排列计算公式(一)

合集下载

排列组合公式_排列组合计算公式

排列组合公式_排列组合计算公式

排列组合公式/排列组合计算公式排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排列组合规律公式

排列组合规律公式

排列组合规律公式排列组合是高中数学中的重要内容,也是生活中经常使用到的知识点。

排列组合涉及许多规律和公式,下面就是一些排列组合的规律公式。

一、排列规律公式排列就是从一些元素中选择若干个进行排列,排列的个数可以用下面的公式表示:A(n,m) = n! / (n-m)!其中,n表示有n个元素,m表示选择m个进行排列,!表示阶乘。

例如,一个班级有20个学生,从中选出5个进行比赛,那么这5个学生的排列方式的总数就是A(20,5) = 20! / (20-5)! = 20*19*18*17*16 = 15,504,000。

二、组合规律公式组合是从一些元素中选择若干个进行组合,组合的个数可以用下面的公式表示:C(n,m) = n! / (m! * (n-m)!)其中,n表示有n个元素,m表示选择m个进行组合,!表示阶乘。

例如,一个班级有20个学生,从中选出5个进行小组合作,那么这5个学生的组合方式的总数就是C(20,5) = 20! / (5! * (20-5)!) =15,504,000 / 120 = 155,04。

三、重复组合规律公式重复组合是从一些元素中选择若干个进行组合,同一个元素可以选多次,组合的个数可以用下面的公式表示:H(n,m) = C(n+m-1,m) = (n+m-1)! / (m! * (n-1)!)例如,一个班级有20个学生,从中选出5个进行班委投票,同一个学生可以被选多次,那么这5个学生的组合方式的总数就是H(20,5) =C(20+5-1,5) = 24,015。

四、二项式定理二项式定理是排列组合中的一个重要定理,它可以用下面的公式表示:(a+b)^n = ∑C(n,k) * a^(n-k) * b^k其中,a和b是实数,n是自然数,C(n,k)表示从n个元素中选择k个进行组合。

例如,计算(1+x)^6,就可以使用二项式定理进行展开:(1+x)^6 = C(6,0) * 1^6 * x^0 + C(6,1) * 1^5 * x^1 + C(6,2) * 1^4 * x^2 + C(6,3) * 1^3 * x^3 + C(6,4) * 1^2 * x^4 + C(6,5) * 1^1 * x^5 + C(6,6) * 1^0 * x^6= 1 + 6x + 15x^2 + 20x^3 + 15x^4 + 6x^5 + x^6综上所述,排列组合涉及许多规律和公式,上面就是一些常用的规律公式,希望能对学习排列组合有所帮助。

排列和组合计算公式

排列和组合计算公式

排列组合公式/排列组合计算公式排列A------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m) 或P(n,m)表示.A(n,m)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);公式A是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列A”计算范畴。

以上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=A(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析 例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解 依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评 按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3 判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4 证明. 证明 左式 右式. ∴ 等式成立. 点评 这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5 化简. 解法一 原式 解法二 原式 点评 解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6 解方程:(1);(2). 解 (1)原方程 解得. (2)原方程可变为 ∵ ,, ∴ 原方程可化为. 即 ,解得第六章 排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明 加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明 排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有( )A.60个B.48个C.36个D.24个解 因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四 例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解: 甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C3 8×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解 设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8 若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解 分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

排列组合公式总结大全(3篇)

排列组合公式总结大全(3篇)

第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。

它广泛应用于统计学、概率论、计算机科学、组合数学等领域。

以下是对排列组合中常用公式的总结,以供参考。

一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。

2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。

2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。

(2)排列的运算性质与组合的运算性质不同。

四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。

2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。

3. 排列组合在统计学中的应用:抽样调查、数据分析等。

三年级下册数学排列组合公式(一)

三年级下册数学排列组合公式(一)

三年级下册数学排列组合公式(一)三年级下册数学排列组合公式1. 排列公式排列是从若干个元素中选取一部分元素按照一定的顺序进行排列的方法。

下面是三年级下册数学中常见的排列公式:无重复元素的排列公式对于无重复元素的排列,我们使用以下公式来计算排列总数:无重复元素的排列公式(其中,P表示排列,n表示元素的个数,n!表示n的阶乘。

例子:假设有5个不同的水果(苹果、香蕉、橙子、草莓、葡萄),从中选出3个水果进行排列。

根据公式,我们有:[计算无重复元素的排列总数](因此,从5个不同的水果中选出3个水果进行排列的方法数为6种。

有重复元素的排列公式对于有重复元素的排列,我们使用以下公式来计算排列总数:有重复元素的排列公式(其中,n表示总元素的个数,n1、n2、…、nk分别表示重复元素1、2、…、k 的个数。

