直流电机速度控制-
电机控制公式
电机控制公式
电机控制公式可以根据具体的电机类型和控制方式有所不同。
以下是一些常见的电机控制公式:
1.直流电机速度控制公式:
o电动势方程:E = Kϕω,E为电动势,K为电机常数,ϕ为磁通量,ω为角速度。
o转矩方程:T = KtI,T为转矩,Kt为电机转矩常数,I 为电流。
2.三相感应电机速度控制公式:
o转矩方程:T = KsIs,T为转矩,Ks为电机转矩常数,Is为电流。
o转速公式:N = (120f) / P,N为转速,f为电网频率,P为极数。
3.步进电机控制公式:
o步进角度公式:θ = 360 / S,θ为步进角度,S为步进角度。
o脉冲频率公式:f = N / (S × T),f为脉冲频率,N为转速,T为步进周期。
需要注意的是,电机控制公式通常是基于理想条件下的模型推导出来的,并且不考虑实际电机的非线性和动态特性。
在实际应用中,电机控制还需要考虑到控制器的影响、传感器反馈、电机参数变化等因素,因此在具体控制系统设计时,需要结合
实际情况进行调整和优化。
直流电机速度PID控制系统设计毕业论文(设计).doc.doc
序号(学号〉: 161240303长春大学 毕业设计(论文)直流电机速度PID 控制系统设计李一丹国际教育学院自动化1612403曹福成2016 年 5 月 30 0姓 名 学 院 专 业 班 级 指导教师直流电机速度PID控制系统设计摘要:针对现有的直流电机控速难的问题,本文设计了一种基于ATmegal6L单片机的直流电机速度控制系统。
本系统以ATinegal6L单片机为主控制器,搭载了L298n为电机驱动,通过霍尔元件进行测速,通过按键控制电机的转动方向和转动速度,并配以温度传感器DS18B20对温度进行监测,通过PID算法调节PW\1 进行对速度控制。
该系统包括的模块主要有单片机为主体的控制模块、电机的驱动模块、对电机速度进行监测的模块、由LCD1602构成的显示ky r模块、电源模块和按键控制模块等。
本系统可以通过PID算法实现可编程脉宽波形对直流电机的速度进行控制,并且可以显示出当前电机的转速。
关键词:单片机;PID算法;直流电机The design of DC motor speed control system with PID Abstract: According to the existing DC motor speed control problem, this paper describes the design of a DC motor speed control system based on ATmegal6L MCU. To ATMEGA16L microcontroller as the main controller for the system, equipped with a L298n for motor drive, through the hall element of speed, through the buttons to control the motor rotation direction and the rotation speed, and the temperature sensor DS18B20 the temperature monitoring, PID algorithm is used to adjust the PWM control of the speed. The system includes the following modules display microprocessor control module, as the main body of the motor drive module, monitoring module, the speed of motor is composed of LCD1602 module, power supply module and key control module.This system can realize through PID algorithm to control the speed of the programming pulse waveforms of DC motor, and can display the current motor speed.Keywords: single chip microcomputer, PID algorithm, DC motor ky r戈ml ml ——II —In —In | * 11—I 1111 ml 1111目录Bit (1)l.i选题背景及意义 (1)1.2国内外研宄现状 (2)1.3木文主要研究的内容 (3)第2章总体方案论述 (4)ky r2.1系统主要传感器介绍 (4)2.1.1温度传感器 (4)2.1.2转速检测模块 (5)2.2系统总体功能及方案选择 (6)2.2.1系统所需模块及功能 (6)2.2.2主控制器选择 (8)第3章系统总体硬件设计 (10)3.1单片机最小系统 (10)3.1.1ATmegal6L单片机的引脚分布 (10)3.1.2最小系统的硬件电路 (13)3.2电机驱动电路 (14)3.3温度检测电路 (15)3.4光电管提示电路和按键控制电路 (15)3.5LCD1602 显示电路 (16)3.6电源电路 (17)3.7本章小节 (18)第4章系统软件设计 (19)4.1系统总体流程图 (19)4.2 PID算法简介 (19)4.2.1PID算法介绍 (20)4.2.2HD算法结果 (21)4.3系统调试步骤 (21)4.4误差分析即改进方法 (22)给论 (23)致谢 (24)参考文献 (25)隱 (26)附录I系统总体硬件电路图 (26)附录II系统中部分程序 (27)ky r In—ml ml ml ml | , I af—.第1章绪论1.1选题背景及意义电动机简称电机,俗称马达,在现实生活中,我们处处都可以见到电机的身影,小到小学生玩的电动四驱车,大到炼钢厂用的滚动罐,这些都是电机家族的成员。
