌 ,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少 熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信
D. 90,90
9. 已知反比例函数 y= 图象如图所示,下列说法正确的是(

A. k>0 B. y 随 x 的增大而减小
第 1 页,共 19 页
C. 若矩形 OABC 面积为 2,则 k=-2 D. 若图象上两个点的坐标分别是 M (-2,y1 ),N(-1,y2 ),则 y1>y2
10. 图 1 是一个地铁站入口的双翼闸机.如图 2,它的双翼展开时,双翼边缘的端点 A 与 B 之间的距离为 10cm,双翼的边缘 AC=BD=54cm,且与闸机侧立面夹角 ∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )
20. 解不等式组:
,并写出它的所有整数解.
21. 如图,在平行四边形 ABCD 中,E,F 分别是对角线 BD 上的两点,且 BE=DF.求 证:AE=CF.

2020年济南市数学中考试题及答案

2020年济南市数学中考试题及答案

济南市年高中阶段学校招生考试数学试题(非课改区)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1—2页,第Ⅱ卷3—10页,共120分.考试时间120分钟.第Ⅰ卷(选择题 共30分)注意事项: 1.数学考试允许使用科学计算器(凡符合大纲或课程标准要求的计算器都可带入考场). 2.数学考试允许考生进行剪、拼、折叠实验. 3.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡...上. 4.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效.......... 5.考试结束,监考人将本试卷和答题卡一并收回.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 如图,数轴上A B ,两点所表示的两数的( ) A.和为正数 B.和为负数C.积为正数 D.积为负数2.下列计算错误..的是( ) A.23a a a =B.222()ab a b =C.235()a a =D.2a a a -+=3.如图,是一个正在绘制的扇形统计图,整个圆表示某班参加 体育活动的总人数,那么表示参加立定跳远训练的人数占总人数 的35%的扇形是( ) A.MB.NC.PD.Q4.如图,直线a 与直线b 互相平行,则x y -的值是( )A.20 B.80 C.120 D.1805.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少..有300元.设x 个月后他至少有300元,则可以用于计算所需要的月数x 的不等式是( ) A.3045300x -≥B.3045300x +≥B A 1题图 PQMN 3题图4题图C.3045300x -≤ D.3045300x +≤ 6.如图,雷达可用于飞机导航,也可用来监测飞 机的飞行.假设某时刻雷达向飞机发射电磁波,电 磁波遇到飞机后反射,又被雷达接收,两个 过程共用了55.2410-⨯秒.已知电磁波的传播速度为83.010⨯米/秒,则该时刻飞机与雷达站的距离是( )A.37.8610⨯米B.47.8610⨯米 C.31.57210⨯米 D.41.57210⨯米7.已知2x =,则代数式1xx -的值为( ) A.22+B.22-C.223+ D.223- 8.如图,一张长方形纸片沿AB 对折,以AB 的中点O 为顶点,将平角五等分,并沿五等分线折叠,再从点C 处剪开,使展开后的图形为正五边形,则剪开线与OC 的夹角OCD ∠为( )A.126 B.108 C.90 D.72 9.如图,直线l 是函数132y x =+的图象.若点()P x y , 满足5x <,且132y x >+,则P 点的坐标可能是( ) A.(75), B.(46),C.(34),D.(21)-,10.如图,BE 是半径为6的D 的14圆周,C 点是BE 上的任意一点,ABD △是等边三角形,则四边形ABCD 的周 长p 的取值范围是( )A.1218p <≤B.1824p <≤C.181862p <+≤D.121262p <+≤ADEC B6题图1 1O9题图8题图第Ⅱ卷(非选择题 共90分)注意事项: 1.第Ⅱ卷共8页,用钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题3分,共18分,把答案填写在题中的横线上. 11.若分式的值为零,则x 的值为 . 12.根据如图的程序,计算当输入3x =时,输出的结果y = .13.如图,AC 是O 的直径,60ACB ∠=,连接AB ,过A B ,两点分别作O 的切线,两切线交于点P .若已知O 的半径为1,则PAB △的周长为 .14.如图,1l 是反比例函数ky x=在第一象限内的图象,且过点2(21)A l ,,与1l 关于x 轴对称,那么图象2l 的函数解析式为 (0x >).15.如图,矩形ABCD 中,86AB AD ==,,将矩形ABCD 在直线l 上按顺时针方向不滑动的每秒转动90,转动3秒后停止,则顶点A 经过的路线长为 . 16.现有若干张边长不相等但都大于4cm 的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm 处,沿45角画线,将正方形纸片分成5部分,则中间阴影部分的面积是 cm 2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律? .11x x -+输入输出12题图A 0 21PAOCB13题图DC BA15题图三、解答题:本大题共11小题,共72分,解答应写出文字说明或演算步骤. 17.(本题5分)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.2224()19a x y b +, , , .18.(本题5分)解方程:233x x=-.19.(本题6分)已知关于x 的方程2210kx x +-=有两个不相等的实数根2x x 1,,且满足212()1x x +=,求k 的值.20.(本题7分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.21.(本题6分)元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表:纸环数x (个) 1234……彩纸链长度y (cm ) 19 36 53 70 ……(1)把上表中x y ,的各组对应值作为点的坐标,在如图的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?22.(本题6分)如图1,M N ,分别表示边长为a 的等边三角形和正方形,P 表示直径为a 的圆.图2是选择基本图形M P ,用尺规画出的图案,22348S a a π=-阴影. (1)请你从图1中任意选择两种基本图形,按给定图形的大小设计一个新图案,还要选择恰当的图形部分涂上阴影,并计算阴影的面积;(尺规作图,不写作法,保留痕迹,作直角时可以使用三角板)(2)请你写一句在完成本题的过程中感受较深且与数学有关的话.(个) 1 2 3 4 5 6 7 7010 20 3040 50 608090 21题图O 图2 图1P23.(本题6分)某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对她所任教的初三(1)班和(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况: (1)利用图中提供的信息,补全下表:班级 平均数(分) 中位数(分) 众数(分)(1)班 24 24 (2)班24(2)若把24分以上(含24分)记为“优秀”,两班各有60名学生,请估计两班各有多少名学生成绩优秀;(3)观察图中的数据分布情况,你认为哪个班的学生纠错的整体情况更好一些?0 1 2 3 4 5 6 7 8 9 10 编号 成绩(分) 3 6 9 12 15 18 21 24 27 30 (1)班 0 1 2 3 4 5 6 7 8 9 10 编号成绩(分) 3 6 912151821 24 27 30 (2)班23题图24.(本题7分)如图,在Rt ABC △与Rt ABD △中,90ABC BAD ∠=∠=,AD BC AC BD =,,相交于点G ,过点A 作AE DB ∥交CB 的延长线于点E ,过点B 作BF CA ∥交DA 的延长线于点F AE BF ,,相交于点H .(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线) (2)证明四边形AHBG 是菱形;(3)若使四边形AHBG 是正方形,还需在Rt ABC △的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)D G CBEHFA24题图25.(本题7分)某校数学研究性学习小组准备设计一种高为60cm 的简易废纸箱.如图1,废纸箱的一面利用墙,放置在地面上,利用地面作底,其它的面用一张边长为60cm 的正方形硬纸板围成.经研究发现:由于废纸箱的高是确定的,所以废纸箱的横截面图形面积越大,则它的容积越大.(1)该小组通过多次尝试,最终选定下表中的简便且易操作的三种横截面图形,如图2,是根据这三种横截面图形的面积2(cm )y 与(cm)x (见表中横截面图形所示)的函数关系式而绘制出的图象.请你根据有信息,在表中空白处填上适当的数、式,并完成y 取最大值时的设计示意图;横截面图形y 与x 的函数关系式21302y x x =-+2333034y x x =-+ y 取最大值时x (cm )的值30202(cm )y 取得的最大值4503003y 取最大值时的设计示意图(2)在研究性学习小组展示研究成果时,小华同学指出:图2中“底角为60的等腰梯形”的图象与其他两个图象比较,还缺少一部分,应该补画.你认为他的说法正确吗?请简要说明理由.图1 10 15 20 30 40 50 600 100 200 300 400450 500 550 600底角为的等腰梯形 直角三角形 图2 矩形 25题图26.(本题8分)如图1,以矩形OABC 的两边OA 和OC 所在的直线为x 轴、y 轴建立平面直角坐标系,A 点的坐标为(3)C ,0,点的坐标为(04),.将矩形OABC 绕O 点逆时针旋转,使B 点落在y 轴的正半轴上,旋转后的矩形为11111OA B C BC A B ,,相交于点M . (1)求点1B 的坐标与线段1B C 的长;(2)将图1中的矩形111OA B C 沿y 轴向上平移,如图2,矩形222PA B C 是平移过程中的某一位置,22BC A B ,相交于点1M ,点P 运动到C 点停止.设点P 运动的距离为x ,矩形222PA B C 与原矩形OABC 重叠部分的面积为y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)如图3,当点P 运动到点C 时,平移后的矩形为333PA B C .请你思考如何通过图形变换使矩形333PA B C 与原矩形OABC 重合,请简述你的做法.26题图AO C BM AOCBAOBC(P)图1图2 图327.(本题9分)如图1,已知Rt ABC △中,30CAB ∠=,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P . (1)求PA 的长;(2)以点A 为圆心,AP 为半径作A ,试判断BE 与A 是否相切,并说明理由; (3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作A ;以点C 为圆心,R 为半径作C .若r 和R 的大小是可变化的,并且在变化过程中保持A 和C 相切..,且使D 点在A 的内部,B 点在A 的外部,求r 和R 的变化范围.A BCP EEABCPD27题图图1图2济南市2006年高中阶段学校招生考试数学试题参考答案及评分标准(非课改区)一、 选择题1.D 2.C 3.C 4.A 5.B 6.A 7.A 8.C 9.B 10.C二、填空题11.1 12.2 13. 14.2y x=- 15.12π 16.8; ········································································································ 2分 得到的阴影部分的面积是28cm ,即阴影部分的面积不变. ······························· 3分三、解答题17.