2019年中考数学压轴题汇编(几何1) 解析版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2019年安徽23题)

23.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.

(1)求证:△P AB∽△PBC;

(2)求证:P A=2PC;

(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;

(2)由(1)的结论得出,进而得出,即可得出结论;

(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.

【解答】解:(1)∵∠ACB=90°,AB=BC,

∴∠ABC=45°=∠PBA+∠PBC

又∠APB=135°,

∴∠P AB+∠PBA=45°

∴∠PBC=∠P AB

又∵∠APB=∠BPC=135°,

∴△P AB∽△PBC

(2)∵△P AB∽△PBC

在Rt△ABC中,AB=AC,

∴P A=2PC

(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,

∴PF=h1,PD=h2,PE=h3,

∵∠CPB+∠APB=135°+135°=270°

∴∠APC=90°,

∴∠EAP+∠ACP=90°,

又∵∠ACB=∠ACP+∠PCD=90°

∴∠EAP=∠PCD,

∴Rt△AEP∽Rt△CDP,

∴,即,

∴h3=2h2

∵△P AB∽△PBC,

∴,

∴.

即:h12=h2•h3.

【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.

(2019年北京27题)

27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.

(1)依题意补全图1;

(2)求证:∠OMP=∠OPN;

(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.

【分析】(1)根据题意画出图形.

(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.

(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP =∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD =NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD=OC=OP+PC=2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为

MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=a+a=+1,

求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.

【解答】解:(1)如图1所示为所求.

(2)设∠OPM=α,

∵线段PM绕点P顺时针旋转150°得到线段PN

∴∠MPN=150°,PM=PN

∴∠OPN=∠MPN﹣∠OPM=150°﹣α

∵∠AOB=30°

∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α

∴∠OMP=∠OPN

(3)OP=2时,总有ON=QP,证明如下:

过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2

∴∠NCP=∠PDM=∠PDQ=90°

∵∠AOB=30°,OP=2

∴PD=OP=1

∴OD=

∵OH=+1

∴DH=OH﹣OD=1

∵∠OMP=∠OPN

∴180°﹣∠OMP=180°﹣∠OPN

即∠PMD=∠NPC

在△PDM与△NCP中

∴△PDM≌△NCP(AAS)

∴PD=NC,DM=CP

设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1

∵点M关于点H的对称点为Q

∴HQ=MH=x+1

∴DQ=DH+HQ=1+x+1=2+x

∴OC=DQ

在△OCN与△QDP中

∴△OCN≌△QDP(SAS)

∴ON=QP

【点评】本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON=QP为条件反推OP的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2为条件构造全等证明ON=QP.

(2019年北京28题)

28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;

(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.

①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;

②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,

直接写出t的取值范围.

【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE 为直径的半圆,的长即以DE为直径的圆周长的一半;

(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意

圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP 满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,

相关文档
最新文档