第三章直流电动机速度控制系统
机械特性与静差率
n n01
额定转速降
ΔnN
R nN I N Ce
U d1
n02
是一个恒值。 调速系统在不 同电压下的机 械特性是互相 平行的,两者 的硬度相同。
1-25
ΔnN
Ud2
0
TeN
Te
图3-4 不同转速下的机械特性
机械特性与静差率
• 调速系统在不同电压下的理想空载转速 不一样。 • 理想空载转速越低时,静差率越大。 • 同样硬度的机械特性,随着其理想空载 转速的降低,其静差率会随之增大, • 调速系统的静差率指标应以最低速时能 达到的数值为准。
1-12
n n0
Ra Ra+R1 Ra+R2 Ra+R3
0
Id
图3-1 直流电动机调阻调速时的机械特性
1-13
减弱磁通调速法
U R n T n n 0 2 e K K K (3-3) e e m
• 理想空载转速 n 0 将随 增大。 的减少而
1-14
减弱磁通调速法
1-4
第一节
直流电动机控制基础
• 直流伺服电机的分类 直流电机按其励磁方式分为永磁式、励磁式(他 励、并励、串励、复励)、混合式(励磁和永磁 合成)三种;按电枢结构分为有槽、无槽、印刷 绕组、空心杯形等;按输出量分为位置、速度、 转矩(或力)三种控制系统;按运动模式分为增 量式和连续式;按性能特点及用途不同又有不 同品种。
(3-5)
1-23
2. 静差率
• 当系统在某一转速下运行时,负载由理 想空载增加到额定值时电动机转速的变 化率,称为静差率s。
• 用百分数表示 s
nN s n0
电机速度开环控制和闭环控制
实验三十三 电机速度开环控制和闭环控制(自动控制理论—检测技术综合实验)一、 实验原理1.直流电机速度的控制直流电机的速度控制可以采用电枢回路电压控制、励磁回路电流控制和电枢回路串电阻控制三种基本方法。
三种控制方式中,电枢电压控制方法应用最广,它用于额定转速以下的调速,而且效率较高。
本实验采用电枢控制方式,如图33-1所示。
本实验装置为一套小功率直流电机机组装置。
连接于被控制电机的输出轴的是一台发电机,发电机输出端接电阻负载,调节电阻负载即可调节被控制电机的输出负载。
发电机输出电压兼作被控电机速度反馈电压。
2. 开环控制和闭环控制由自动控制理论分析可知,负载的存在相当于在控制系统中加入了扰动。
扰动会导致输出(电机速度)偏离希望值。
闭环控制能有效地抑制扰动,稳定控制系统的输出。
闭环控制原理方框图如图33-2。
当积分环节串联在扰动作用的反馈通道(即扰动作用点之前)时,即成为针对阶跃扰动时的I 型系统,能消除阶跃信号扰动。
采用积分环节虽然能一定程度上消除系统的稳态误差,但是却对系统的动态性能(超调量、响应时间)和稳定性产生不利影响。
因此需要配合进行控制器的设计和校正(采用根轨迹设计方法或频域设计方法)。
E图33-1直流电机速度的电枢控制方式图33-2 直流电机速度的闭环控制原理方框图此外,在扰动可以测量的情况下,采用顺馈控制也能有效地对扰动引起的跟踪误差进行补偿,减轻反馈系统的负担,见图33-3。
图33-3 反馈+顺馈控制方式消除扰动引起的误差式中: 为控制器传递函数,也是扰动输入时的反馈通道传递函数;)(11s G G =)(22s G G = 为被控对象(本实验中即被控直流电机)的传递函数;)(s G G c c = 为顺馈控制通道传递函数;R 为指令输入,即希望的电机速度;C 为输出被控量,即被控电机的输出速度;E 为系统的稳态误差;D 为系统的扰动输入,即电机的负载。
由扰动到输出的传递函数可知,扰动引起的稳态误差为D G G G G GE c R 212101)1(++−== (33-1) 当选择顺馈回路传递函数为 11G G c −= (33-2) 时,有00==R E ,即扰动对输出没有影响。
直流电机的速度控制
EDA课程设计报告直流电机的PWM调速一、概述直流电动机具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求。
电动机调速系统采用微机实现数字化控制,是电气传动发展的主要方向之一。
采用微机控制后,整个调速系统实现全数字化,结构简单,可靠性高,操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。
由于CPLD/FPGA性能优越,具有较佳的性能价格比,所以在工业过程及设备控制中得到日益广泛的应用。
PWM 调速系统与可控整流式调速系统相比有下列优点:由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。
二、PWM调速的原理图(1)图(1)是全桥型的电机驱动电路,利用的是三极管的电流放大来驱动电机。
从图上我们可以看到当Q4和Q3导通时,电机正转;当Q1和Q2导通时,电机反转。
设电机速度从静止开始加速,如图(2)所示,首先Q3,Q4必须维持导通一段时间,此时电机所承受的电压约为供电电压U,称之为强加速。
待速度接近目标速度时,加速可以减缓,此时Q3,Q4和Q1,Q2轮流导通,只是Q3,Q4在一个周期内所导通的时间t on比Q1,Q2导通的时间t off长一些,在此称为弱加速。
任何时刻,电机所承受的平均电压U O,表示为U O = U×(t on-t off)( t on +t off)。
如果速度已经达到目标,便可以调整t off和t on的时间比例使之相等,此时平均电压为0,是定速控制。
由此可知,平均电压若为正值时,是加速控制;负值时是减速控制;为零时即达到匀速。