本题存在12种不同的作差结果,不同选择的评分标准分述如下:241a -;291b -;2249a b -;214a -;219b -;2294b a -这6种选择的评分范例如下: 例1:2249a b - ····························································································· 2分 (23)(23)a b a b =+-. ·········································································· 5分 2()1x y +-;22()4x y a +-;22()9x y b +-;21()x y -+;224()a x y -+;229()b x y -+这6种选择的评分范例如下:例2:21()x y -+ ··························································································· 2分 [][]1()1()x y x y =++-+ ······································································ 4分 (1)(1)x y x y =++--. ········································································ 5分 提示:因式分解结果正确但没有中间步骤的不扣分.18.方程两边同乘以(3)x x -,得23(3)x x =-. ················································· 2分 解这个方程,得9x =. ··················································································· 4分 检验:将9x =代入原方程,得左边13==右边. 所以,9x =是原方程的根. ············································································· 5分19.根据题意,得0k ≠, ················································································ 1分 224(1)0k ∆=-⨯->,解得1k >-. ························································· 3分 221k ⎛⎫-= ⎪⎝⎭,解得2k =±. ······································································· 5分所以2k =. ···························································································· 6分20.(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得 ··················································································································· 1分 2168022280.x y x y +=⎧⎨+=⎩, ···························································································· 3分 解这个方程组,得960360.x y =⎧⎨=⎩, 答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐. ···················· 5分(2)因为9605360255205300⨯+⨯=>,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐. ································ 7分21.(1)在所给的坐标系中准确描点. ······························································· 1分 由图象猜想到y 与x 之间满足一次函数关系. ······················································ 2分 设经过(119),,(236),两点的直线为y kx b =+,则可得19236.k b k b +=⎧⎨+=⎩,解得17k =,2b =.即172y x =+. 当3x =时,173253y =⨯+=;当4x =时,174270y =⨯+=.即点(353)(470),,,都在一次函数172y x =+的图象上.所以彩纸链的长度y (cm )与纸环数x (个)之间满足一次函数关系172y x =+. ···· 4分(2)10m 1000cm =,根据题意,得1721000x +≥. ········································ 5分 解得125817x ≥. 答:每根彩纸链至少要用59个纸环. ································································· 6分22.(1)正确运用两种基本图形进行组合设计. ··················································· 3分 尺规作图运用恰当. ··········································································· 4分 阴影面积计算正确. ··········································································· 5分 参考举例:(2)写出在解题过程中感受较深且与数学有关的一句话. ································· 6分 参考举例:① 运用圆的半径,可以作正方形的边上的中点,这对于作图很有利.② 这三个图形关系很密切,能组合设计许多美丽的图案,来装饰我们的生活.③ 数学作图中要一丝不苟,否则产生的作图误差会影响图形的美观.提示:本问题应积极评价学生富有个性和创造性的解答,只要回答合理,即可得分.23.(1)··················································································································· 3分(2)7604210⨯=(名),6603610⨯=(名). 答:(1)班有42名学生成绩优秀,(2)班有36名学生成绩优秀. ··············· 5分(3)(1)班的学生纠错的整体情况更好一些. ··············································· 6分24.(1)ABC BAD △≌△. ·········································································· 1分 90AD BC ABC BAD AB BA =∠=∠==,,,∴()ABC BAD SAS △≌△.······························································· 3分(2)AH GB BH GA ,∥∥,∴四边形AHBG 是平行四边形. ···················· 4分ABC BAD △≌△,ABD BAC GA GB ∴∠=∠∴=,.························ 5分 ∴平行四边形AHBG 是菱形. ··························································· 6分(3)需要添加的条件是AB BC =. ···························································· 7分 25.(1)表中空白处填写项目依次为2260y x x =-+;15;450. ···························· 3分 表中y 取最大值时的设计示意图分别为:··················································································································· 5分(2)小华的说法不正确. ·········································································· 6分 因为腰长x 大于30cm 时,符合题意的等腰梯形不存在,所以x 的取值范围不能超过30cm ,因此研究性学习小组画出的图象是正确的. ············································ 7分26.(1)如图1,因为221345OB OB ==+=,所以点1B 的坐标为(05),. ············ 2分 11541B C OB OC =-=-=. ·········································································· 3分(2)在矩形111OA B C 沿y 轴向上平移到P 点与C 点重合的过程中,点1A 运动到矩形OABC 的边BC 上时,求得P 点移动的距离115x =. 当自变量x 的取值范围为1105x <≤时,如图2,由2122B CM B A P △∽△, 班级 平均数(分) 中位数(分) 众数(分)(1)班 24 (2)班 24 21 15cm 15cm30cm 20cm 20cm 20cm得1334x CM +=,此时,2221113334(1)224B A P B CM x y S S x +=-=⨯⨯-⨯+△△. 即23(1)68y x =-++(或23345848y x x =--+). ·············································· 5分 当自变量x 的取值范围为1145x ≤≤时, 求得122(4)3PCM y S x '==-△(或221632333y x x =-+). ····································· 7分 (3)部分参考答案: ······················································································ 8分 ①把矩形333PA B C 沿3BPA ∠的角平分线所在直线对折.②把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿y 轴向下平移4个单位长度.③把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿BC 所在的直线对折. ④把矩形333PA B C 沿y 轴向下平移4个单位长度,再绕O 点顺时针旋转,使点3A 与点A 重合.提示:本问只要求整体图形的重合,不必要求图形原对应点的重合.27.(1)在Rt ABC △中,305CAB BC ∠==,,210AC BC ∴==. ·········································································· 1分 AE BC ∥,APE CPB ∴△∽△.::3:1PA PC AE BC ∴==.:3:4PA AC ∴=,3101542PA ⨯==. ·················································· 3分 (2)BE 与A 相切. ·············································································· 4分在Rt ABE △中,AB =,15AE =,tanAE ABE AB ∴∠===60ABE ∴∠=. ································ 5分 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,, BE ∴与A 相切. ············································································ 6分(3)因为5AD AB ==,,所以r 的变化范围为5r <<. ·················· 7分当A 与C 外切时,10R r +=,所以R 的变化范围为105R -<<;······································································································· 8分当A 与C 内切时,10R r -=,所以R 的变化范围为1510R <<+······································································································· 9分。

