仪器分析名词解释

合集下载

仪器分析的名词解释

仪器分析的名词解释

仪器分析的名词解释仪器分析是一项涉及科学技术和仪器设备的研究领域,旨在利用各种仪器设备来对物质进行精确测量和分析。

通过仪器分析,可以获取关于物质组成、结构和性质等方面的详细信息。

在现代科学研究、工业生产和环境监测等领域中,仪器分析技术发挥着至关重要的作用。

一、质谱分析质谱分析是一种基于物质分子的质量和质量与电荷比的仪器分析技术。

质谱仪是质谱分析的主要仪器设备。

通过将待测物质样品转化为气态、液态或固态粒子,并将其离子化,利用磁场或电场将离子按质量或质荷比进行分离,最后测量和记录离子信号,从而获得物质组成、结构和分子质量等信息。

质谱分析在有机化学、生物学、医学研究和环境监测中有着广泛应用。

二、光谱分析光谱分析是一种利用物质与电磁辐射相互作用的仪器分析技术。

光谱仪是光谱分析的主要仪器设备。

通过将样品与特定波长或一定范围的电磁辐射相互作用,测量和记录信号的能量和强度变化,从而获得物质样品的光谱信息。

光谱分析包括可见光谱、红外光谱、紫外光谱等多种形式,根据物质与辐射的相互作用方式和特点,可获得物质组成、结构和性质等信息。

光谱分析在化学、物理、材料科学、地球科学和天文学等多个领域中发挥着重要作用。

三、电化学分析电化学分析是一种利用电化学原理和技术对物质进行分析的方法。

电化学仪器是电化学分析的主要设备,如电位计、电解槽和电化学工作站等。

通过将待测物质与电极接触,应用电位差和电流进行反应和测量,从而获得物质的电活性和电化学参数等信息。

电化学分析可用于测定溶液中的离子浓度、物质的电导率以及电化学反应速率等。

在环境保护、生命科学和电池等领域中,电化学分析具有广泛的应用前景。

四、色谱分析色谱分析是一种将待分析物质溶液以流动相或静态相的形式通过色谱柱,利用待测物质在固定填料上的相互作用和迁移行为进行分离和测量的仪器分析技术。

色谱仪是色谱分析的主要仪器设备。

根据分离原理和方法不同,色谱分析可分为气相色谱、液相色谱、超高效液相色谱等。

名词解释-仪器分析

名词解释-仪器分析
提纯。
适用范围有限
不同的仪器分析方法有不同的适用范围, 对于某些特定类型的样品或特定组分的测 定可能不适用。
对操作人员要求高
仪器分析需要操作人员具备较高的专业知 识和技能,能够正确使用和维护仪器,保 证分析结果的准确性和可靠性。
05 仪器分析的发展趋势
高通量和高灵敏度仪器的发展
总结词
随着科学技术的发展,仪器分析的高通量和 高灵敏度已成为重要的发展趋势。
红外光谱法是通过测量样品对红外光的吸收程度,来确定样品中分子的结构和组成。紫外-可见光谱法则是通过测量样品对紫 外-可见光的吸收和反射程度,来确定样品中分子的结构和组成。拉曼光谱法则是通过测量拉曼散射光的波长和强度,来确定 样品中分子的结构和组成。
电化学分析法
电化学分析法是利用电化学反应进行分析的方法。根据电化学反应过程中电流、电压、电导等参数的 变化,可以确定样品中物质的种类和浓度。电化学分析法包括电位分析法、伏安分析法、电导分析法 等。
详细描述
高灵敏度仪器能够检测更低浓度的物质,有 助于发现和诊断早期疾病,保护环境和食品 安全。高通量仪器能够在短时间内处理大量 样本,提高分析效率,满足大规模筛查和个 性化医疗的需求。
微型化与便携式仪器的发展
要点一
总结词
要点二
详细描述
仪器分析的微型化和便携化使得检测更为便捷,特别适用 于现场快速检测和移动医疗。
多技术联用仪器将电化学、光学、质谱等多种检测技术 集成在一个仪器中,充分发挥各种技术的优势,提高检 测的准确性和可靠性。这种仪器可以同时检测多种指标 ,提供更全面的信息,适用于复杂样品的分析和跨学科 的研究领域。
感谢您的观看
THANKS
VS
原子吸收光谱法是通过测量样品中原 子对特定波长光的吸收程度,来确定 样品中元素的含量。原子发射光谱法 则是通过测量样品中原子发射出的光 子能量和数量,来确定样品中元素的 种类和含量。

仪器分析名词解释

仪器分析名词解释

基线:无试样通过检测器时,检测到的信号即为基线。

共振线:由激发态直接跃迁到基态时所辐射的谱线。

自蚀线:自吸最强的谱线。

基线漂移:基线随时间定向的变化基线噪声:由各种因素引起的基线起伏最后线:元素谱线的强度是随试样中该元素的含量的减少而降低,并且在元素含量降低时其中有一部分灵敏度较低,强度较弱的谱线将渐次消失,而这些灵敏线则将在最后消失。

特征谱线:由于各种元素原子结构的不同,在光源的激发作用下,可以产生许多按一定波长次序排列的谱线组。

基态:在正常情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。

生色团:若在饱和碳氢化合物中,引入含有π键的不饱和基团,将使这一化合物的最大吸收峰波长移至紫外及可见区范围内,这种基团称为生色团。

助色团:能使吸收峰波长向长波长方向移动的杂原子基团。

电分析化学法:利用物质的电学及电化学性质来进行分析的方法。

保留时间:被测组分从进样到柱后出现最大浓度值时所需要的时间。

最小检出量:检测器的响应值为3倍噪声水平时的试样浓度(质量)。

反相液相色谱:在分配色谱中,组分在色谱柱上的保留程度,取决于它们在固定相和流动相之间的分配系数,组分在固定相上的保留时间越长,固定相与流动相之间的极性差值越大,当流动相的极性大于固定相得极性,即为反相液相色谱。

正相液相色谱:在分配色谱中,组分在色谱柱上的保留程度,取决于它们在固定相和流动相之间的分配系数,组分在固定相上的保留时间越长,固定相与流动相之间的极性差值越大,当流动相的极性小于固定相的极性,即为正相液相色谱。

灵敏线:指各元素谱线中处于基态或者处于较低能时所辐射的谱线。

分析线:分析中根据最后线或者最灵敏度来分析试样,这样的谱线即为分析线。

化学位移:在有机化合物中,氢核周围的电子云密度有差异,共振频率也不同,即引起共振吸收峰的位移。

梯度洗脱:流动相中含有两种(或更多)不同极性的容剂,在分离过程中按一定的程序连续改变流动相中溶剂的配比和极性,通过流动相中极性的变化来改变分离组的容量因子K和选择性因子,以提高分离效果。