图(2)三、程序的设计在整个程序设计中,我们可以把他分成几个部分1、PWM波形的产生LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY PWM ISPORT ( CLK : IN STD_LOGIC;U_D ,D_D: IN STD_LOGIC;CQ : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END PWM;ARCHITECTURE ONE OF PWM ISSIGNAL CQI : STD_LOGIC_VECTOR(7 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF CLK'EVENT AND CLK = '1' THENIF U_D = '1'AND D_D = '0' THENIF CQI = 255 THEN CQI <= "11111111";ELSE CQI <= CQI + 1;END IF;ELSIF U_D = '0'AND D_D = '1' THENIF CQI=0 THEN CQI <= "00000000";ELSE CQI<= CQI-1;END IF;ELSE CQI <= CQI;END IF;END IF;END PROCESS;CQ <= CQI;END PROCESS ;END ONE;上述程序中,一个PWM周期由256个时钟周期clk组成。
直流电机速度控制原理
直流电机速度控制原理直流电机是一种常见的电动机类型,广泛应用于工业、交通、家电等领域。
在许多应用场景中,需要对直流电机的转速进行精确控制,以满足不同的工作需求。
本文将介绍直流电机速度控制的原理以及常用的控制方法。
1. 直流电机基本原理直流电机是利用电磁感应原理将电能转换为机械能的装置。
当直流电流通过电机的定子线圈时,会在定子中产生磁场。
同时,通过电机的转子线圈也会有电流流过,由于磁场的作用,转子会受到力的作用而旋转。
2. 速度控制原理直流电机的速度控制一般是通过改变电机输入电压或改变定子电流来实现的。
下面介绍几种常见的速度控制方法:(1)电压控制方法通过改变直流电机的输入电压来控制其转速。
当提高电压时,电机的转速也会相应增加;当降低电压时,电机的转速会减小。
这种方法简单直接,但是受限于电源电压的范围。
(2)PWM控制方法PWM(Pulse Width Modulation)控制方法是一种通过改变脉冲宽度来控制电机转速的方法。
通过不断改变脉冲的占空比,即高电平时间与周期的比值,可以控制电机的平均输入电压,从而实现转速的控制。
这种方法可以在宽范围内进行调节,控制精度高。
(3)电流控制方法直流电机的转矩和转速之间存在一定的关系,通过改变电机的定子电流,可以实现对转速的控制。
当增加定子电流时,电机的转速会增加;当减小定子电流时,电机的转速会减小。
这种方法适用于需要在较低速度范围内进行控制的情况。
3. 速度控制系统直流电机的速度控制一般由控制器、传感器和执行器等组成。
控制器负责接收输入的控制信号,并根据信号进行处理,控制输出电压或电流;传感器用于检测电机的转速或位置信息,并将其反馈给控制器;执行器根据控制信号调整电压或电流,控制电机的转速。
4. 应用领域直流电机的速度控制广泛应用于各个领域。
在工业领域,直流电机的速度控制可以用于机床、输送机、印刷机等设备中,以满足不同工艺要求;在交通领域,直流电机的速度控制可以用于电动车、电动机车等交通工具中,提供精确的速度调节;在家电领域,直流电机的速度控制可以用于洗衣机、空调等家电产品中,提供更好的用户体验。
直流电机速度如何调节控制【详解】
直流电机的基本原理是将直流能量转换为机械能的设备。
当载流电枢通过注释器段连接到电源端时,将电刷放置在永久性或电磁性的南北极内。
通过使用这些电磁体,其工作原理取决于弗莱明的左手定则,以确定作用在直流电机电枢导体上的力的方向。
直流电机的速度可以通过改变磁通量,电枢电阻或施加的电压来改变。
存在用于不同直流并联的不同速度控制方法和串联方法。
直流电机速度控制使电动机能够适应负载的变化。
设计经常是有损的,或者它们只能提供受控参数的粗略增量。
直流电机速度控制在串联直流电机中通过三种方式来实现速度调节:助焊剂控制方式,电压控制和电枢电阻控制。
1、助焊剂控制方式在助焊剂控制方式中,变阻器与励磁绕组串联连接。
此组件的目的是增加绕组中的串联电阻,这将减小磁通量,从而提高电机的速度。
电机的速度与磁通量成反比。
因此,通过减小通量和速度,反之亦然。
为了控制磁通量,将变阻器与励磁绕组串联添加会提高速度(N),因为该磁通量会减小。
因此,励磁电流相对较小,因此降低了I2R损耗。
助焊剂控制方式因此,在上述的这种方式中,可以通过减小磁通量来提高速度,因此提出了一种用该方式减小磁通量的方法,而在最大速度下采用了一种方式,因为磁通量的弱化将超出限制,对换向器产生不利影响。
2、电压调整方式可变调节方式通常用于并联直流电机中。
也两种方式可以实现电压调节控制:将并联磁场连接到固定的励磁电压,同时为电枢提供不同的电压(也称为多电压控制)改变提供给电枢的电压。
在这种方法中,将外部电阻添加到电枢电路中。
励磁绕组直接与电源相连。
因此,励磁电流将保持不变。
而且,如果外部电阻变化,通量将保持不变。
根据速度方程,电枢电流与电动机速度成正比。
如果外部电阻值增加,则电枢电流减小。
因此,速度降低。
3、电枢电阻控制方式电枢电阻控制基于电机的速度与反电动势成正比。
如果电源电压和电枢电阻保持恒定值,则电机的速度将与电枢电流成正比。
在电枢控制方式中,直流电机的速度与反电动势(Eb)成正比,并且Eb = V-IaRa。
基于单片机pid算法的直流电机速度控制方法
基于单片机pid算法的直流电机速度控制方法基于单片机PID算法的直流电机速度控制方法是一种常用的技术,其基本原理是通过调节PWM(脉宽调制)信号的占空比来控制电机的输入电压,从而实现电机的速度控制。
以下是基于单片机PID算法的直流电机速度控制方法的基本步骤:1.设定目标速度:首先,需要设定电机的目标速度。
这可以通过按键或其他输入设备来实现。
2.采集实际速度:为了实现精确的控制,需要实时获取电机的实际速度。
这可以通过在电机转轴上安装光电编码器或霍尔传感器来实现,这些传感器可以实时检测电机的转速并将其转换为电信号。
3.计算偏差:单片机通过比较目标速度和实际速度,计算出速度偏差。
如果实际速度小于目标速度,偏差为负;反之,偏差为正。
4.应用PID算法:单片机使用PID算法来处理速度偏差。
PID控制器通过比例、积分和微分三个环节来计算控制量,以尽可能消除偏差。
具体的PID参数(如Kp、Ki、Kd)可以根据实际情况进行调整,以获得最佳的控制效果。