例子:假设有5个水果(苹果、苹果、橙子、草莓、草莓),从中选出3个水果进行排列。

根据公式,我们有:[计算有重复元素的排列总数](因此,从5个水果中选出3个水果进行排列的方法数为15种。

2. 组合公式组合是从若干个元素中选取一部分元素的方法,和排列不同的是,组合不考虑元素的顺序。

下面是三年级下册数学中常见的组合公式:无重复元素的组合公式对于无重复元素的组合,我们使用以下公式来计算组合总数:无重复元素的组合公式(其中,C表示组合,n表示元素的个数,k表示选取的元素个数。

例子:假设有5个不同的颜色(红、黄、蓝、绿、紫),从中选出2个颜色进行组合。

根据公式,我们有:[计算无重复元素的组合总数](因此,从5个不同的颜色中选出2个颜色进行组合的方法数为10种。

有重复元素的组合公式对于有重复元素的组合,我们使用以下公式来计算组合总数:有重复元素的组合公式(其中,n表示不同元素的个数,k表示选取的元素个数。

例子:假设有3种不同的水果(苹果、橙子、草莓),从中选取2个水果进行组合。

根据公式,我们有:[计算有重复元素的组合总数](因此,从3种不同的水果中选出2个水果进行组合的方法数为8种。

2.2 排列与组合的概念与计算公式

2.2 排列与组合的概念与计算公式

排列与组合的概念与计算公式1.排列 (在乎顺序)全排列:n 个人全部来排队,队长为n 。

第一个位置可以选n 个,第二位置可以选n-1个,以此类推得: P(n,n)=n(n-1)(n-2)……3*2*1= n! (规定0!=1).部分排列:n 个人选m 个来排队(m<=n)。

第一个位置可以选n 个,第二位置可以选n-1个,以此类推,第m 个(最后一个)可以选(n-m+1)个,得:P(n,m)=n(n-1)(n-2)……(n-m+1)= n! / (n-m)! (规定0!=1).2.组合( 不在乎顺序)n 个人m(m<=n)个出来,不排队,不在乎顺序C(n,m)。

如果在乎排列那么就是P(n,m),如果不在乎那么就要除掉重复,那么重复了多少?同样选出的来的m 个人,他们还要“全排”得到P(n,m),所以得: C(n,m) * m! = P(n,m)C(n,m)= P(n,m) / m!=n! / ( (n-m)! * m! )组合数的性质1:)(,n m C C m n n m n ≤=-组合数的性质2:)(,111n m C C C m n m n m n ≤+=--- 如果编程实现,以上两个公式有没有帮助?练习:311P 、811P 、311C 、811C 、9991001C3.其他排列与组合(1)圆排列:n 个人全部来围成一圈为Q(n,n),其中已经排好的一圈,从不同位置断开,又变成不同的队列。

所以:Q(n,n)*n=P(n,n) >>> Q(n)=P(n,n)/n=(n-1)!由此可知,部分圆排Q(n,r)=P(n,r)/r=n!/(r*(n-r)!).(2)重复排列 (有限):k 种不一样的球,每种球的个数分别是a1,a2,...ak,设n=a1+a2+…+ak ,这n 个球的全排列数,为 n!/(a1!*a2!*...*ak!).(3)重复组合 (无限):n 种不一样的球,每种球的个数是无限的,从中选k 个出来,不用排列,是组合,为C(n+k-1,k).证明:假设选出来的数(排好序)1<=b1<=b2<=b3…….<=bk<=n这题的难点就是=号,现在去掉=号,所以有:1<= b1 < b2+1 < b3+2 < b4+3 …….< bk+k-1 <=n+k-1 中间还是k 个数!不过已经不是b 系列,而是c 系列 假设c[i]:=b[i]+i-1,所以1<= c1 < c2 < c3 < c4 …….< ck <=n+k-1所以问题就开始转换为无重复组合问题,即在n+k-1个元素中选中k个的组合数C(n+k-1,k)。

组合数和排列数公式

组合数和排列数公式

组合数和排列数公式
组合数和排列数是数学中的重要概念,它们可以帮助我们解决许多实际问题。

组合数和排列数的公式分别为:
组合数:C(n,m)= n!/(m!*(n-m)!)
排列数:A(n,m)= n!/(n-m)!
其中,n和m分别表示总数和取出的数量。

组合数是从n个不同元素中取出m个元素,构成一个组合的可能性数量。

比如,从10个不同的数字中取出3个数字,构成一个组合的可能性数量就是C(10,3)= 10!/(3!*(10-3)!)= 120。

排列数是从n个不同元素中取出m个元素,按照一定顺序排列的可能性数量。

比如,从
10个不同的数字中取出3个数字,按照一定顺序排列的可能性数量就是A(10,3)= 10!/(10-3)!= 720。

组合数和排列数的公式可以帮助我们解决许多实际问题,比如,在抽奖活动中,可以用组合数来计算中奖的可能性;在排列组合中,可以用排列数来计算不同排列的可能性。

总之,组合数和排列数是数学中重要的概念,它们的公式可以帮助我们解决许多实际问题。

排列组合和排列组合计算公式

排列组合和排列组合计算公式

排列组合公式/排列组合计算公式排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排列组合和排列组合计算公式