仪器分析(名词解释)

仪器分析(名词解释)

仪器分析(名词解释).doc仪器分析(Instrumental Analysis)是一门研究测定物质的含量、结构及性质的科学。

它是由分析化学与仪器学结合起来的科学。

它是对物质的构成、含量及性质进行分析测定和确定的方法,也就是说,借助仪器和手段,通过物质本身的反应,检测物质的特征和各种组成,以及它们之间的关系,从而达到确定物质组成和性质的目的。

仪器分析具有准确、快速、高效、可重复等特点。

它结合了传统的分析化学和仪器学的技术,能够检测出物质的特征,并且能够精确地测定出物质的含量。

仪器分析可以分为光谱分析、质谱分析、电化学分析和核磁共振分析等。

光谱分析是仪器分析中最常用的一种技术。

它利用物质发出的不同波长的光,从而判断物质的组成、结构及性质。

可以分为原子光谱分析、分子光谱分析、X射线光谱分析、红外光谱分析、紫外光谱分析等。

质谱分析是测定物质分子结构的另一种方法。

它利用质谱仪,将物质分成其原子的离子,并以质量分辨率的形式测定出物质的分子结构。

它分为电子质谱分析和离子质谱分析两类。

电化学分析是测定物质及其反应物的含量时使用的常用方法。

它通过测量物质在电极上发生的电化学反应,从而测定出物质的含量。

它有很大的应用前景,因为它可以测定出低激活能量物质的含量。

核磁共振分析(NMR)是一种测定物质结构和性质的非常有效的方法。

它可以通过在核磁场中对物质的核磁共振信号的分析,测定出物质的结构和性质。

它也可用于测定物质的含量。

仪器分析是一门研究物质的含量、结构及性质的科学,它是由分析化学与仪器学结合起来的科学。

仪器分析具有准确、快速、高效、可重复等特点,它的应用非常广泛,可以用于科学研究、工业生产、农业生产等多个领域。

它是通过借助仪器和手段,结合传统的分析化学和仪器学技术,对物质进行分析测定和确定的方法,从而达到确定物质组成和性质的目的。

常见的仪器分析方法有光谱分析、质谱分析、电化学分析和核磁共振分析等。

仪器分析名词解释

仪器分析名词解释

名词解释:色谱法(chromatography):也称为色谱分析,是一种物理或物理化学分离分析的方法。

利用分离介质(无机物或有机物,可以是固体、液体或气体)将样品中的各组分进行定性或定量分离和分析的方法。

色谱法基本原理:利用各物质在两相中具有不同的分配系数,当两相做相对运动时,这些物质在两相中进行多次反复的分配来达到分离的目的。

色谱图(Chromatogram):又称色谱流出曲线,是由检测器输出的信号强度对时间作图所绘制的曲线。

基线(Base line):理论上直线,反映样品为零时信号随时间变化的监测器本底信号。

色谱峰(Peak):流出曲线上凸起部分,即组分流经检测器所产生的信号。

峰高(Peak height, h):为色谱峰峰顶与基线之间的垂直距离,定量分析的依据。

峰宽(Peak width, W):色谱峰两侧拐点上切线在基线上的截距。

半峰宽(Peak width at half height, W1/2):h/2处所对应的峰宽。

标准偏差(σ):0.607 h处色谱峰宽一半。

参数关系W = 4σ,后三个反应色谱柱或色谱条件的优劣。

死时间(Death time, t0):溶质不与固定相作用,直接经过色谱柱所需时间。

保留时间(Retention time, tR):进样到出现峰顶的时间。

调整保留时间(Adjusted retention time, tR'):tR' = tR - t0 。

死体积(Death volume, V0):色谱柱中不被固定相占据+进样系统管道+检测系统的空间。

保留体积(Retention volume, VR):进样至出现峰顶时通过的流动相体积。

调整保留体积(Adjusted retentionvolume, VR' ):VR' =VR - V0 。

峰面积(Peak area, A):整个峰曲线所围绕起来的面积。

它和h一般与组分含量或浓度成正比,是定量分析的基本依据。

仪器分析名词解释

仪器分析名词解释

绪论1.仪器分析:以物质的某些物理或化学性质(光、电、热、磁等)为基础,并借助于特殊的设备,对待测物质进行定性、定量及结构分析和动态分析的一类方法,又称物理分析法。

2.检出限:供试品中被测物能被检测出的最低量(信噪比3:1)。

3.定量限:供试品中被测组分能被定量测定的最低量(信噪比10:1)。

4.灵敏度:物质单位浓度或单位质量的变化引起响应信号值变化的程度称为方法的灵敏度,用S 表示。

信号变化量/浓度变化量,标准曲线斜率越大,灵敏度越高。

光谱绪论5.光学分析法:基于物质发射的电磁辐射或物质与辐射相互作用后产生的辐射信号或发生的信号变化来测定物质的性质、含量和结构的一类仪器分析方法。

6.波数:每cm长度中波的数目,单位cm-17.吸收:物质选择性吸收特定频率的辐射能(光子的能量等于原子、分子或离子的基态和激发态能量之差),并从低能级跃迁到高能级的过程。

8.发射:物质吸收能量从基态跃迁到激发态,激发态不稳定,物质以光的形式释放能量重新回到基态的过程。

9.可见光:波长在400~750nm范围的光。

10.单色光:具有同一波长、同一能量的光。

11.复合光:由不同波长的光组合成的光。

12.光的互补:若两种不同颜色的单色光按一定的强度比例混合得到白光,那么就称这两种单色光为互补色光,这种现象称为光的互补。

如黄-蓝;蓝绿-红13.光谱法:物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长的变化,所得的图谱称为光谱,利用光谱进行定性定量和结构分析的方法。

14.非光谱法:不涉及物质内部能级的跃迁,仅通过测量电测辐射的某些基本性质(反射、折射、干涉、衍射和偏振)变化的分析方法。

UV-Vis15.紫外-可见光分光光度法:利用待测物质具有选择吸收紫外-可见光辐射的特性,所产生的吸收光谱进行定性、定量及结构分析的方法。

16.最大吸收波长:最大吸收峰峰高处所对应的波长。

17.吸收曲线:不同波长的光通过待测物质,经待测物质吸收后,测量其对不同波长光的吸收程度(即吸光度A),以辐射波长λ为横坐标,吸光度A为纵坐标,作图得到该物质的吸收光谱或吸收曲线。