5.生成PWM信号:基于PID控制器的输出,单片机生成PWM信号来调节电机的输入电压。
占空比决定了电机输入电压的大小,进而影响电机的转速。
6.实时调整:在整个控制过程中,单片机不断采集电机的实际速度,计算偏差,并调整PWM信号的占空比,以使电机尽可能接近目标速度。
7.显示和保存数据:为了方便调试和观察,可以通过单片机的显示屏实时显示电机的实际速度和偏差。
此外,也可以将重要的数据保存在单片机的内部或外部存储器中。
8.安全保护:为了防止电机过载或意外事故,单片机应具备安全保护功能。
例如,当电机实际速度超过设定速度一定时间时,单片机应自动切断电源或发出报警信号。
基于单片机PID算法的直流电机速度控制方法具有精度高、稳定性好、适应性强等优点,广泛应用于各种需要精确控制电机速度的场合。
直流电机的PWM冲调速控制技术
直流电机的PWM冲调速控制技术直流电机的PWM冲(宽度调变)调速控制技术为调节马达转速和方向需要对其直流电压的大小和方向进行控制。
目前,常用大功率晶体管脉宽调制(PWM)调速驱动系统和可控硅直流调速驱动系统两种方式。
可控硅直流(SCR)驱动方式,主要通过调节触发装置控制SCR 的导通角来移动触发脉冲的相位,从而改变整流电压的大小,使直流电机电枢电压的变化易平滑调速。
由于SCR本身的工作原理和电源的特点,导通后是利用交流过零来关闭的,因此,在低整流电压时,其输出是很小的尖峰值的平均值,从而造成电流的不连续性。
由于晶体管的开关响应特性远比SCR 好,因此前者的伺服驱动特性要比后者好得多。
所谓脉冲宽度调变(Pulse Width Modulate 简称 PWM)信号就是一连串可以调整脉冲宽度的信号。
脉宽调变是一种调变或改变某个方波的简单方法。
在它的基本形式上,方波工作周期(duty cycle)是根据输入信号的变化而变化。
在直流电机控制系统中,为了减少流经电机绕线电流及降低功率消耗等目的,常常使用脉冲宽度调变信号(PWM)来控制交换式功率组件的开与关动作时间。
其最常使用的就是借着改变输出脉冲宽度或频率来改变电机的转速。
图1 PWM 脉冲宽度调变信号图若将供应电机的电源在一个固定周期做ON及OFF的控制,则ON的时间越长,电机的转速越快,反之越慢。
此种ON与OFF比例控制速度的方法即称为脉冲宽度调变,ON的期间称为工作周期(duty cycle),以百分比表示。
若直流电机的供应电源电压为10伏特,乘以20%的工作周期即得到2伏特的输出至电机上,不同的工作周期对应出不同电压让直流电机转速产生不同的变化。
若直流电机的供应电源电压为10伏特,乘以20%的工作周期即得到2伏特的输出至电机上,不同的工作周期对应出不同电压让直流电机转速产生不同的变化。
PWM产生器方块图如下图所示,计数器采下数计数器与上数计数器的两种PWM讯号。
直流电机调速公式
直流电机调速公式
直流电机调速是指通过调节电机的输入电压或电流来控制电机的转速。
在工业领域,直流电机广泛应用于各种设备和机械中,如电动机车、电梯、风机等。
掌握直流电机调速公式是电气工程师的基本技能之一。
直流电机调速公式基于电机的电磁转矩与负载转矩之间的平衡关系。
电机的电磁转矩与电机的磁场强度和电流有关。
磁场强度与电机的磁铁强度和电流成正比,电流与电机的输入电压或电流成正比。
因此,我们可以得到如下的直流电机调速公式:
转速 = (输入电压 × 磁场强度) / 负载转矩
在实际应用中,为了更精确地控制电机的转速,我们通常会根据具体的系统需求进行一定的修正和调整。
比如,可以通过增加反馈回路来实现闭环控制,将实际转速与期望转速进行比较,进而调整输入电压或电流,使得实际转速逐渐趋近于期望转速。
还可以根据具体的负载特性和系统要求,选择合适的电机调速方法。
常用的直流电机调速方法包括电阻调速、电压调速、电流调速和PWM调速等。
这些调速方法都有各自的特点和适用范围,工程师需要根据具体情况进行选择和应用。
总结一下,直流电机调速公式是通过调节电机的输入电压或电流来控制电机的转速。
通过合理选择调速方法和调节参数,可以实现对
直流电机的精确控制。
这对于提高设备运行效率、降低能耗以及保护设备和负载都具有重要意义。
电气工程师应该熟练掌握直流电机调速公式,并在实际工程中灵活应用,以提高设备的性能和可靠性。
直流电机的控制方法
直流电机的控制方法直流电机作为一种常见的电机类型,广泛应用于工业和家用电器中,其控制方法多种多样。
下面我将详细介绍主要的直流电机控制方法,包括直流电机的速度控制和转矩控制。
一、直流电机的速度控制方法:1. 电压控制法:直流电机的速度与电枢电压成正比,因此可以通过改变电枢电压来实现电机的速度控制。
常见的实现电压控制法的方法有以下几种:- 稳压变频:利用能量转换设备将电网的交流电转换为直流电,并通过逆变器将直流电转换为交流电,再将其输出到直流电机上。
通过改变逆变器的输出频率和电压大小来控制直流电机的转速。
- 变阻控制:通过改变电枢电路中的电阻来改变电枢电压,从而实现直流电机的速度控制。
这种方法简单易行,但效率较低,能耗较大。
- 自励电压反馈控制:利用自励电压的反馈信号将直流电机的转速控制在设定值范围内,采用PID控制或者模糊控制的方法进行调节。
2. 电流控制法:直流电机的速度与电枢电流成反比,因此可以通过改变电枢电流来实现电机的速度控制。
常见的实现电流控制法的方法有以下几种:- 稳流变频:通过改变逆变器输出电压的频率和幅值,从而控制直流电机的电流大小,从而达到控制速度的目的。
- 直流电机与电阻串联:通过在直流电机的电枢电路中串联一个可变电阻,调节电压大小以改变电枢电流,进而控制电机的速度。
- 直流电机与电压反馈:通过检测电机的电压,利用电压反馈控制方法调节输出的电流,从而实现速度控制。
二、直流电机的转矩控制方法:1. 电枢电压控制法:直流电机的转矩与电枢电压成正比,因此可以通过改变电枢电压来实现电机的转矩控制。
常见的实现电枢电压控制法的方法有以下几种:- 稳压变频:通过改变逆变器的输出频率和电压大小,从而控制直流电机的转矩。