2020年山东省济南市中考数学试题及参考答案(word解析版)

2020年山东省济南市中考数学试题及参考答案(word解析版)

2020年山东省济南市中考数学试题及参考答案与解析(满分150分,考试时间120分钟)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.2.如图所示的几何体,其俯视图是()A.B.C.D.3.2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×1064.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b28.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)9.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.10.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3 C.4 D.511.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m12.已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y 值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤3二、填空题(本大题共6个小题.每小题4分,共24分)13.分解因式:2a2﹣ab=.14.在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.代数式与代数式的值相等,则x=.16.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.17.如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.18.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF =3,则tan∠B'AC′=.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:()0﹣2sin30°++()﹣1.20.(6分)解不等式组:,并写出它的所有整数解.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:等级次数频率不合格100≤x<120 a合格120≤x<140 b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A 3000 3400B 3500 4000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.(10分)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.26.(12分)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.27.(12分)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x 轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON 的面积为S2,若S1=2S2,求m的值.答案与解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣2的绝对值是()A.2 B.﹣2 C.±2 D.【知识考点】算术平方根;实数的性质.【思路分析】根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可.【解答过程】解:﹣2的绝对值是2;故选:A.【总结归纳】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图所示的几何体,其俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据俯视图是从物体上面看所得到的图形判断即可.【解答过程】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.。