仪器分析-名词解释

仪器分析-名词解释

仪器分析-名词解释一:名词解释1. 色谱法(chromatography):以试样组分在固定相和流动相间的溶解、吸附、分配、离子交换或其他亲和作用的差异为依据而建立起来的各种分离分析方法称色谱法。

2. 基线:在操作条件下,仅有纯流动相进入检测器时的流出曲线。

3. 保留时间:从进样至被测组分出现浓度最大值时所需时间tR。

4. 色谱流出曲线:试样中各组分经色谱柱分离后,按先后次序经过检测器时,检测器就将流动相中各组分浓度变化转变为相应的电信号,由记录仪所记录下的信号——时间曲线或信号——流动相体积曲线,称为色谱流出曲线。

5. 塔板理论:塔板理论认为,一根柱子可以分为n段,在每段内组分在两相间很快达到平衡,把每一段称为一块理论塔板。

设柱长为L,理论塔板高度为H,则:H = L / n 式中n为理论塔板数6. 速率理论认为,单个组分粒子在色谱柱内固定相和流动相间要发生千万次转移,加上分子扩散和运动途径等因素,它在柱内的运动是高度不规则的,是随机的,在柱中随流动相前进的速度是不均一的。

7. 有效塔板数:8. 在一定温度和压力下,组分在固定相和流动相之间分配达到平衡时的质量比,称为容量因子,也称分配比,用k表示。

9. 分配系数:在一定温度和压力下,组分在固定相和流动相间达到分配平衡时的浓度比值,用K表示。

10. 分离度:相邻两色谱峰保留值之差与两组分色谱峰底宽总和之半的比值,用R表示。

分离度可以用来作为衡量色谱峰分离效能的指标。

11. 程序升温:12. 气相色谱检测器:13. 化学键合固定相:是通过化学反应将有机分子键合在担体(硅胶)表面所形成固定相。

14. 反相分配色谱:流动相极性大于固定相极性,极性大的先流出,适于非极性组分分离。

15. 离子选择电极:是对某种特定离子产生选择性响应的一种电化学传感器。

其结构一般由敏感膜、内参比溶液和内参比电极组成。

16. 直接电位法:是将电极插入被测液中构成原电池,根据原电池的电动势与被测离子活度间的函数关系直接测定离子活度的方法。

仪器分析名词解释

仪器分析名词解释

仪器分析名词解释Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】绪论1 仪器分析:是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。

仪器分析的产生与生产实践科学技术发展的迫切需要方法核心原理发现及相关技术产生等密切相关。

2 定性分析:鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。

3 定量分析:测定试样中各种组分(如元素、根或官能团等)含量的操作。

4 精密度:指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。

5 灵敏度:仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。

6 检出限:又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。

它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。

7 动态范围:定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。

8 选择性:一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。

9 分辨率:指仪器鉴别由两相近组分产生信号的能力。

不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。

10 分析仪器的校正:仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的过程称为校正。

一般包括分析仪器的特征性能指标和定量分析方法校正。

光谱法导论11 电磁辐射:电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。

仪器分析名词解释

仪器分析名词解释

生色团:凡是可以使分子在紫外—可见光区产生吸收带的原子或原子团。

助色团:含有孤对电子,可以使生色团吸收峰向长波方向移动并提高吸收强度的一些官能团。

红移:在分子中引入的一些集团或受到外界其它因素影响,吸收峰向长波方向移动的现象。

蓝移:在分子中引入的一些集团或受到其它外界因素影响,吸收峰向短波方向移动的现象。

激发电位:指原子由基态跃迁到激发态时所需要的能量。

灵敏线:激发电位较低的谱线,常为原子线(电弧线)或离子线。

与实验条件有关。

共振线:从激发态到基态的跃迁所产生的谱线,由最低能及的激发态到基态的跃迁称为第一共振线,一般也是最灵敏线,与元素的激发程度难易有关。

最后线:或称持久线,当待测物含量逐渐降低时,谱线数目亦相应降低,当C接近0时所观察到的谱线,是理论上的灵敏线或第一共振线。

分析线:在进行元素的定性或定量分析师,根据测定的含量范围的实验条件,对每一元素可选一条最后线或几条灵敏线作为测量的分析线。

自吸:当辐射能通过发光层周围的蒸汽原子时,将为其自身原子所吸收,而使谱线强度中心强度减弱的现象。

自蚀线:自吸最强的谱线称为自蚀线。

分配系数K :是指在一定的温度和压力下,组分在固定相和流动相之间分配达到平衡时的浓度之比值。

分配比k :分配比又称容量因子,它是指在一定的温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相中的质量比。

原子发射光谱:构成物质的原子受到热能、电能或化学能的激发,由激发态跃迁回基态或较低能级的激发态时而产生的光谱称为原子发射光谱。

原子发射光谱法:应用原子发射光谱进行定性、定量分析的方法称为原子发射光谱法。

原子吸收光谱:气态的基态原子对同种原子发射出来的特征辐射具有吸收能力的现象,所产生的光谱称为原子吸收光谱。

原子吸收光谱法:利用原子吸收光谱进行定量分析的方法称为原子吸收光谱法。

多普勒变宽:由于原子在空间作无规则的运动而引起的谱线变宽。

压力变宽:由同种原子或与其它原子相互碰撞而引起的谱线变宽。

名词解释-仪器分析

名词解释-仪器分析

1.仪器分析:以测量物质的物理性质和物理化学性质为基础来确定物质的化学组成、含量以及化学结构的一类分析方法,由于这类分析方法需要比较复杂且特殊的仪器设备,故称之为仪器分析。

2.化学分析:利用化学反应及其计量关系进行分析的一类分析方法。

3.标准曲线:被测物质的浓度或含量与仪器响应信号的关系曲线。

4.检出限:某一方法在给定的置信水平上可以检出被测物质的最低量(最小浓度或最小质量)5.内标法:将一定量的纯物质作为内标物加入到准确称量的试样中,根据试样和内标物的质量以及它们的色谱峰面积求出被测组分的含量。

6.发色团:含π键的不饱和基团,能吸收紫外可见光,产生n→π*、π→π*跃迁的基团。

7.助色团:含杂原子的饱和基团,本身在紫外和可见光区无吸收,但能使生色团吸收峰红移,吸收强度增大的基团称为助色团。

8.红移:向长波方向的移动叫做红移。

9.蓝移:向短波方向的移动叫做蓝移。

10.增色效应:使吸收强度增大的效应称为增色效应。

11.减色效应:使吸收强度减弱的效应称为减色效应。

12.色谱法:一种重要的分离方法,混合物在流动相的携带下通过色谱柱与固定相发生作用按一定顺序分离出几种组分的方法。

13.气相色谱法:以气体为流动相的色谱分析法14.液相色谱法:以液体为流动相的色谱分析法15.梯度洗脱:在一个色谱分析周期内,不断改变流动相配比、极性、PH、离子强度,以达到用最短的时间获得最佳的分离效果。