- 电压比例控制:利用直流电机的转矩与电枢电压成正比的特性,在控制系统中设定一个电压转矩比例,根据系统的需求调节电枢电压。
2. 电流控制法:直流电机的转矩与电枢电流成正比,因此可以通过改变电枢电流来实现电机的转矩控制。
直流电机速度位置双环控制简明教程
直流电机速度位置双环控制简明教程1.速度闭环控制我们一般在速度闭环控制系统里面,使用增量式PI控制。
而在我们的微处理器里面,因为控制器是通过软件实现其控制算法的,所以必须对模拟调节器进行离散化处理,这样它只需根据采样时刻的偏差值计算控制量。
因此,我们需要使用离散的差分方程代替连续的微分方程。
假定采样时间很短时(我们的代码中是10ms),可做如下处理:1用一介差分代替一介微分;2用累加代替积分。
根据增量式离散PID公式Pwm+=Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)] e(k):本次偏差e(k-1):上一次的偏差e(k-2):上上次的偏差Pwm代表增量输出在我们的速度控制闭环系统里面只使用PI控制,因此对PID控制器可简化为以下公式:Pwm+=Kp[e(k)-e(k-1)]+Ki*e(k)具体通过C语言实现的代码如下:int Incremental_PI(int Encoder,int Target){float Kp=100,Ki=100;//PI参数由电机的种类和负载决定static int Bias,Pwm,Last_bias;Bias=Encoder-Target;//计算偏差Pwm+=Kp*(Bias-Last_bias)+Ki*Bias;//增量式PI控制器Last_bias=Bias;//保存上一次偏差return Pwm;//增量输出}入口参数为编码器的速度测量值和速度控制的目标值,返回值为电机控制PWM。
第一行代码为PI参数的定义,PI参数在不同的系统中不一样,我们的代码中的PID参数,仅针对平衡小车之家的电机空载时调试得到。
第二行是相关内部变量的定义。
第三行是求出速度偏差,由测量值减去目标值。
第四行使用增量PI控制器求出电机PWM。
第五行保存上一次偏差,便于下次调用。
最后一行是返回。
在10ms定时中断里面调用该函数实现我们的控制目标:Moto1=Incremental_PI(Encoder,Target_velocity);Set_Pwm(Moto1);//===赋值给对应MCU的PWM寄存器具体请结合完整代码理解,我们的代码基于STM32F103C8控制器,但是把基于C语言的PID控制器部分剥离,并放在control.c里面,故对STM32不熟悉的同学依然可以使用记事本打开这个文件观看。
直流电机调速控制系统设计
直流电机调速控制系统设计1.引言直流电机调速控制系统是一种广泛应用于工业生产与生活中的电气控制系统。
通过对直流电机进行调速控制,可以实现对机械设备的精确控制,提高生产效率和能源利用率。
本文将介绍直流电机调速控制系统的设计原理、控制策略以及相关技术。
2.设计原理直流电机调速控制系统的基本原理是通过调整电压或电流来改变电机的转速。
在直流电机中,电压和电流与转速之间存在一定的关系。
通过改变电压或电流的大小,可以实现对电机转速的调节。
为了实现精确的调速控制,通常采用反馈控制的方式,通过测量电机转速,并与设定值进行比较,控制输出电压或电流,以达到期望的转速。
3.控制策略开环控制是指在没有反馈的情况下,直接控制输出电压或电流的大小,来实现对电机转速的调节。
开环控制的优点是简单、成本低,但缺点是无法考虑到外界的扰动和电机的非线性特性,使得控制精度较低。
闭环控制是指在有反馈的情况下,测量电机转速,并与设定值进行比较,控制输出电压或电流。
闭环控制的优点是能够考虑到外界的扰动和电机的非线性特性,提高控制精度。
常用的闭环控制策略有PID控制、模糊控制和神经网络控制等。
其中,PID控制是最为常用的一种控制策略,具有调节速度快、控制精度高的优点。
4.相关技术在直流电机调速控制系统的设计中,还需要用到一些相关的技术,如编码器、传感器和驱动器等。
编码器是一种测量旋转角度和速度的装置,可以用来测量电机的转速。
根据编码器的测量结果,可以对电机进行控制。
传感器可以用来检测电机的电流、电压和转速等参数,以获得电机的实时状态。
通过对这些参数的测量和分析,可以实现对电机转速的控制。
驱动器是将控制信号转换为电机运行的电路,可以根据输入的电压或电流信号控制电机的运行状态。
5.总结直流电机调速控制系统是一种重要的电气控制系统,可以实现对机械设备的精确控制。
在设计过程中,需要合理选择控制策略和相关技术,以实现期望的控制效果。
通过不断的研究和实践,可以进一步提高直流电机调速控制系统的性能和稳定性,满足不同领域的需求。
直流电机调速控制电路图
直流电机调速控制电路图
由555电路、驱动电路和功放电路作为中间级、电机和续流二极管VD3等构成了直流电机调速控制电路。
本电路主要应用于电机控
电机调速控制电路
个电路也可组成可调的脉冲振荡器。
电机通过输出脉冲驱动,来控制脉冲占空比、电机驱动电流和转速;脉冲占空比越小,驱动电流电位器RP的数值来调整控制电机的速度。
若电极驱动电流小于等于200mA时,可用555直接驱动;通过增加驱动和功放控制使电流
是续流二极管,在功放管截止期间为驱动电流提供通路,可保证电机具有连续驱动电流,防止功放管的损坏。
电容C1和电阻RI组成。
电路的脉冲频率选在4~5kHz之间。
频率太低会导致电机抖动,频率太高会因占空比范围小而导致电机调速范围减少。
直流电机的PWM速度控制程序