山东省济南市2020年中考数学一模试卷解析版

山东省济南市2020年中考数学一模试卷解析版

中考数学一模试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.2019的倒数等于( )A. B. -2019 C. - D. 20192.下列几何体是由5个相同的小正方体搭成的,它的左视图是( )A.B.C.D.3.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越怜仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为( )A. 5.5×105B. 55×104C. 5.5×106D. 5.5×1044.如图,直线AB∥CD,CE平分∠ACD,交AB于点E,∠ACE=20°,点F在AC的延长线上,则∠BAF的度数为( )A. 20°B. 30°C. 40°D. 50°5.实数m、n在数轴上对应点的位置如图所示,则下列判断正确的是( )A. |m|≤1B. 1-m>1C. mn>0D. m+1>06.下列图案中是中心对称图形但不是轴对称图形的是( )A. B. C. D.7.化简-的结果是( )A. B. C. D.8.2017年11月30日,河北省402爱心社的志愿者们走进正定五中,为品学兼优的家庭困难学生捐献爱心,共捐赠资金7000元.该资金由25名志愿者捐献,捐献统计情况如下表,则他们捐款金额的中位数和平均数分别是( )金额/元100200300400500人数211543A. 200,200B. 200,280C. 300,300D. 300,2809.下图中反比例函数y =与一次函数y =kx -k 在同一直角坐标系中的大致图象是()A. B.C. D.10.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A. 200米B. 200米C. 220米D.米11.如图,在△ABC 中,AB =6,将△ABC 绕点A 逆时针旋转40°后得到△ADE ,点B 经过的路径为.则图中阴影部分的面积是( )A. 4πB. πC. πD. 条件不足,无法计算12.求二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,其对称轴为直线x =-1,与x 轴的交点为(x 1,0)、(x 2,0),其中0<x 1<1,有下列结论:①abc >0;②-3<x 2<-2;③4a -2b +c <-1;④a -b >am2+bm(m≠-1);⑤a>;其中,正确的结论有( )A. 5B. 4C. 3D. 2二、填空题(本大题共6小题,共24.0分)13.分解因式:x2-xy=______.14.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是______.15.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是______.16.若a+2b=8,3a+4b=18,则a+b的值为______.17.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示根据图象信息知,点A的坐标是______.18.如图,矩形纸片ABCD中,AB=6,BC=9,将矩形纸片ABCD折叠,使C与点A重合,则折痕EF的长为______.三、解答题(本大题共9小题,共78.0分)19.计算:|1-2cos30°|+-(-)-1-(5-π)020.解不等式组,并写出该不等式组的所有整数解.21.如图,AB=DE,BF=EC,∠B=∠E,求证:AC∥DF.22.在某体育用品商店,购买3根跳绳和6个毽子共用72元,购买5根跳绳和20个毽子共用160元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买10根跳绳和10个毽子只需180元,该店的商品按原价的几折销售?23.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,⊙O的半径为2,求线段EC的长度.24.某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.校本课程 频数 频率A360.45B 0.25C16bD8  合计a1请您根据图表中提供的信息回答下列问题:(1)统计表中的a=______,b=______;(2)“D”对应扇形的圆心角为______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),交y轴于点E,过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)将直线EC向右平移,当点E正好落在反比例函数图象上的点E'时,直线交x 轴于点F.请判断点B是否在直线EF上并说明理由;(3)在平面内有点M,使得以A、B、F、M四点为顶点的四边形为平行四边形,请直接写出符合条件的所有M点的坐标.26.如图1.在Rt△ABC中,∠A=90°,AB=AC,点D、E分别在边AB、AC上,AD=AE.连接DC,点M、P、N分别为DE、DC、BC的中点.(1)图1中,线段PM与PN的数量关系是______,位置关系是______;(2)把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,判断△PMN的形状,并说明理由;(3)把△ADE绕点A在平面内自由旋转,若DE=2,BC=6,请直接写出△PMN面积的最大值.27.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(-3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为______,抛物线的顶点坐标为______;(2)如图1,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.(3)如图2,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(4)如图3,点E的坐标为(0,-1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标.答案和解析1.【答案】A【解析】解:2019的倒数是.故选:A.直接利用倒数的定义进而得出答案.此题主要考查了倒数,正确把握倒数的定义是解题的关键.2.【答案】B【解析】解:从左面可看到2列小正方形的个数从左到右分别为2,1.故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】D【解析】解:55000=5.5×104.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于55000有5位,所以可以确定n=5-1=4.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.【答案】C【解析】解:∵∠ACE=20°,CE平分∠ACD,∴∠ACD=2∠ACE=40°,∵AB∥CD,∴∠BAF=∠ACD,∴∠BAF=40°,故选:C.根据角平分线的性质和平行线的性质,可以求得∠BAF的值,本题得以解决.本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.5.【答案】B【解析】解:A.由数轴知|m|≥1,此选项错误;B.由m<0知1-m>1,此选项正确;C.由m<0<n知mn<0,此选项错误;D.由m<0且|m|≥1知m+1≤0,此选项错误;故选:B.根据数轴知m<0<1<n且|m|≥1,利用有理数的减法、乘法和加法法则逐一判断即可得.本题主要考查实数与数轴,解题的关键是根据实数在数轴上的位置得出其大小关系及有理数的乘法、加法、减法法则及绝对值的性质.6.【答案】C【解析】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、不是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.【答案】A【解析】解:原式=-=-=,故选:A.先将第1个分式化简,再利用分式的加减法求解可得.本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则.8.【答案】B【解析】解:因为共有25个数据,所以中位数为第13个数据,即中位数为200元,捐款金额的平均数为=280(元),故选:B.根据中位数和平均数的定义分别求解可得.本题考查平均数和中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.9.【答案】B【解析】解:(1)当k>0时,一次函数y=kx-k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:B.由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案.本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.10.【答案】D【解析】解:∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选:D.在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.11.【答案】A【解析】解:由题意可知,△ABC≌△ADE,故△ABC和△ADE的面积相等,∵在△ABC中,AB=6,将△ABC绕点A逆时针旋转40°后得到△ADE,∴阴影部分的面积是:=4π,故选:A.根据旋转的性质可知,△ABC≌△ADE,从而可以得到△ABC和△ADE的面积相等,再根据图形可知,阴影部分的面积=扇形ABD的面积+△ADE的面积-△ABC的面积,然后代入数据计算即可解答本题.本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用扇形面积的计算公式和数形结合的思想解答.12.【答案】C【解析】解:①对称轴在y轴右侧,则ab同号,c<0,故abc<0,故错误;②对称轴为直线x=-1,0<x1<1,则-3<x2<-2,正确;③对称轴为直线x=-1,则b=2a,4a-2b+c=c<-1,故正确;④x=-1时,y=ax2+bx+c=a-b+c,为最小值,故a-b+c<am2+bm+c,故错误;⑤x=1时,y=a+b+c=3a+c>0,即3a>-c,而c<-1,故a>,正确;故选:C.①对称轴在y轴右侧,则ab同号,c<0,即可求解;②对称轴为直线x=-1,0<x1<1,即可求解;③对称轴为直线x=-1,则b=2a,即可求解;⑤x=1时,y=a+b+c=3a+c>0,即3a>-c,即可求解.主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子.13.【答案】x(x-y)【解析】解:x2-xy=x(x-y).根据观察可知公因式是x,因此提出x即可得出答案.此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.14.【答案】【解析】解:在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是=,故答案为:.用所抽样本中会进行垃圾分类的人数除以抽取的总人数即可得.本题考查概率公式和用样本估计总体,概率计算一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【答案】5【解析】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900-360=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故答案为:5.本题需先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.16.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.17.【答案】(40,800)【解析】解:2400÷60=40米/分,2400÷24=100米/分,100-40=60米/分,2400÷60=40分,(60-40)×40=800米,因此点A的坐标为(40,800)故答案为:(40,800).由图象可知,学校和图书馆之间的距离为2400米,甲走完全程由60分,因此甲的速度为2400÷60=40米/分;甲、乙二人经过24分钟相遇,甲乙的速度和2400÷24=100米/分,乙的速度为100-40=60米/分,因此乙走完全程用时2400÷60=40分,当乙到目的地时,两人距离(60-40)×40=800米,可以得出A的坐标.考查一次函数的图象和性质,明确函数图象上点的坐标表示的实际意义是解决问题的关键.18.【答案】2【解析】解:连接AC交EF于点O,由折叠可知,EF垂直平分AC,易证Rt△AOE≌Rt△COF,∴OE=OF,在Rt△ABC中,AC===3∴OA=OC=,设AE=x,则EG=ED=(9-x),在Rt△AGE中,由勾股定理得:62+(9-x)2=x2,解得:x=在Rt△AOE中,OE==∴EF=2OE=2故答案为:2.折叠即有全等形,根据对称的性质,可得OA=OC,EF⊥AC,进而通过三角形全等,看得出OE=OF,根据折叠和勾股定理可求出AE,进而求出OE,计算出EF.考查折叠的性质、全等三角形的判定和性质、勾股定理等知识,根据折叠轴对称,得出直角三角形和相等的线段和角是解决问题和实现问题转化的关键.19.【答案】解:原式=2×-1+2-(-2)-1=3.【解析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:解不等式①得:x≤3,解不等式②得:x>-1,∴不等式组的解集是-1<x≤3,∴该不等式组的所有整数解为0,1,2,3.【解析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.本题考查了解一元一次不等式组,不等式组的整数解的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.21.【答案】证明:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.【解析】要证明AC∥DF,只要证明∠ACB=∠DFE即可,要证明∠ACB=∠DFE,只要证明△ABC≌△DEF即可,根据题目中的条件可以证明△ABC≌△DEF,本题得以解决.本题考查全等三角形的判定与性质、平行线的判定,解答本题的关键是明确题意,找出所求问题的条件,利用数形结合的思想解答.22.【答案】解:(1)设跳绳的单价为x元,毽子的单价为y元,依题意,得:,解得:.答:跳绳的单价为16元,毽子的单价为4元.(2)设该店的商品按原价的m折销售,依题意,得:(16×10+4×10)×=180,解得:m=9.答:该店的商品按原价的9折销售.【解析】(1)设跳绳的单价为x元,毽子的单价为y元,根据“购买3根跳绳和6个毽子共用72元,购买5根跳绳和20个毽子共用160元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该店的商品按原价的m折销售,根据现价=原价×折扣率,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.23.【答案】解:(1)连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵=,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°-∠AOE=90°-50°=40°;(2)∵AB=AC,∴∠B=∠C,∵∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC=2,∴OC=4,∵OE=2,∴CE=OC-OE=2.【解析】(1)连接OA,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.本题考查了切线的性质、圆周角定理,解直角三角形,能求出∠OAC和∠AOC的度数是解此题的关键.24.【答案】解:(1)80 0.20 ;(2)36(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.【解析】【分析】本题考查了列表法或树状图求概率、用样本估计总体、频数分布表、扇形统计图等知识点,能根据题意列出算式是解此题的关键.(1)根据题意列出算式,再求出即可;(2)根据题意列出算式,再求出即可;(3)根据题意列出算式,再求出即可;(4)先列出表格,再根据题意列出算式,再求出即可.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为36;(3)见答案(4)见答案25.【答案】解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得:y==2,∴B(6,2).综上所述,k的值是12,B点的坐标是(6,2);(2)设直线A、C的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=-x+8,令x=0,则y=8,故点E(0,8),设直线EC向右平移m个单位,则平移后直线的表达式为:y=-(x-m)+8,则点E′(m,8),∵点E′在反比例函数上,∴将点E′坐标代入反比例函数表达式得:8m=12,解得:m=,则平移后直线的表达式为:y=-(x-)+8=-x+10,令y=0,则x=,故点F(,0);当x=6时,y=-x+10=2,故点B在直线EF上;(3)设点M的坐标为(s,t),而点A、B、F的坐标分别为:(3,4)、(6,2)、(,0);①当AB是边时,点A向右平移3个单位向下平移2个单位得到B,同样点M(N)向右平移3个单位向下平移2个单位得到N(M),故或,解得:或,故点M的坐标为:(,-2)或(,2);②当AB是对角线时,由中点公式得:,解得:,故点M的坐标为(,6);综上,点M的坐标为:(,-2)或(,2)或(,6).【解析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标;(2)确定平移后直线的表达式即可求解;(3)分AB为平行四边形的边、对角线两种情况,分别求解即可.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、函数的平移等,其中(3),要注意分类求解,避免遗漏.26.【答案】PM=PN PM⊥PN【解析】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由:如图2,连接CE,BD,由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)若DE=2,BC=6,在Rt△ABC中,AB=AC,BC=6,∴AB=BC=3,同理:AD=由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=4,∴PM=2,∴S△PMN最大=PM2=(2)2=4.(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论.本题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.27.【答案】y=-x2-2x+3 (-1,4)【解析】解:(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即:-3a=3,解得:a=-1.故抛物线的表达式为:y=-x2-2x+3.顶点坐标为(-1,4);故答案是:y=-x2-2x+3;(-1,4);(2)不存在,理由:如答图1,连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,-x2-2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC=×3×3+(-x2-2x+3-x-3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P;(3)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×3=2,y D=BD sin∠CBO=2,则点D(-1,2);(4)如答图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=-x-1,联立方程,得解得:x=(舍去正值),故点P(,).(1)函数的表达式为:y=a(x-1)(x+3)=a(x2+2x-3),即可求解;(2)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解;(3)S△CPD:S△BPD=1:2,则BD=BC=×3=2,即可求解;(4)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.。