16.凝胶色谱:利用某些凝胶(固定相)对分子大小,形状不同的组分所产生的阻滞作用不同而进行分离。

17.标准偏差:峰高0.607倍处的色谱峰宽度的一半。

18.半峰宽Y1/2:峰高1/2处的色谱峰宽度。

19.分配平衡:在一定温度和压力下,组分在固定相和流动相之间所达到的平衡叫做分配平衡。

20.程序升温:在一个分析周期内,柱温随时间由低温向高温作线性或非线性变化,以达到用最短时间获得最佳分离的目的。

21.共振线:原子收到外界能量激发时,其外层电子从基态跃迁到激发态所产生的吸收线称为共振吸收线。

仪器分析的名词解释是什么

仪器分析的名词解释是什么

仪器分析的名词解释是什么仪器分析是现代化学分析领域中一种重要的分析方法和技术,它利用各种仪器设备和技术手段对物质进行定性和定量分析。

仪器分析广泛应用于工业生产、环境监测、食品安全、医学诊断等领域,为我们提供了准确可靠的分析数据,推动了科学研究和社会进步。

一、仪器分析的背景和意义仪器分析的出现源于人们对更准确、快速、高效的分析方法的需求。

传统的化学分析手段,如滴定、重量分析等,虽然有其优势,但在某些实际应用中却存在一些局限。

比如,传统的化学分析方法的分析速度较慢,无法满足大样品量的分析需求;同时,传统的化学分析方法对于复杂样品体系的分析也存在一定的困难。

仪器分析的出现填补了这些缺陷,大大提高了分析的速度和准确度,对于复杂样品的分析也有较好的适应性。

仪器分析的意义在于提供了定性和定量分析的准确数据,这对于科学研究和实际应用都具有重要价值。

在科学研究中,仪器分析能够帮助科学家们理解物质的性质和变化规律,推动科学理论的发展。

在实际应用中,仪器分析不仅可以用于监测和控制工业生产过程中的关键参数,确保产品质量和生产安全,还可以用于环境监测、食品安全检测和医学诊断等方面,保障公众的健康和安全。

二、仪器分析的基本原理和分类仪器分析的基本原理是通过检测样品与仪器的相互作用产生的物理或化学信号,进而获得样品的信息。

根据所利用的基本原理的不同,仪器分析可以分为多个不同的分类。

1. 光谱分析光谱分析利用物质与电磁辐射的相互作用进行分析,根据样品对不同波长的光的吸收、发射或散射特性获得样品的信息。

光谱分析包括紫外可见光谱、红外光谱、核磁共振等。

其中,紫外可见光谱常用于有机物的定性和定量分析,红外光谱常用于有机物的结构分析,核磁共振则常用于无机和有机物质的结构研究。

2. 色谱分析色谱分析利用样品在固定相和移动相的相互作用下,在色谱柱上发生分离,并通过检测分离后的成分来获取样品信息。

色谱分析可以分为气相色谱、液相色谱、超高效液相色谱等,其中气相色谱广泛应用于食品、环境等领域的残留物检测,液相色谱则常用于生物医药领域的分离和纯化。

仪器分析名词解释

仪器分析名词解释

仪器分析是以测定物质的物理性质或物理化学性及其变化为基础而建立起来的一类分析法。

化学分析利用特定的化学反应及其计量关系来确定被测物质的组成和含量的一类分析方法。

光学分析法是根据物质发射或吸收的电磁辐射以及电磁辐射与物质相互作用为基础而建立起来的分析方法电分析化学法以测量某一化学体系或样品的电响应为基础建立起来的一类分析方法。

色谱分析法是一种物理化学分离分析技术。

它是利用混合物中各组分在固定相和流动相间分配系数的差异,让各组分在两相间进行多次分配产生明显迁移速差而得以分离。

根据分离所给出的信息,对各组分进行分析和测定。

当某组分从色谱柱中流出时,检测器对该组分的响应信号随时间变化所形成的曲线称为该组分的色谱峰色谱峰顶点与基线之间的垂直距离称为色谱峰高保留值是试样各组分在色谱柱中保留行为的量度。

相对保留值r2,1 某组分2的调整保留值与另一组分1的调整保留值之比称为相对保留值r2,1。

只有流动相通过时,检测器响应信色谱柱中号随时间变化的曲线称为基线。

通常用时间或用将组分带出色谱柱所需流动相的体积来表示,分称为保留时间和保留体积。

气相色谱仪即气路系统、进样系统、分离系统、温控系统和检测记录系统.电信号-时间曲线即浓度(或质量)-时间曲线,称为色谱图分离度称分辨率,它是色谱图中相邻两峰分离程度的量度,定义为相邻两组分色谱峰保留值之差与两组分色谱峰峰宽平均值之比。

高效液相色谱仪高压输液系统、进样系统、分离系统、检测记录系统原子这种选择性吸收而获得的特征光谱称为原子吸收光谱原子这种由高能态跃迁回到基态而产生的光谱称为原子发射光谱。

紫外—可见分光光度法即是根据物质分子对紫外、可见光区辐射的吸收特性,对物质的组成进行定性、定量及结构分析的方法。

它具有较高的灵敏度和准确度,选择性较好,操作快速、简便,仪器设备价格低廉、简单,由光源、分光系统(单色器)、吸收池、检测器和显示系统能使吸收峰向长波长方向移动而产生红移现象的原子团,称为助色团(吸收峰向长波长方向移动,这种现象称为深色移动或称红移原子吸收光谱法是基于待测物质基态原子蒸气对锐线光源发射的特征谱线的吸收来对元素进行定量的分析方法。

仪器分析名词解释

仪器分析名词解释

1. 指示电极:是电极电位值随被测离子的活(浓)度变化而改变的一类电极2. 参比电极:是在一定条件下,电位值已知且基本恒定的电极3. 液接电位:在两个组分不同或组成相同而浓度不同的电解质溶液互相接触的界面间所产生的电位差4. 酸差:是指用PH 玻璃电极测定PH<1的溶液时,测得的PH (即读数)大于真实值而产生的正误差5. 钠差:是指用PH 玻璃电极测定PH>9的溶液时,测得的PH (即读数)小于真实值而产生的负误差6. 不对称电位:当阿尔法外等于阿尔法内时,即玻璃电极内膜、外溶液的PH 相等时,希格玛膜应等于0,但实际上希格玛膜并不等于零,仍有1~3MV 的电位差7. 直接电位法:是选择合适的指示电极与参比电极,浸入待测溶液中组成原电池,通过测量原电池的电动势,根据Nernst 方程直接求出待测组分浓度的方法。