直流电机的PWM速度控制程序* =======直流电机的PWM速度控制程序======== *//*晶振采用11.0592M,产生的PWM的频率约为91Hz */#include#include#define uchar unsigned char#define uint unsigned intsbit en1=P2; /* L298的Enable A */sbit en2=P2 ; /* L298的Enable B */sbit s1=P2 ; /* L298的Input 1 */sbit s2=P2 ; /* L298的Input 2 */sbit s3=P2 ; /* L298的Input 3 */sbit s4=P2 ; /* L298的Input 4 */uchar t=0; /* 中断计数器*/uchar m1=0; /* 电机1速度值*/uchar m2=0; /* 电机2速度值*/uchar tmp1,tmp2; /* 电机当前速度值*//* 电机控制函数index-电机号(1,2); speed-电机速度(-100100) */voidmotor(uchar index, char speed) {if(speed>=-100 && speed0;j--);}void main(){char i;TMOD=0x02; /* 设定T0的工作模式为2 */TH0=0x9B; /* 装入定时器的初值*/TL0=0x9B;EA=1; /* 开中断*/ET0=1; /* 定时器0允许中断*/TR0=1; /* 启动定时器0 */while(1) /*电机实际控制演示*/{ for(i=0;i0;i--) /* 正转减速*/ { motor(1,i); motor(2,i); delay(5000); } for(i=0;i0;i--) /* 反转减速*/ { motor(1,-i);motor(2,-i); delay(5000); }}}void timer0() interrupt 1 /* T0中断服务程序*/{if(t==0) /* 1个PWM周期完成后才会接受新数值*/{ tmp1=m1; tmp2=m2;}if(t=100) t=0; /* 1个PWM信号由100次中断产生*/}tips:感谢大家的阅读,本文由我司收集整编。
直流电机调速控制和测速系统设计
直流电机调速控制和测速系统设计摘要:直流型的电机得性能在电机结构中有着较好的优势,由于时代的持续进步,与直流电机相关的使用频率也变得更高。
然而,以往的直流电机工作性质与所面临得运转问题息息相关,怎样对转速进行合理管控就变成了直流电机发展和应用期间存在的困难。
而直流电机控制系统的产生,可以较好的处理该方面的情况,不仅能够增强直流电机的平稳程度和精准程度,还可以合理管控直流电机的运行速度,从而达到我国对相关设备的应用标准。
基于此,本文重点分析了直流电机调速控制的方式,进一步对测速系统进行设计,以供相关人员参考。
关键词:直流电机;调速控制;测速系统目前,直流发电机的应用非常广泛,在自动化装备领域中,其内蓄电池内部都配置有相应的直流发电机,保证在断电的情况下起到一定的发电机组的润滑作用。
而直流电动机在启动时,其所用的电流量会增大很多,造成一定的冲击力,这种冲击力会造成一定的影响,比如充电器出现损坏、短路等,这些故障的产生都会使得发电设备无法正常运转。
因此,为了解决我国在有关这方面的控制技术上存在的问题,需要对调速与测速系统进行控制与设计,以此来确保整个电机设备的稳定性与安全性。
1电机调速原理及其实现电机调速原理主要是指对电机两端所存在的电压进行数据上的更改,以此来完成对电机转速的调节工作,对于电机而言,当自身的电压方向出现改变,那么电机的旋转变化发生改变。
而PWM在调速原理方面则是以脉冲信号为主,利用脉冲信号的输出特性来进行传输,并改变原本存在于电机内部空间的脉冲信号,通过间接或速度按钮来完成有关电机电压的更改工作,从而来确保电机的转速能够因此发生改变。
在这一过程中,电机内部的脉冲占比越大,转速也就越慢。
整个电路主要是以H桥为主,为了确保整个驱动电机能够得到有效控制,将三极管进行单片机的引脚安装,将基极部分分别安装,从而来确保当电机处于运行状态时,能够利用垫片机来对其自身的转速内容进行控制。
当脉冲信号输送工作时,另一端会通过开展低电平的模式来进行应用,这时的直流电机会呈现为正转状态,反之亦然。
直流电动机速度控制设计.
第一章:概述直流电动机是人类发明最早和应用的一种电机。
与交流电机相比,直流电机因结构复、维护苦难,价格昂贵等缺点制约了它的发展,应用不及交流电机广泛。
但由于直流电动机具有优良的启动、调速和制动性能,因此在工业领域中仍占有一席之地。
转速调节的主要技术指标是:调速范围D和负载变化时对转速的影响即静差率,以及调速时的允许负载性质等(静差率就是表示在负载变化时拖动装置转速降落的程度。
静差率越小,表示转速稳定性越好,对生产机械,如机床加工的零件,其加工的精度及表面光洁度就越高)。
而直流电动机的突出优点是恰好是能在很大的范围内具有平滑,平稳的调速性能,过载能力较强,热动和制动转矩较大。
因此,从可靠性来看,直流电动机仍有一定的优势。
调节直流电动机转速的方法有三种:(1)电枢回路串电阻;(2)改变励磁电流;(3)改变电枢回路的电源电压;而本文从另一个角度来阐述直流电机的速度控制,即利用自动控制中的反馈来调节电机的平稳运行以达到各项性能指标。
第二章:系统数学模型本系统的简化方框图为:其对应的原理图为:控制系统的被控对象为电动机(带负载),系统的输出量是转速w ,参数亮是Ui 。
控制系统由给定电位器、运算放大器1(含比较作用)、运算放大器2(含RC 校正网络)、功率放大器、测速发电机、减速器等部分组成。
工作原理为:当负载角速度ω和电动机角速度m ω一致的时候,反馈电压为0,电机处于平衡状态即电动机运行稳定。
当负载的角速度收到干扰的作用时,ω和m ω失谐,控制系统通过反馈电压的作用来改变m ω直到达到新的一致使系统恢复稳定,电机稳定运行。
2.1直流电动机的数学模型:直流电动机的数学模型。
直流电动机可以在较宽的速度范围和负载范围内得到连续和准确地控制,因此在控制工程中应用非常广泛。
直流电动机产生的力矩与磁通和电枢电流成正比,通过改变电枢电流或改变激磁电流都可以对电流电机的力矩和转速进行控制。
图2.2是一个电枢控制式直流电动机的原理图。
PID控制PWM调节直流电机速度(12v)
PID算法介绍:本次设计主要研究的是PID控制技术在运动控制领域中的应用,纵所周知运动控制系统最主要的控制对象是电机,在不同的生产过程中,电机的运行状态要满足生产要求,其中电机速度的控制在占有至关重要的作用,因此本次设计主要是利用PID 控制技术对直流电机转速的控制。
