吉林省中考数学压轴题汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28、(2009年吉林省)如图所示,菱形ABCD的边长为6厘M,∠B=60度.从初始时刻开始,点P、Q
同时从A点出发,点P以1厘M/秒的速度沿A→C→B的方向运动,点Q以2厘M/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC重叠部分的面积为y平方厘M(这里规定:点和线段是面积为O的三角形),解答下列问题:
(1)点P、Q从出发到相遇所用时间是秒;
(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是秒;
(3)求y与x之间的函数关系式.
28、(2008•吉林)如图①,在长为6厘M,宽为3厘M的矩形PQMN中,有两张边长分别为二厘M和
一厘M的正方形纸片ABCD和EFCH,且BC且在PQ上,PB=1厘M,PF= 厘M,从初始时刻开始,纸片ABCD沿PQ以2厘M每秒的速度向右平移,同时纸片EFGH沿PN以1厘M每秒的速度向上平移,当C点与Q点重合时,两张图片同时停止移动,设平移时间为t秒时,(如图②),纸片ABCD扫过的面积为S1,纸片EFGH扫过的面积为S2,AP,PC,CA,所围成的图形面积及为S(这里规定线段面积为零,扫过的面积含纸片面积).解答下列问题:
(1)当t= 时,PG= ,PA= 时,PA PG+GA(填=或≠);
(2)求S与t之间的关系式;
(3)请探索是否存在t值(t>),使S1+S2=4S+5.若存在,求出t值;若不存在,说明理由.
28、(2006•吉林•大纲卷)如图,在边长为8厘M的正方形ABCD内,贴上一个边长为4厘M的正方形
AEFG,正方形ABCD未被盖住的部分为多边形EBCDGF.动点P从点B出发,沿B⇒C⇒D方向以1厘M/秒速度运动,到点D停止,连接PA,PE.设点P运动x秒后,△APE与多边形EBCDGF 重叠部分的面积为y厘M2.
(1)当x=5时,求y的值;
(2)当x=10时,求y的值;
(3)求y与x之间的函数关系式;
(4)在给出的直角坐标系中画出y与x之间的函数图象.
28、(2005•吉林课标卷)如图1,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°.
(1)如图2,动点P、Q同时以每秒1cm的速度从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到点C停止,设P、Q同时从点B出发t秒时,△PBQ的面积为y1(cm2),求y1(cm2)关于t(秒)的函数关系式;
(2)如图3,动点P以每秒1cm的速度从点B出发沿BA运动,点E在线段CD上随之运动,且PC=PE.设点P从点B出发t秒时,四边形PADE的面积为y2(cm2),求y2(cm2)关于t(秒)的函数关系式,并写出自变量t的取值范围.
28、(2005•吉林大纲卷)如图,过原点的直线l1:y=3x,l2:y= x.点P从原点O出发沿x轴正方向
以每秒1个单位长度的速度运动.直线PQ交y轴正半轴于点Q,且分别交l1、l2于点A、B.设点P 的运动时间为t秒时,直线PQ的解读式为y=-x+t.△AOB的面积为S l(如图①).以AB为对角线作正方形ACBD,其面积为S2(如图②).连接PD并延长,交l1于点E,交l2于点F.设△PEA的面积为S3;(如图③)
(1)S l关于t的函数解读式为;(2)直线OC的函数解读式为;
(3)S2关于t的函数解读式为;(4)S3关于t的函数解读式为 .
26.(2004年吉林省)已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-b/2a ,4ac-b 2/4a ),与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解读式:
伴随抛物线的解读式,伴随直线的解读式;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解读式是;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解读式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D 两点,且AB=CD.请求出a、b、c应满足的条件.
28.(2003•吉林)如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P 的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.
(1)参照图②,求a、b及图②中的c值;
(2)求d的值;
(3)设点P离开点A的路程为y1(cm),点Q到点A还需走的路程为y2(cm),请分别写出动点P、Q改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值.(4)当点Q出发秒时,点P、点Q在运动路线上相距的路程为25cm.
34、(2003年吉林省)关于图形变化的探讨:
(1)①例题1.如图1,AB是⊙O的直径,直线l与⊙O有一个公共点C,过A、B分别作l的垂线,垂足为E、F,则EC=CF.
②上题中,当直线l向上平行移动时,与⊙O有了两个交点C1、C2,其它条件不变,如图2,经过推证,我们会得到与原题相应的结论:EC1=C2F.
③把直线1继续向上平行移动,使弦C1C2与AB交于点P(P不与A,B重合).在其它条件不变的情况下,请你在图3的圆中将变化后的图形画出来,标好对应的字母,并写出与①②相应的结论等式.判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论.证明结论成立或说明不成立的理由
(2)①例题2.如图4,BC是⊙O的直径.直线1是过C点的切线.N是⊙O上一点,直线BN交1于点M.过N点的切线交1于点P,则PM2=PC2.
②把例题2中的直线1向上平行移动,使之与⊙O相交,且与直线BN交于B、N两点之间.其它条件仍然不变,请你利用图5的圆把变化后的图形画出来,标好相应的字母,并写出与①相应的结论等积式,判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论.证明结论成立或说明不成立的理由:
(3)总结:请你通过(1)、(2)的事实,用简练的语言,总结出某些几何图形的一个变化规律.