8. 电位滴定法:是根据在滴定过程中电池电动势的变化来确定滴定终点的一类滴定分析方法9. 吸光系数: 是物质的特性常数,表明物质对某一特定波长光的吸收能力10.摩尔吸光系数(ε):是指在一定波长时,溶液质量浓度为1%,厚度为1cm 的吸光度用Em 标记11.百分吸光系数:是指在一定波长时,溶液质量浓度为1%厚度为1cm 11cm E的吸光度12.助色团:是指含有非键电子的杂原子饱和基团,当他们与生色团或饱和烃相连时,能使该生色团或烃的吸收峰向长波方向一定,并使吸收强度增强13.发色团:是有机化合物分子结构中含有贝塔-贝塔*或n-贝塔*跃迁的基团,即能在紫外-可见光范围内产生吸收的原子团14.蓝(紫)移:是化合物的结构改变时或受溶剂影响使吸收峰向短波方向移动的现象15.红移:是由于化合物的结构改变,如发生共轭作用、引入助色团,以及溶剂改变等,使吸收峰向波长方向移动的现象16.K带:相当于共轭双键中贝塔—贝塔*跃迁所产生的吸收峰,其特点是摩尔吸光系数值一般大于10四次方,为强带17.R带:由n—贝塔*跃迁引起的吸收带,是杂原子的不饱和基团,是弱吸收,其摩尔吸光系数数值一般在100以内18.B带:是芳香族(包括杂芳香族)化合物的特征吸收带19.荧光:是物质分子接受光子能量被激发后,从激发态的最低振动能级返回基态时发射出的光20.激发光谱:表示不同激发波长的辐射引起物质发射某种一波长荧光的相对效率21.荧光光谱:表示在所发射的荧光中各种波长组分的相对强度22.拉曼光:光子和物质分子发生非弹性碰撞时,在光子运动方向发生改变的同时,光子与物质分子发生能量的交换,光子把部分能量转移给物质分子或从物资分子获得部分能量,而发射出比入射光稍长或稍短的光23.瑞利光:光子和物质分子发生弹性碰撞时,不发生能量的交换,仅仅是光子运动方向发生改变24.基频峰:是分子吸收一定频率的红外线,由振动基态V=0跃迁至第一激发态V=1时,所产生的吸收峰25.特征峰:物质的红外光谱是其分子结构的客观反映,谱图中的吸收峰对应于分子中各基团的振动形式26.相关峰:是由一个基团产生的一组相互具有依存关系的吸收峰27.红外非活性振动:不能引起偶极距变化的振动28.不饱和度:29.屏蔽效应:绕核电子在外加磁场的诱导下,产生与外加磁场方向相反的感应磁场,使原子核实受磁场强度稍有降低30.化学位移:由于屏蔽效应的存在,不同化学环境的氢核的共振频率不同31.磁各向异性:物体中相对于一个给定参考系的各不同方向上,物体具有不同磁性的现象32.n + 1律:某基团的氢与n个相邻氢偶合时被分裂为n+1重峰,而与该基团本身的氢数无关33.自旋偶合:核自旋女生的核磁距间的互相干扰34.自旋分裂:是由自旋偶合引起共振峰分裂的想象35.化学等价核:在核磁共振谱中,有相同化学环境的核具有相同的化学位移36.磁等价核:分子中一组化学等价核与分子中的其他任何一个核都有相同强弱的偶合37.基峰:以质谱中最强峰的高度为100%的峰38.氮律(N律):由C、H、O组成的化合物,分子离子峰的质量数为偶数;由C、H、O、N组成的化合物,含奇数个N,分子离子峰的质量数是奇数,含偶个数N,分子离子峰的质量数是偶数39.分子离子:化合物分子通过某种电离方式,十区一个外层价电子而形成带正电荷的离子40.亚稳离子:离子(m1+)脱离离子源后并在到达质量分析器前,由于其内能较高或相互碰撞等因素,在飞行过程中可能发生裂解而形成低质量的离子m2这种离子的能量比在离子源中产生的m2+离子能量小,且不稳定41.吸附色谱法:利用被分离组分对固定相表面吸附中心吸附能力的差别,即吸附系数的差别而实现分离42.分配色谱:利用被分离组分在固定相或流动相中的溶解度差别,即在两相间的分配系数的差别而实现分离43.离子交换色谱法:利用被分离组分离子交换能力的差别,或选择性系数的差别而实现分离44.空间排阻色谱:根据被分离组分分子的线团尺寸,或渗透系数的大小而进行分离45.分配系数:是在一定温度和压力下。

仪器分析名词解释

仪器分析名词解释

仪器分析名词解释:1指示电极:在电化学电池中借以反映待测离子活度,发生所需电化学反应或激发信号的电极。

2参比电极:在恒温恒压条件下,电极电位不随溶液中待测离子活度的变化而变化,具有基本恒定电位值的电极。

3钠差(碱差):当电极测定PH>9.5或钠离子浓度较高的溶液时,ph值的测定值低于真实值,偏小而产生负误差。

4酸差:测定pH<1的强酸溶液时, PH的测定值高于真实值,产生正误差。

5原子光谱法:以测量气态原子离子外层或内层电子能级跃迁所产生的光谱为基础的成分分析方法。

6分子光谱法:以测量分子转动能级,分子中原子的振动能级(包括分子转动能级),分子的电子能级(包括振-转能级)等的能级跃迁而产生的分子光谱为基础的定性定量和物质结构分析的分析方法。

7生色团(Chromphre)含有π键的不饱和基团,能产生n-π*,π-π*跃迁。

8助色团(Auxochrome)含有非键电子对的饱和基团,本身没有生色功能:与生色团相连时,发生n-π共轭作用,增强生色团的生色能力。

9红移(Red shift)某化合物的最大吸收波长向长波方向移动。

10蓝移(Blue shift)某化合物的最大吸收波长向短波方向移动。

11增色/减色效应(Hyperchromic/Hypochromic effect):吸收强度(摩尔吸光系数)增大/减小的现象。

12荧光发射(Fluorescence emission)当激发态分子经过内转换或振动弛豫到达第一电子激发态的最低振动能级后,以辐射形式发射光量子,回到基态的过程。

13磷光发射(Phosphorescence emission)经过体系间跨越的分子再通过振动弛豫降至激发三重态的最低振动能级,跃迁回基态的各个能级并辐射发光的过程。

14振动弛豫(Vibrational relaxation)激发态分子与溶剂分子碰撞,以热能形式损失部分能量,以极快速度降至同一电子激发态的最低振动能级上。

仪器分析(名词解释)