其设计思路为:以AT89S51单片机为控制核心,产生占空比受PID算法控制的PWM脉冲实现对直流电机转速的控制。
同时利用光电传感器将电机速度转换成脉冲频率反馈到单片机中,构成转速闭环控制系统,达到转速无静差调节的目的。
在系统中采128×64LCD显示器作为显示部件,通过4×4键盘设置P、I、D、V四个参数和正反转控制,启动后通过显示部件了解电机当前的转速和运行时间。
因此该系统在硬件方面包括:电源模块、电机驱动模块、控制模块、速度检测模块、人机交互模块。
软件部分采用C语言进行程序设计,其优点为:可移植性强、算法容易实现、修改及调试方便、易读等。
本次设计系统的主要特点:(1)优化的软件算法,智能化的自动控制,误差补偿;(2)使用光电传感器将电机转速转换为脉冲频率,比较精确的反映出电机的转速,从而与设定值进行比较产生偏差,实现比例、积分、微分的控制,达到转速无静差调节的目的;(3)使用光电耦合器将主电路和控制电路利用光隔开,使系统更加安全可靠;(4)128×64LCD显示模块提供一个人机对话界面,并实时显示电机运行速度和运行时间;(5)利用Proteus软件进行系统整体仿真,从而进一步验证电路和程序的正确性,避免不必要的损失;(6)采用数字PID算法,利用软件实现控制,具有更改灵活,节约硬件等优点;(7)系统性能指标:超调量≤8%;调节时间≤4s;转速误差≤±1r/min。
1PID算法及PWM控制技术简介1.1PID算法控制算法是微机化控制系统的一个重要组成部分,整个系统的控制功能主要由控制算法来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组员:班级:研1308授课教师:徐洪泽电子信息工程学院日期:2013-11-24目录1、整体设计 (1)2、硬件搭建过程 (3)一、单片机最小系统 (3)二、RS232串口模块 (3)一、电机驱动模块 (4)四、测速模块 (5)五、上位机显示与控制 (7)3、闭环系统的PID控制实现 (8)一、控制算法 (8)二、PID参数的整合 (8)4、问题探讨与实验总结 (9)一、问题探讨 (9)二、实验总结 (9)5、附录:总体程序 (10)一、程序流程说明 (10)二、源代码 (10)三、实物图 (20)1、 整体设计本系统旨在实现直流电机的速度闭环控制。
微控制器接受上位机和测速机构的速度信号,以其偏差作为PID 控制算法的输入,同时用微控制器产生H 桥所需的PWM 控制信号,PWM 的占空比为微控制器PID 控制算法的输出。
通过控制PWM 的占空比来控制电机电枢电压,从而达到控制电机转速的目的。
图1.直流电机速度控制系统框图图中:r —期望转速; b —转速测量值;e —期望转速与实际转速偏差; n —转速输出值。
直流电机转速为:U IR n K U -=Φ-Φ-其中:电枢端电压电枢电流电枢电路总电阻;电机结构参数;每极磁通量。
;I-;R-K-本系统采用对电枢电压进行控制的电枢控制法,而电枢电压的控制采用开关驱动方式,即使驱动电机的半导体功率器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。
在Altium Designer summer 09中画出直流电机速度控制系统的详细设计原理如下图所示。
微控制器采用STC89C52RC单片机,单片机和上位PC机通过RS232进行通信,通过单片机的外部中断对编码器输出脉冲进行计数、单片机的P0.0和P0.1口输出PWM波形信号。
外部中断INT1对光电编码器脉冲计数,单片机在一定时间间隔内即可计算出电机的转速。
当电机的实际速度小于目标速度时,LED0指示电机加速;当大于目标速度时,LED1指示电机减速。
图2.直流电机速度控制系统详细设计图2、硬件搭建过程一、单片机最小系统功能介绍:1.支持STC51系列与A T51系列单片机(DIP40),或通过其它转接座支持其它型号单片机;2.8路水晶蓝LED可作流水灯实验;3.2个中断按键(INT0与INT1)和1个复位按键;4.1个电位分压器可供调节输出参考电压5.1个标准ISP下载接口,用于下载AT单片机程序,及供电;6.1个USB-TTL接口,用于下载STC单片机,及供电;7.32个IO口以排针形式引出,方便外部使用;8.留有3组电源排针输出,方便外部配件取电,或向板子供电;9.板载12MHz优质晶振及P0口全部上拉4.7K电阻,板上标准复位电路;10.使用DIP40锁紧座方便取放芯片;二、RS232串口模块本文设计的控制系统与上位机串口通信部分采用了PL2303HX模块实现。
主要功能是将实时的速度数据传送到上位机显示;接受上位机发送到单片机的控制信息,包括PID的三个参数Kp,Ki,Kp和电机转向。
PL2303HX采用28脚贴片SOIC封装,工作频率为12MHZ,符合USB 1.1通信协议,可以直接将USB信号转换成串口信号,波特率从75~,有22种波特率可以选择,并支持5、6、7、8、16共5种数据比特位,是一款相当不错的USB转串口芯片。
PL2303模块可以方便地利用杜邦免焊接连接线接入电路,只要插接3根线,一根串口入、一根串口出、一根地线。
需要注意的是STC89C52 单片机下载模式接线如下:(只需要连接3根线)USB转TTL小板TX 连接单片机P3.0 (RX)USB转TTL小板RX 连接单片机P3.1 (TX)USB转TTL小板GND 连接单片机GND一、电机驱动模块本系统采用的电机驱动模块为L9110S双路直流电机驱动板,实物如下图所示。
L9110是为控制和驱动电机设计的两通道推挽式功率放大专用集成电路器件,将分立电路集成在单片IC之中,使外围器件成本降低,整机可靠性提高。
该芯片有两个TTL/CMOS 兼容电平的输入,具有良好的抗干扰性;两个输出端能直接驱动电机的正反向运动及刹车,它具有较大的电流驱动能力,每通道能通过750~800mA的持续电流,峰值电流能力可达1.5~2.0A;同时它具有较低的输出饱和压降;内置的钳位二极管能释放感性负载的反向冲击电流,使它在驱动继电器、直流电机、步进电机或开关功率管的使用上安全可靠。