数学-(山东济南卷)2020年中考考前最后一卷(全解全析)

数学-(山东济南卷)2020年中考考前最后一卷(全解全析)
在△AMP和△FMG中,
AM=FM,∠AMP=∠FMG,PM=GM,
∴△AMP≌△FMG,
∴AP=FG,∠APM=∠FGM,
∴AP∥GF,
∴∠PAQ=∠Q,
∵∠DOG=∠ODQ+∠Q=∠OGC+∠GCO,
∠ODQ=∠OGC=90°,
∴∠Q=∠GCO,
∴∠PAQ=∠GCO.
∵四边形ABCD和四边形EFGC都是正方形,
∴ ,
∴a1=0(舍去),a2=﹣2,
∴xD=﹣2,
情况二,∵∠FDC=2∠BAC,
∴tan∠FDC= ,
设FC=4k,
∴DF=3k,DC=5k,
∵tan∠DGC= ,
∴FG=6k,
∴CG=2k,DG=3 k,
∴RC= k,RG= k,
DR=3 k﹣ k= k,
∴ = = ,
∴a1=0(舍去),a2= ,
点D的横坐标为﹣2或﹣ .
∴ ,解得 ,
∴ .
(2)解:设 与 相交于点 ,如图:
根据(1)可得, ,
∴ ,
∵ 垂直平分 ,
∴ 得: ,
解得, ,即点 的坐标为(1, ),
又∵ ,
∴ ,
∴ ,可得点 的坐标为(3, )
设 的解析式为 则有:
,解得
∴ 的解析式为 .
(3)连接 如图:
由(2)知 ,∵ ,
∴四边形 平行四边形,
由线段垂直平分线的性质可得: ,
∴P(﹣ ,0),
∴PA=PC=PB= ,
∴∠CPO=2∠BAC,
∴tan∠CPO=tan(2∠BAC)= ,
过作x轴的平行线交y轴于R,交AC的延长线于G,
情况一:如图,
∵∠DCF=2∠BAC=∠DGC+∠CDG,