仪器分析(名词解释)

蓝移:由化合物结构改变或溶剂效应等引起的吸收峰向短波方向移动的现象称蓝移(紫移)红移:由化合物结构改变或溶剂效应等引起的吸收峰向长波方向移动的现象称红移(长移)R带:是由n→π*跃迁引起的吸收带,是杂原子的不饱基团的特征。

其特点是吸收峰处于较长波长范围(250-500nm),吸收强度弱。

K带:是由共轭双键中π→π*跃迁引起的吸收带,吸收峰出现在200nm以上,吸收强度大。

吸光度:透过光与入射光之比再取负对数,与吸光系数、透光率成正比。

荧光发射:1.总离子强度;在某种情况下,这种高浓度电解质溶液中还有含有PH缓冲剂和干扰的配位剂。

2.程序升温;在同一分析周期没,柱温按预定的加热速度,随时间作线性非线性的变化3.梯度洗脱;在一个分析周期内程序控制,连续改变流动相的现象电泳淌度:μep是单位电场强度下,带电粒子的电泳速度。

4.电渗现象;当在溶液了两段施加电压时,就会发生液体相对于固体表面的移动,这种溶液体相对于固体表面的一定能过现象5.洛伦兹变宽;被测元素的原子与蒸汽中其它原子或分子等碰撞而引起的谱线轮廓变宽6.可逆电对;一个微小的电流以相反的方向通过电极时,电极反应为原子的逆反应,具有此性质的电极称可逆电极,或可逆电对7.不可逆电对;在微小电流条件下,只能在阳极发生氧化,而在阴极不能同时还原,所以电路中没有电流通过,这样的电极称不可逆电极或不可逆点对8.多普勒变宽;是由于原子的无规律热运动所引起的谱线变宽,又称温度变宽9.指示电极;是指电极电位随待测组分活度改变而变化,其大小可以指示待测组分活度变化的电极10.参比电极:电极电位在一定条件下恒定不变,仅提供电位测量参考的电极离子选择电极:由基于离子交换和扩散,由对待测离子敏感的膜制成的膜电极。

11.不对称电位;如果玻璃膜两侧氢离子活度相同,则膜电位应等于零,但实际上并不为零,而是有几毫伏的电位存在12.碱差:在较强的碱性溶液中,玻璃电极对Na+等碱金属离子也有响应,结果由电极电位反映出来的H+活度高于真实值,即PH低于真实值,产生负误差。

仪器分析名词解释

仪器分析名词解释

1.生色团(Chromophore):含有π键的不饱和基团,能使化合物的λmax移至紫外及可见区范围内共轭作用:原吸收带消失,新吸收带出现在较长的波长处,吸收强度增加。

2. 助色团(auxochrome )能使生色团λmax 长移,且吸收强度增加的带有非成键电子对的基团。

(其本身无紫外吸收)3. 红移(bathochromic shift)效应由于有机化合物结构改变以及改变溶剂等,使最大吸收峰的波长将向长波方向移动。

4. 紫移(蓝移)效应化合物结构改变或由于其它原因,使吸收峰的波长向短波方向移动,这种效应…5.双波长分光光度计试样溶液浓度与两个波长处的吸光度差成正比。

特点:可测多组份试样、混浊试样、可作成导数光谱不需参比液、克服了电源不稳而产生的误差,灵敏度高6.振动弛豫在同一电子能级中,电子由高振动能级转至低振动能级,而将多余的能量以热的形式发出。

(10-12 s)7.内转换相同多重态的两个电子态间的无辐射跃迁8.系间跨越不同多重态间的两个电子态间的无辐射跃迁.9.外转换激发态分子与溶剂分子或其它溶质分子的相互作用(如碰撞)发生能量转换,而使荧光或磷光强度减弱甚至消失的过程,也称“熄灭”或“猝灭”。

10.荧光发射分子电子从第一激发单重态的最低振动能级在很短时间(10-9~10-7s)跃迁到基态各振动能层时所产生的光子辐射称为荧光11.磷光发射分子电子从激发三重态最低振动能级,在10-4~10s内跃迁到基态的各振动能层所产生的辐射。

12.激发:处在基态最低振动能级的分子,当其吸收了和它所具有的特征频率相一致的电磁辐射后,可跃迁到激发单重态中各个不同振动能级和转动能级,产生对光的吸收13.Stokes位移与激发(或吸收)波长相比,荧光发射波长更长,称为Stokes位移。

14.共轭作用:原吸收带消失,新吸收带出现在较长的波长处,吸收强度增加。

15.程序升温:柱温按预定的加热速度,随时间做线性或非线性的增加16程序升温作用提高柱效、改善峰形,缩短分析时间,使各组分得到良好的分离,有利于痕量组分的检测。

仪器分析名解及问答

仪器分析名解及问答

仪器分析: 是以物质旳物量或物理化学性质为基础, 探求这些性质在分析过程中所产生分析信号与被分析物质构成旳内在关系和规律, 进而对其进行定性、定量, 进行形态和构造分析旳一类测定措施。

由于此类措施旳测定常用到多种比较贵重、精密旳分析仪器, 称为仪器分析。

原子吸光光谱法(AAS): 是基于试样蒸汽相中被测元素旳基态原子对由光源发出旳该原子旳特性性窄频辐射产生共振吸取, 其吸光度在一定浓度范畴内与蒸汽相中被测元素旳基态原子浓度成正比, 此测定试样中该元素含量旳一种仪器分析措施。

梯度洗脱:指在一种分析周期中, 按一定旳程序持续变化流动相中溶剂旳构成和配比, 使各组分在合适旳条件下得到分离。

梯度洗脱可以改善峰形, 提高柱效, 减少分析时间, 使强保存成分不易残留在柱上, 从而保持柱子旳良好性能。

精密度: 指在相似条件下对同同样品进行多次测定, 各平行测定成果之间旳符合限度。

精确度: 指多次测定旳平均值与真值旳符合限度。

敏捷度:指被测组分在低浓度区, 当浓度变化一种单位时所引起旳测定信号旳变化量。

检出限:即检测下限, 指能以合适旳置信度被检出旳组分旳最低浓度或最小质量。

线性范畴: 指定量测定旳最低浓度到逻辑线性响应关系旳最高浓度间旳范畴。

光谱分析法: 基于物质对不同波长光旳吸取、发射等现象而建立起来旳一类光学分析法。

吸取曲线: 表白吸光物质溶液对不同波长旳光旳吸取能力不同旳曲线。

最大吸取峰:吸取曲线旳峰叫吸取峰, 其中吸取限度最大旳峰。

最大吸取波长: 最大吸取峰所相应旳波长。

次峰: 吸取限度仅次于最大吸取峰旳波峰肩峰: 在峰旳旁边有一种小旳曲折称为肩峰末端吸取: 在吸取曲线波长最短旳一端, 吸取限度相称大, 但没有称峰旳部分。

生色团: 分子中能吸取特定波长光旳原子团或化学键。

助色团:是与生色团或饱和烃相连, 且能使吸取峰向长波方向移动并吸取强度增长旳原子或原子团, 如-OH, -NH2。

长移(红移): 某些有机化合物因反映引入具有未共享电子对旳基因使吸取峰向长波移动旳现象。

仪器分析名词解释

仪器分析名词解释

1.保留时间:从进样至被测组分出现浓度最大值时所需时间2.基线:在操作条件下,仅有纯流动相进入检测器时的流出曲线3.定性分析:鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。