L9110被广泛应用于保险柜、玩具汽车的电机驱动、步进电机驱动和开关功率管等电路上。
电路内部功能框图:图3. L9110电路内部功能框图具有如下特点:⏹低静态工作电流;⏹宽电源电压范围:2.5V-12V;⏹每通道具有800mA连续电流输出能力;⏹较低的饱和压降;⏹输出具有正转、反转、高阻和刹车四种状态;⏹TTL/CMOS 输出电平兼容,可直接连CPU;⏹输出内置钳位二极管,适用于感性负载;⏹控制和驱动集成于单片IC之中;⏹具备管脚高压保护功能;⏹工作温度:-20℃-80℃。
应用电路图:图4. L9110驱动电机应用电路图四、测速模块本系统采用精度达到888线的AB相编码器。
通过旋转的光栅盘和光耦产生可识别方向的计数脉冲信号。
以下是该编码器的相关介绍:编码器型号为Agilent Q9843,888线码盘保证了测速精度,也就是电机转一圈输出888个脉冲,芯片上已集成了脉冲整形触发电路,输出的是矩形波,用示波器检测相当稳定,直接单片机IO口,由于分辨率很高,对单片机的处理能力和程序编写水平提出较高要求。
以下是直流电机实测参数以供参考:电机线圈电阻6.6欧,阻转电流=电压/电阻。
测试得到参数表如下:编码器3.5V时耗电实测20ma(实测3.3V-5V都正常工作,方波规范,但随着电压的提高工作电流会增加,5V时工作电流40ma),加电后编码器发出暗红色的光(亮度很低),AB 相输出就可以知道电机的转动方向。
五、上位机显示与控制上位机实现通过串口向单片机发送控制数据、处理单片机回送数据、显示转数值和速度--时间曲线,便于观察控制系统的性能指标。
其界面如下。
主界面:速度显示PID参数设置菜单:绘图设置菜单:使用说明:(1)主界面:首先,保证本直流电机控制系统的串口模块已连接上位PC机。
打开本软件,从设备管理器中,查看串口模块连接的com口号,选择对应的com口进行连接。
成功连接后,点击开始采集,即可采集单片机发送的速度数据并实时显示收到的数据。
同时,可以s使用滑动条来调节目标速度。
(2)PID参数设置菜单:点击PID参数设置菜单,即可PID对三个控制参数Kp,Ki,Kd设置,点击确定,设置完毕。
这时,需要点击发送控制信息,单片机接收到修改后的控制信息进行调整。
控制信息采用8个byte的格式,其报文协议为:Kp两个字节,Ki两个字节,Kd两个字节,速度两个字节。
(3)绘图设置菜单:为了让使用界面更加友好,加入了绘图设置的功能。
3、 闭环系统的PID 控制实现一、控制算法单片机软件实现接收上位机指令,以期望速度和测量机构采集的测量速度的偏差信号作为PID 算法的输入信号,经过PID 控制后改变其输出的PWM 信号的占空比,输出PWM 信号,从而实现使电机的实际转速趋近于期望转速。
实验采用位置式PID 控制算法,算法流程为:exp ect be V V ∆=-10()kk p k I j D k k j u K e K e K e e -==++-∑kout u u =+式中:exp ect b k p I D k k PID V V e e K K K u uout --∆------期望转速值测量转速值转速偏差值第次转速偏差值比例、积分、微分系数计算输出值期望占空比实际占空比输出值二、PID 参数的整合这里最重要的是PID 参数的整合过程和办法,PID 控制器参数选择的方法很多,例如:试凑法、临界比例度法、扩充临界比例度法等。
但是,对于PID 控制而言,参数的选择始终是一件非常烦杂的工作,需要经过不断的调整才能得到较为满意的控制效果。
依据调研和经验,一般PID 参数确定的步骤如下: (1) 确定比例系数Kp 确定比例系数Kp 时,首先去掉PID 的积分项和微分项,可以令Ti=0、Td=0,使之成为纯比例调节。
输入设定为系统允许输出最大值的60%~70%,比例系数Kp 由0 开始逐渐增大,直至系统出现振荡;再反过来,从此时的比例系数Kp 逐渐减小,直至系统振荡消失。
记录此时的比例系数Kp ,设定PID 的比例系数Kp 为当前值的60%~70%。
(2) 确定积分时间常数Ti 比例系数Kp 确定之后,设定一个较大的积分时间常数Ti ,然后逐渐减小Ti ,直至系统出现振荡,然后再反过来,逐渐增大Ti ,直至系统振荡消失。
记录此时的Ti ,设定PID 的积分时间常数Ti 为当前值的150%~180%。
(3) 确定微分时间常数Td微分时间常数Td一般不用设定,为0即可,此时PID调节转换为PI调节。
如果需要设定,则与确定Kp的方法相同,取不振荡时其值的30%。
最后,对PID参数进行微调,直到满足性能要求。
4、问题探讨与实验总结一、问题探讨(1) 调速电机PWM的频率选择此问题在我们小组涉及直流电机驱动时就遇到了,可翻阅了很多资料,都没有给一个完美的答复,我觉得应该根据电机的特性来选择PWM 的频率。
这与机械的固有震动频率有关,另外与电机特性有关,不过一般情况是频率如果太低会导致电机抖动或者有啸叫声,或者致使交流成分太多,导致驱动桥中的功率管发热。
PWM的频率的选择和所用电机感抗和所需的速度响应时间有很大的关系,如果电机转速比较高,感抗比较小,可以使用比较高的频率。
一般最好不要超过20K,因为一般IGBT 最高20K的开关频率。
而MOS 的开关频率比较高,但是过高的频率就需要专用的驱动电路,不然MOS工作在放大区的时间比较长。
如果电机转速比较低,感抗比较大,而且又是在做伺服,那开关频率就需要低一点。
(2) PID控制输出量如何控制执行器?本系统的直流电机是采用合适频率的PWM来驱动的,脉冲的周期时间是一定的。
对于速度的控制是采用脉宽调制的原理,即电机的速度取决于PWM的占空比,也就是说PID算法是研究一种控制脉宽的方法,使得电机速度能即快又稳地稳定在目标速度上。
我们采用的方法是利用PID输出控制量u与PWM占空比线性对应的关系进行控制,并在u达到或小到一定程度后,进行占空比饱和处理。
最终,达到了对直流电机速度较好的控制。
二、实验总结5、附录:总体程序一、程序流程说明单片机资源分配与作用:定时器T0:根据frequency设置,产生该频率的PWM来驱动电机。