2020年济南市数学中考试题及答案

2020年济南市数学中考试题及答案

济南市年高中阶段学校招生考试数学试题(非课改区)本试卷分为第【卷(选择题)和第II 卷(非选择题)两部分・第【卷1—2页.第II 卷3—10页,共120分.考试时间120分钟.注意事项:1 •数学考试允许使用科学计算器(凡符合大纲或课程标准要求的讣算器都可带入考场). 2.数学考试允许考生进行剪、拼、折叠实验.3・答第【卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡上.• • •4. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案.答案写在试卷上无效.5・考试结朿,监考人将本试卷和答题卡一并收回・一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中•只有 一项是符合题目要求的.1.如图,数轴上A 3两点所表示的两数的( A.和为正数 B.和为负数 C.积为正数 D.积为负数2.下列计算错误的是( )• •3・如图,是一个正在绘制的扇形统计图,整个圆表示某班参加 体育活动的总人数,那么表示参加立泄跳远训练的人数占总人数4.如图,直线d 与直线方互相平行,则卜一刃的值是()A. 20B. 80C. 120 D ・ 180 5. 亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以 后每个月节省30元,直到他至少有300元•设X 个月后他至少有300元,则可以用于计• •算所需要的月数X 的不等式是()第I 卷(选择 共30分)-4_I~I ——L—3 0 B4-31题图C. (a 2)3 =a 5D. -a+ 2a = a的35%的扇形是( )A ・ M B. N3题图A. 30x-45≥300B. 30x+45M30010题图10题图C. 30Λ-45≤300D. 30Λ+45≤3006. 如图,雷达可用于飞机导航,也可用来监测飞机的飞行.假设某时刻雷达向飞机发射电磁波,电 磁波遇到飞机后反射,又被雷达接收,两个过程共用了5.24xl (Γ'秒.已知电磁波的传播速度为3.0× IO 8米/秒,则该时刻飞机与雷达站的距离是(6题图A. 7.86 × IO 3 米B. 7.86×104 米C. 1.572×103 米D. 1.572×104 米7.已知x = √∑,则代数式一、一的值为( )8题图A. 126B. 108C. 90D.9.如图,直线/是函数y = → + 3的图象.若点P(x, y) 满足xv5,且y>丄Λ- + 3,则P 点的坐标可能是(2A. (7,5)B. (4,6)C. (S4)D. (—2J)10.如图,BE 是半径为6的OD 的丄圆周,C 点是BE 上4的任意一点,AABD 是等边三角形,则四边形ABCD 的周长〃的取值范围是()A. 12v”W18C.B. 18v∕U24 D. 12<"W12 + 6√Σ8.如图,一张长方形纸片沿AB 对折,以43的中点O 为顶点,将平角五等分,并沿五等 分线折叠,再从点C 处剪开,使展开后的图形为正五边形,则剪开线与OC 的夹角ZOCD 为()C. 18<"W18 + 6√Σ10题图2 cm15题图2cm2cm第II 卷(非选择题 共90分)注意事项:1. 第II 卷共8页,用钢笔或圆珠笔直接答在试卷上.2. 答卷前将密封线内的项目填写淸楚.二、填空题:本大题共6小题,每小题3分,共18分,把答案填写在题中的横线上. 11. 若分式』的值为零,则X 的值为 __________________ .x + ∖12. 根据如图的程序,计算当输入x = 3时,输出的结果y= _____ ・、13. 如图,Ae 是C)O 的直径,ZACB = 60 ,连接AB, 3两点分别作Oo 的切线,两切线交于点P.若已知OO 的半径为1,则MAB 的周长为 _______________ .14. 如图,厶是反比例函数y = -^£第一象限内的图象,且过点A(2J),人与人关于X 轴对X称,那么图象人的函数解析式为____________ (x>0).15. 如图,矩形ABCD 中,AB = & AD = 6.将矩形ABCD 在直线/上按顺时针方向不滑动的每秒转动90 ,转动3秒后停止,则顶点A 经过的路线长为 ____________ .16. 现有若干张边长不相等但都大于4cm 的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm 处,沿45」角画线,将正方形纸片分成5部分,则中间阴影部分的而积 是 _________ Cin 2:若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的 而积.你能发现什么规律? _____________________________________12题图输 出I I II ---------------------- I :41 : I I三、解答题:本大题共11小题,共72分,解答应写出文字说明或演算步骤・17. (本题5分)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解・ 4/, (χ + y)29 L 9b 2.19・(本题6分)已知关于X 的方程kx 1+ 2x-∖ =O 有两个不相等的实数根XP χ2,且满足(X i +χ2)2 =1,求R 的值・20.(本题7分)某髙校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2 个小餐厅,可供1680需学生就餐:同时开放2个大餐厅.1个小餐厅,可供2280名学生就 餐. (1) 求1个大餐厅、1个小餐厅分别可供多少名学生就餐:(2) 若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.18.(本题5分)解方程:2 _3x-3 X21.(本题6分)元口联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链, 小颖测虽:了部分彩纸链的长度,她得到的数据如下表:纸环数X (个〉 1 2 3 4彩纸链长度y (Cm)19 36 53 70(1)把上表中尢y的各组对应值作为点的坐标,在如图的平而直角坐标系中描出相应的点,猜想y与X的函数关系,并求岀函数关系式;(2)教室天花板对角线长IOm,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?'k y(cm)22.(本题6分)如图1, M, N分别表示边长为G的等边三角形和正方形,P表示直径为"的圆.图2是选择基本图形M, P用尺规画出的图案,S m=-U24 8(1)请你从图1中任意选择两种基本图形,按给定图形的大小设计一个新图案,还要选择恰当的图形部分涂上阴影,并计算阴影的而积:(尺规作图,不写作法,保留痕迹,作直角时可以使用三角板)(2)请你写一句在完成本题的过程中感受较深且与数学有关的话.908070605040302010O 1 2 3 4 5 6 721题图X (个)23. (本题6分)某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集了学生 在作业和考试中的常见错误,编制了 10道选择题,每题3分,对她所任教的初三(1)班和 (2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况: (I )利用图中提供的信息,补全下表:班级平均数(分〉 中位数(分) 众数(分〉(1)班2424(2)班24(2) 若把24分以上(含24分)记为“优秀S 两班各有60轲学生,请估计两班各有多少名学生成绩优秀;(3) 观察图中的数据分布情况,你认为哪个班的学生纠错的整体情况更好一些?23题图成绩(分)(1)班成绩(分)(2)班24 ・(本题7 分)如图,在RtΔABC 与RtΔABP 中,ZABC = ZBAD =90° ,AD = BG AC9 3D相交于点G,过点A作AE//DB交CB的延长线于点E ,过点3作BF 〃C4交DA的延长线于点F, AE, BF相交于点H .(1)图中有若干对三角形是全等的,请你任选一对进行证明:(不添加任何辅助线)(2)证明四边形AHBG是菱形:(3)若使四边形AHBG是正方形,还需在RtZVlBC的边长之间再添加一个什么条件?请你写岀这个条件.(不必证明)的图象与其他两个图象比较,还缺少部分,应该补画.你认为他的说法正确吗?请简要说明理由.25.(本题7分)某校数学研究性学习小组准备设计一种髙为60Cm的简易废纸箱・如图1, 废纸箱的一面利用墙,放置在地而上,利用地而作底,英它的面用一张边长为60Cm的正方形硬纸板用成.经研究发现:由于废纸箱的高是确左的,所以废纸箱的横截面图形而积越大,则它的容积越大.(I)该小组通过多次尝试,最终选泄下表中的简便且易操作的三种横截而图形,如图2,是根据这三种横截而图形的而积y(cm2)与X(Cm)(见表中横截而图形所示)的函数关系式而绘制出的图象.请你根据有信息,在表中空白处填上适当的数、式,并完成y取最大值时的设计示意图:横截面图形―LJ L丄L丄丄L丄L L丄丄亠」L.rcm□___________ □\60 60/Yenη∖/y与X的函数关系式y =--X2+30X2 y=-^-√3X2+ 3O√3xy取最大值时X (CIn)的值30 20y(cm2)取得的最大值450 3OO√3y取最A:值时的设计示意图IlllllttttlIlIll IlllIiIiIllIllll30cm∖^∕30ctn(2)在研究性学习小组展示研究成果时,小华同学指岀:图2中“底角为60的等腰梯形”26.(本题8分)如图1,以矩形OABC的两边04和OC所在的直线为X轴、轴建立平面直角坐标系,A点的坐标为(3, 0), C点的坐标为(0,4).将矩形OABC绕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年山东省济南市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)﹣2的绝对值是()A.2B.﹣2C.±2D.2.(4分)如图所示的几何体,其俯视图是()A.B.C.D.3.(4分)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×106 4.(4分)如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°5.(4分)古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(4分)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.(4分)下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b28.