4.定量分析:测定试样中各种组分(如元素、根或官能团等)含量的操作5. 基线:无试样通过检测器时检测到的信号6. 保留时间:溶质通过色谱柱的时间,及从进样到柱后洗出最大浓度的时间。

通常用tR表示,7. 死时间:不与固定相作用的气体的保留时间,以tM表示8.调整保留时间:tR’=tR-tMtM9. 半峰宽:色谱峰高一半处的宽度10.分配系数:组分在固定液与流动相中达到平衡时的浓度之比。

11. 保留因子:保留因子(容量因子或分配比):溶质分布在固定相和流动相的分子数或物质的量之比,以k表示12.梯度洗脱:在一定分析周期内不断变换流动相的种类和比例,使混合样品中各组分都以最佳平均k值通过色谱柱。

适于分析极性差别较大的复杂组分13塔板理论:塔板理论认为,一根柱子可以分为n段,在每段内组分在两相间很快达到平衡,把每一段称为一块理论塔板。

设柱长为L,理论塔板高度为H,则H = L / n 式中n为理论塔板数14.速率方程:H=A + B/u + Cu式中u为流动相的线速度;A,B,C为常数,分别代表涡流扩散项系数、分子扩散项系数、传质阻力项系数。

15.分离度:相邻两色谱峰保留值之差与两组分色谱峰底宽总和之半的比值,用R 表示。

分离度可以用来作为衡量色谱峰分离效能的指标。

16.程序升温:柱温按预定的加热速率随时间作线性或非线性的增加17气相色谱(GC)仪包括载气系统进样系统色谱柱检测系统记录仪18.色谱法特点:分离效率高灵敏度高分析速度快应用范围广19色谱定性方法:利用纯物质定性利用文献保留值定性20.定量方法:峰面积测量内标法外标法21. 高效液相色谱(HPLC)和气相色谱(GC)有何不同?答:(1).分析对象的区别GC:适于能气化、热稳定性好、且沸点较低的样品,占有机物的20%;HPLC:适于溶解后能制成溶液的样品,对分子量大、难气化、热稳定性差的生化样品及高分子和离子型样品均可检测,占有机物的80% (2).流动相差别的区别GC:流动相为惰性气体,组分与流动相无亲合作用力,只与固定相有相互作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论1 仪器分析:是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。

仪器分析的产生与生产实践科学技术发展的迫切需要方法核心原理发现及相关技术产生等密切相关。

2 定性分析:鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。

3 定量分析:测定试样中各种组分(如元素、根或官能团等)含量的操作。

4 精密度:指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。

5 灵敏度:仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。

6 检出限:又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。

它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。

7 动态范围:定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。

8 选择性:一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。

9 分辨率:指仪器鉴别由两相近组分产生信号的能力。

不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。

10 分析仪器的校正:仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的过程称为校正。

一般包括分析仪器的特征性能指标和定量分析方法校正。

光谱法导论11 电磁辐射:电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。

12 电磁辐射的吸收、发射、散射、折射、干涉、衍射:(1) 吸收物质选择性吸收特定频率的辐射能,并从低能级跃迁到高能级;(2) 发射将吸收的能量以光的形式释放出;(3) 散射丁铎尔散射和分子散射;(4) 折射折射是光在两种介质中的传播速度不同;(6) 干涉干涉现象;(7) 衍射光绕过物体而弯曲地向他后面传播的现象;13 分子光谱、原子光谱分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。

原子光谱:是由原子中的电子在能量变化时所发射或吸收的一系列光所组成的光谱。

14 辐射源:指能发射比所需波长范围更宽的光谱的器件。

15 拉曼散射:当光子与分子间发生非弹性碰撞的相互作用时,相互间有能量交换,使光子的能量增加或减少,这时将产生与入射光波长不同的散射光,这种散射称为拉曼散射。

紫外光谱、分子发光、原子吸收光谱16 透光率:透光率是指透过透明或半透明体的光通量与其入射光通量之比。

17 辐射跃迁:激发态分子以释放辐射的形式失活到基态或低能激发态的过程,称为~,是光吸收的逆过程。

18 锐线光源:是发射线半宽度远小于吸收线半宽度的光源。

锐线光源发射线半宽度很小,并且发射线与吸收线中心频率一致。

锐线光源需要满足的条件:1、光源的发射线与吸收线的中心频率一致;2、发射线的半宽度小于吸收线的半宽度。

19 多普勒变宽:也叫热变宽。

主要是由原子无规则运动引起的。

它与T1/2成正比,与Ar1/2成反比,Ar为元素的相对原子质量。

20 单重态:分子吸收辐射使电子能级从基态跃迁到激发态能级,同时伴随着振动能级和转动能级的跃迁。

在分子能级跃迁的过程中,电子的自旋状态也可能发生改变。

应用于分析化学中的荧光和磷光物质几乎都含有π→π*跃迁的吸收过程,它们部含有偶数电子。

根据泡里不相容原理,在同一轨道上的两个电子的自旋方向要彼此相反,即基态分子的电子是自旋成对的,净自旋为零,这种电子都配对的分子电子能态称为单重态(singlet state),具有抗磁性。

21 激发单重态:倘若分子吸收能量后电子在跃迁过程中不发生自旋方向的变化,这时分子处于激发的单重态。

22 激发三重态23 振动弛豫:是指分子将多余的振动能量传递给介质而衰变到同一电子能级的最低振动能级而丧失振动激发能的过程。

对于大分子,可以不要求以碰撞为前提,弛豫过程可通过分子内各振动模之间的偶合和能量的再分配而实现。

24 系间窜越:指单重态电子能级向能级相近的三重态电子能级之间的非辐射跃迁。

25 荧光猝灭:是指荧光物质分子与溶剂分子之间发生的导致荧光强度变化或相关的激发峰位变化或荧光峰位变化的物理或化学作用过程。

26 荧光激发光谱:荧光物质在不同波长的激发光作用下测得的某一波长处的荧光强度的变化情况。

27 荧光发射光谱:由于分子对光的选择性吸收,不同波长的入射光具有不同的激发效率,如果固定激发光的波长和强度而不断改变荧光的测定波长,并记录相应的荧光强度,所得到的发光强度对发射波长的谱图则为荧光的发射光谱。