(4分)如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y 轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)9.(4分)若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.10.(4分)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.511.(4分)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m12.(4分)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B 两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3C.m≥3D.1≤m≤3二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.(4分)分解因式:2a2﹣ab=.14.(4分)在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.15.(4分)代数式与代数式的值相等,则x=.16.(4分)如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.17.(4分)如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.18.(4分)如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF=3,则tan∠B'AC′=.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:()0﹣2sin30°++()﹣1.20.(6分)解不等式组:,并写出它的所有整数解.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:等级次数频率不合格100≤x<120a合格120≤x<140b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A 作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?25.(10分)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.26.(12分)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.27.(12分)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.2020年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)﹣2的绝对值是()A.2B.﹣2C.±2D.【分析】根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可.【解答】解:﹣2的绝对值是2;故选:A.2.(4分)如图所示的几何体,其俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看所得到的图形判断即可.【解答】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.故选:C.3.(4分)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将21500000用科学记数法表示为2.15×107,故选:B.4.(4分)如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°【分析】由平行线的性质得∠ADC=∠BAD=35°,再由垂线的定义可得三角形ACD是直角三角形,进而得出∠ACD的度数.【解答】解:∵AB∥CD,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.5.(4分)古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,也不是中心对称图形,故本选项不合题意;D、既是轴对称图形又是中心对称图形的,故本选项符合题意.故选:D.6.(4分)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多45【分析】从折线图中获取信息,通过折线图和中位数、众数的定义及极差等知识求解.【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.7.(4分)下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣2a3)2=4a6,故选项A正确;∵a2•a3=a5,故选项B错误;∵3a+a2不能合并,故选项C错误;∵(a﹣b)2=a2﹣2ab+b2,故选项D错误;故选:A.8.(4分)如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y 轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)【分析】根据轴对称的性质和平移规律求得即可.【解答】解:由坐标系可得B(﹣3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B'的坐标为(3,1+3),即(3,4),故选:C.9.(4分)若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.【分析】由m<﹣2得出m+1<0,1﹣m>0,进而利用一次函数的性质解答即可.【解答】解:∵m<﹣2,∴m+1<0,1﹣m>0,所以一次函数y=(m﹣1)x+1﹣m的图象经过一,二,四象限,故选:D.10.(4分)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5【分析】由基本作图得到得EF垂直平分AB,则MB=MA,所以BM+MD=MA+MD,连接MA、DA,如图,利用两点之间线段最短可判断MA+MD的最小值为AD,再利用等腰三角形的性质得到AD⊥BC,然后利用三角形面积公式计算出AD即可.【解答】解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.故选:D.11.(4分)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参者数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m【分析】首先证明四边形ACDF是矩形,求出AC,DF即可解决问题.【解答】解:∵FD⊥AB,AC⊥EB,∴DF∥AC,∵AF∥EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∴AC=AB•sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.44(m),在Rt△DEF中,∵∠FDE=90°,∴tan∠E=,∴DE≈=2.8(m),故选:B.12.(4分)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B 两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3C.m≥3D.1≤m≤3【分析】根据题意,x=﹣≤2,≥﹣3【解答】解:当对称轴在y轴的右侧时,,解得≤m<3,当对称轴是y轴时,m=3,符合题意,当对称轴在y轴的左侧时,2m﹣6>0,解得m>3,综上所述,满足条件的m的值为m≥.故选:A.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.(4分)分解因式:2a2﹣ab=a(2a﹣b).【分析】直接提取公因式a,进而得出答案.【解答】解:2a2﹣ab=a(2a﹣b).故答案为:a(2a﹣b).14.(4分)在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是.【分析】让白球的个数除以球的总数即为摸到白球的概率.【解答】解:共有球3+2=5个,白球有2个,因此摸出的球是白球的概率为:.故答案为:.15.(4分)代数式与代数式的值相等,则x=7.【分析】根据题意列出分式方程,求出解即可.【解答】解:根据题意得:=,去分母得:3x﹣9=2x﹣2,解得:x=7,经检验x=7是分式方程的解.故答案为:7.16.(4分)如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为36.【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式计算即可.【解答】解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,∴×2=24π,解得r=6.则正六边形的边长为6.17.(4分)如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为1米.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程求解即可.【解答】解:设道路的宽为x m,根据题意得:(10﹣x)(15﹣x)=126,解得:x1=1,x2=24(不合题意,舍去),则道路的宽应为1米;故答案为:1.18.(4分)如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF=3,则tan∠B'AC′=.【分析】连接AF,设CE=x,用x表示AE、EF,再证明∠AEF=90°,由勾股定理得通过AF进行等量代换列出方程便可求得x,再进一步求出B′C′,便可求得结果.【解答】解:连接AF,设CE=x,则C′E=CE=x,BE=B′E=10﹣x,∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=∠D=90°,∴AE2=AB2+BE2=82+(10﹣x)2=164﹣20x+x2,EF2=CE2+CF2=x2+32=x2+9,由折叠知,∠AEB=∠AEB′,∠CEF=∠C′EF,∵∠AEB+∠AEB′+∠CEF+∠C′EF=180°,∴∠AEF=∠AEB′+∠C′EF=90°,∴AF2=AE2+EF2=164﹣20x+x2+x2+9=2x2﹣20x+173,∵AF2=AD2+DF2=102+(8﹣3)2=125,∴2x2﹣20x+173=125,解得,x=4或6,当x=6时,EC=EC′=6,BE=B′E=8﹣6=2,EC′>B′E,不合题意,应舍去,∴CE=C′E=4,∴B′C′=B′E﹣C′E=(10﹣4)﹣4=2,∵∠B′=∠B=90°,AB′=AB=8,∴tan∠B'AC′=.