28 生色团:是指分子中含有的,能对光辐射产生吸收、具有跃迁的不饱和基团。

某些有机化合物分子中存在含有不饱和键的基团,能够在紫外及可见光区域内(200~800nm)产生吸收,且吸收系数较大,这种吸收具有波长选择性,吸收某种波长(颜色)的光,而不吸收另外波长(颜色)的光,从而使物质显现颜色,所以称为生色团,又称发色团(chromophore)。

质谱法29 离子源:离子源是使中性原子或分子电离,并从中引出离子束流的装置。

在许多基础研究领域如原子物理、等离子化学、核物理等研究中,离子源都是十分重要不可缺少的设备。

30 电子轰击离子源:是气相色谱-质谱联用仪(GC-MS)中常用的一种离子化方式,作用是是被分析的物质离子化,并使其具有一定的能量,它由加速电场,推斥极和灯丝组成。

31 化学电离源:通过试剂气体分子所产生的活性反应离子与样品分子发生离子-分子反应而使样品电离32 场电离源:采用强电场把阳极附近的样品分子的电子拉出去,形成离子。

场致电离有两种技术:场电离(FI)和场解吸(FD),它们的区别在于:前者要求样品处于气态,后者则可将固体样品涂在电极上,不需气化而直接得以电离。

33 场解析电离源:质谱法中离子源中的一中,应用强电场诱导分析的样品分子电离成带电的离子,并使这些离子在离子光学系统的作用下,汇聚成有一定几何形状和一定能量的离子束,然后进入质量分析器被分离。

34 质量分析器质量分析器将带电离子根据其质荷比加以分离,用于纪录各种离子的质量数和丰度。

质量分析器的两个主要技术参数是所能测定的质荷比的范围(质量范围)和分辨率。

主要包括单聚焦磁场分析器双聚焦磁场分析器、四极杆分析器、离子阱分析器、飞行时间分析器、傅里叶变换分析器等。

35 分子离子:化合物分子通过某种电离方式,失去一个外层电价电子而形成带正电荷的离子称为分子离子。

用M+(加号下面有一点)表示。

36 准分子离子:有机化合物的分子受到电子轰击后,失去1~2个电子(大多数为1个),使分子带有l~2个正电荷,这种带正电荷的离子称为分子离子。

准分子离子是比样品分子质量数多一或少一的分子离子。

37 同位素离子:有机化合物中元素是由非单一稳定同位素组成时,分解反应生成的含有重同位素的离子。

10 碎片离子由于分子离子具有过剩的能量,其中一部分会进一步发生键的断裂,产生质量较低的碎片,这就是“碎片离子”。

11 裂解指无氧气存在下,有机物质的高温分解反应。

即通过热能将一种高分子化合物转变成另外几种低分子化合物的化学过程。

此类反应常用于分析复杂化合物的结构,如利用裂解气相色谱-质谱法。

有α-裂解,β-裂解12 重排有些离子不是由单纯裂解产生,而是通过断裂两个或两个以上的键,结构重新排列形成的,这种裂解称重排。

其中最常见的是麦氏重排和反Diels-Alder重排13 离子丰度是离子强度之间的相互比值,是定性的时候考虑的。

电分析化学导论1 指示电极(indicator electrode)指电极电位随溶液中的离子浓度或活度变化而改变的电极(φ与C有关)2 参比电极(reference electrode)电极电势已知、恒定,且与被测溶液组成无关,则称为参比电极(φ与C无关)。

3 原电池是利用两个电极之间金属性的不同,产生电势差,从而使电子的流动, 产生电流.又称非蓄电池,是电化电池的一种,其电化反应不能逆转,即是只能将化学能转换为电能,简单说就即是不能重新储存电力,与蓄电池相对。

4 电解池在外加电源的作用下,将电能转变成化学能的电池。

5 电化学分析方法根据物质在溶液中的电化学性质及其变化规律进行分析的方法,测量电位、电荷、电流、和电阻等电信号电位法分析法1 玻璃膜电位玻璃电极的敏感玻璃膜内扩散电位和膜与电解质溶液形成的内外界面的界面电位的代数和,来自离子交换(无电子交换),不受待测溶液有无氧化还原电对的影响。

2 不对称电位在玻璃电极中,当膜内外溶液pH值一致时,由于膜两侧表面性能不一致导致φ膜不为0的现象,称不对称电位。

3酸差(课件):pH < 1,pH测> pH真→正误差(H2O活度下降,而H+靠H3O+ 传递,导致到达表面的表观H+活度下降,实际pH值比真实值偏高)(书):当测量pH 小于1的强酸或无机盐浓度大的水溶液,测得的pH 偏高时,称为酸差。

引起酸差的原因是:当测定酸度大的溶液时,水的活度变得小于1,不是常数了。

其他电分析化学方法4 碱差当测量pH较高,尤其Na+浓度较大的溶液时,测得的pH偏低,称为碱差,又称钠差。

每一支pH玻璃电极都有一个测定pH高限,超出此高限,碱差就显示了。

5 离子选择性电极主要是指对溶液中特定阴阳离子有选择性响应能力的电极。

其构造主要有电极敏感膜、电极管、内参比溶液、内参比电极四部分。

其他电分析化学方法1 永停滴定法将两个相同Pt电极插入样品溶液中,在两极间外加低电压,连电流计,进行滴定,通过电流计指针的变化确定滴定终点。

2 伏安分析法根据被测物质在电解过程中的电流-电压变化曲线来进行定性或定量分析的一种电化学分析方法。

热分析法1 热分析指在程序空温下,测量物质的物理性质与温度的关系的一类技术。

(程序控温一般是指线性升温或线性降温,也包括恒温或非线性升、降温)。

2 差热分析差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种分析方法。

3 差示扫描量热法程序温度下,测物质吸收或放出的热量与温度关系的技术4 热重法热重法是在温度程序控制下,测量物质质量与温度之间关系的技术.X射线衍射法1 连续X射线X射线管中,电子轰击金属阳极靶的过程,有的电子在一次碰撞中耗尽其全部能量,有的则在多次碰撞中菜丧失全部能量。

因为电子数目很大,碰撞是随机的,所以产生了连续的具有不同波长的X射线,称为连续X射线。

相关文档
最新文档