故答案为:.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:()0﹣2sin30°++()﹣1.【分析】直接利用负整数指数幂的性质以及零指数幂的性质等知识分别化简得出答案.【解答】解:原式1﹣2×+2+2=1﹣1+2+2=4.20.(6分)解不等式组:,并写出它的所有整数解.【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤1,∴不等式组的所有整数解为0,1.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.【分析】利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【解答】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如表格和统计图:等级次数频率不合格100≤x<120a合格120≤x<140b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=0.1,b=0.35;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是108°;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.【分析】(1)用调查总人数减去其他小组的频数即可求得a值;(2)根据调查的总人数和每一小组的频数即可确定中位数落在那个范围内;(3)用总人数乘以达标率即可.【解答】解:(1)根据频数分布直方图可知:a=4÷40=0.1,因为40×25%=10,所以b=(40﹣4﹣12﹣10)÷40=14÷40=0.35,故答案为:0.1;0.35;(2)如图,即为补全的频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×=108°;故答案为:108°;(4)因为2000×=1800,所以估计该校学生一分钟跳绳次数达到合格及以上的人数是1800.23.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A 作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.【分析】(1)连接OC,根据切线的性质可得∠OCD=90°,再根据AD⊥DC,和半径线段即可证明AC是∠DAB的角平分线;(2)利用圆周角定理得到∠ACB=90°,再证明Rt△ADC∽Rt△ACB,对应边成比例即可求出AC的长.【解答】解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠ACD+∠ACO=90°,∵AD⊥DC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠ACO=∠DAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC是∠DAB的角平分线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠D=∠ACB=90°,∵∠DAC=∠BAC,∴Rt△ADC∽Rt△ACB,∴=,∴AC2=AD•AB=2×3=6,∴AC=.24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)A30003400B35004000某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【分析】(1)根据题意和表格中的数据,可以得到相应的二元一次方程组,从而可以求得营业厅购进A、B两种型号手机各多少部;(2)根据题意,可以得到利润与A种型号手机数量的函数关系式,然后根据B型手机的数量不多于A型手机数量的2倍,可以求得A种型号手机数量的取值范围,再根据一次函数的性质,即可求得营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少.【解答】解:(1)设营业厅购进A、B两种型号手机分别为a部、b部,,解得,,答:营业厅购进A、B两种型号手机分别为6部、4部;(2)设购进A种型号的手机x部,则购进B种型号的手机(30﹣x)部,获得的利润为w元,w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.25.(10分)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,2),反比例函数y=(x>0)的图象与BC,AB分别交于D,E,BD=.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.【分析】(1)求出D(,2),再用待定系数法即可求解;(2)证明=,即可求解;(3)①当点F在点C的下方时,求出FH=1,CH=,求出点F(1,),则点G (3,),即可求解;②当点F在点C的上方时,同理可解.【解答】解:(1)∵B(2,2),则BC=2,而BD=,∴CD=2﹣=,故点D(,2),将点D的坐标代入反比例函数表达式得:2=,解得k=3,故反比例函数表达式为y=,当x=2时,y=,故点E(2,);(2)由(1)知,D(,2),点E(2,),点B(2,2),则BD=,BE=,故==,===,∴DE∥AC;(3)①当点F在点C的下方时,如下图,过点F作FH⊥y轴于点H,∵四边形BCFG为菱形,则BC=CF=FG=BG=2,在Rt△OAC中,OA=BC=2,OB=AB=2,则tan∠OCA===,故∠OCA=30°,则FH=FC=1,CH=CF•cos∠OCA=2×=,故点F(1,),则点G(3,),当x=3时,y==,故点G在反比例函数图象上;②当点F在点C的上方时,同理可得,点G(1,3),同理可得,点G在反比例函数图象上;综上,点G的坐标为(3,)或(1,3),这两个点都在反比例函数图象上.26.(12分)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是∠EAB=∠CBA.线段BE与线段CF的数量关系是CF=BE;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.【分析】(1)①如图1中,连接BE,设DE交AB于T.首先证明BD=BE,再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明△CMF ≌△BMN(SAS)可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到△CBT,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT 是平行四边形,可得结论.(2)结论:BE=2CF.如图3中,取AB的中点T,连接CT,FT.证明△BAE∽△CTF可得结论.【解答】解:(1)①如图1中,连接BE,设DE交AB于T.∵CA=CB,∠CAB=45°,∴∠CAB=∠ABC=45°,∴∠ACB=90°,∵∠ADE=∠ACB=45°,∠DAE=90°,∴∠ADE=∠AED=45°,∴AD=AE,∵∠DAT=∠EAT=45°,∴AT⊥DE,DT=ET,∴AB垂直平分DE,∴BD=BE,∵∠BCD=90°,DF=FB,∴CF=BD,∴CF=BE.∵∠CBA=45°,∠EAB=45°,∴∠EAB=∠ABC.故答案为:∠EAB=∠ABC,CF=BE.②结论不变.解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.∵∠ACB=90°,CA=CB,AM=BM,∴CM⊥AB,CM=BM=AM,设AD=AE=y.FM=x,DM=a,则DF=FB=a+x,∵AM=BM,∴y+a=a+2x,∴y=2x,即AD=2FM,∵AM=BM,EN=BN,∴AE=2MN,MN∥AE,∴MN=FM,∠BMN=∠EAB=90°,∴∠CMF=∠BMN=90°,∴△CMF≌△BMN(SAS),∴CF=BN,∵BE=2BN,∴CF=BE.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到△CBT,连接DT,GT,BG.∵AD=AE,∠EAD=90°,EG=DG,∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,∵∠CAB=45°,∴∠CAG=90°,∴AC⊥AG,∴AC∥DE,∵∠ACB=∠CBT=90°,∴AC∥BT∥BD,∵AG=BT,∴DG=BT=EG,∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,∴BD与GT互相平分,∵点F是BD的中点,∴BD与GT交于点F,∴GF=FT,∵△GCT是等腰直角三角形,∴CF=FG=FT,∴CF=BE.(2)结论:BE=2CF.理由:如图3中,取AB的中点T,连接CT,FT.∵CA=CB,∴∠CAB=∠CBA=30°,∠ACB=120°,∵AT=TB,∴CT⊥AB,∴AT=CT,∴AB=2CT,∵DF=FB,AT=TB,∴TF∥AD,AD=2FT,∴∠FTB=∠CAB=30°,∵∠CTB=∠DAE=90°,∴∠CTF=∠BAE=60°,∵∠ADE=∠ACB=60°,∴AE=AD=2FT,∴==2,∴△BAE∽△CTF,∴==2,∴BE=2CF.27.(12分)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.【分析】(1)用待定系数法即可求解;(2)若△ACD是以∠DCA为底角的等腰三角形,则可以分CD=AD或AC=AD两种情况,分别求解即可;(3)S1=AE×y M,2S2=ON•x M,即可求解.【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为y=﹣x2+2x+3,当x=0时,y=3,故点C(0,3);(2)当m=1时,点E(1,0),设点D的坐标为(1,a),由点A、C、D的坐标得,AC ==,同理可得:AD =,CD =,①当CD=AD 时,即=,解得a=1;②当AC=AD时,同理可得a =(舍去负值);故点D的坐标为(1,1)或(1,);(3)∵E(m,0),则设点M(m,﹣m2+2m+3),设直线BM的表达式为y=sx+t ,则,解得,故直线BM的表达式为y =﹣x +,当x=0时,y =,故点N(0,),则ON =;S1=AE×y M =×(m+1)×(﹣m2+2m+3),2S2=ON•x M =×m=S1=×(m+1)×(﹣m2+2m+3),解得m=﹣2±(舍去负值),经检验m =﹣2是方程的根,故m =﹣2.31 / 31。

相关文档
最新文档