排列组合和排列组合计算公式

排列组合公式/排列组合计算公式排列 P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合" 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信②每两人互握了一次手,共握了多少次手(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法②从中选2名参加省数学竞赛,有多少种不同的选法(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商②从中任取两个求它的积,可以得到多少个不同的积(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法②从中选出2盆放在教室有多少种不同的选法分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有()个个个个解因为要求是偶数,个位数只能是2或4的排法有P1;小于50 000的五位数,2万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()种种种种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6在(x- )10的展开式中,x 6的系数是() -27CB.27C 410-9CD.9C 410解设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C 410(- )4=9C 410 故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x 2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为 在(x-1)6中含x 3的项是C 36x 3(-1)3=-20x 3,因此展开式中x 2的系数是-2 0. (五)综合例题赏析例8若(2x+ )4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有() 种种种种解分医生的方法有P 22=2种,分护士方法有C 24=6种,所以共有6×2=12种不同的分配方法。

排列组合计算公式举例说明

排列组合计算公式举例说明

排列组合计算公式举例说明排列组合是数学中常用的计数方法,用于计算一些集合中的元素的不同组合和排列的总数。

排列是从集合中选择一定数量的元素进行组合,并按照一定的顺序进行排列。

组合是从集合中选择一定数量的元素进行组合,不考虑元素的顺序。

下面将分别说明排列和组合的计算公式,并给出具体的例子。

一、排列:排列的计算公式是P(n,r)=n!/(n-r)!,其中P表示排列,n表示集合中的元素总数,r表示选择的元素数量,!表示阶乘。

例1:有5只猫排成一排,问有多少种不同的排列方式。

解:根据排列的计算公式,可以得到P(5,5)=5!/(5-5)!=5!/0!=5!=5×4×3×2×1=120,所以有120种不同的排列方式。

例2:有10本书,从中选出3本书排成一排,问有多少种不同的排列方式。

解:根据排列的计算公式,可以得到P(10,3)=10!/(10-3)!=10!/7!=10×9×8=720,所以有720种不同的排列方式。

二、组合:组合的计算公式是C(n,r)=n!/(r!×(n-r)!),其中C表示组合,n表示集合中的元素总数,r表示选择的元素数量,!表示阶乘。

例1:有6只猫,从中选择3只猫,问有多少种不同的组合方式。

解:根据组合的计算公式,可以得到C(6,3)=6!/(3!×(6-3)!)=6!/(3!×3!)=6×5×4/(3×2×1)=20,所以有20种不同的组合方式。

例2:有8个人,从中选出4个人组成一个委员会,问有多少种不同的组合方式。

解:根据组合的计算公式,可以得到C(8,4)=8!/(4!×(8-4)!)=8!/(4!×4!)=8×7/(2×1)=28,所以有28种不同的组合方式。

排列组合在实际生活中有很多应用,例如:1.彩票中奖号码的排列组合:在选择彩票号码时,我们有时会从1到49中选择6个数字组成一组号码,这就是一种排列组合的问题。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例15位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解:5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个 D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种 解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式? 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种; 丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种; 丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6 在(x- )10的展开式中,x 6的系数是( )A.-27C 610B.27C 410C.-9C 610D.9C 410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0. (五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例92名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种 D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

排列数公式例子(一)

排列数公式例子(一)

排列数公式例子(一)排列数公式在组合数学中,排列数(permutation)是指从一组元素中选取出一部分元素按照一定的顺序排列的方法数。

排列数公式是用来计算排列数的公式。

公式格式排列数公式的一般形式如下:P(n, k) = n! / (n-k)!其中,n代表元素的总个数,k代表选取的元素个数,n!表示n的阶乘。

例子解析下面列举几个例子,通过排列数公式进行解析:例子1:从5个元素中选取2个元素的排列数根据排列数公式,我们可以计算出:P(5, 2) = 5! / (5-2)! = 5! / 3!= 5 × 4 × 3! / 3!= 5 × 4= 20所以,从5个元素中选取2个元素的排列数为20。

例子2:从10个元素中选取4个元素的排列数同样地,根据排列数公式进行计算:P(10, 4) = 10! / (10-4)! = 10! / 6!= 10 × 9 × 8 × 7 × 6! / 6!= 10 × 9 × 8 × 7= 5040所以,从10个元素中选取4个元素的排列数为5040。

例子3:从7个元素中选取7个元素的排列数当选取的元素个数等于总元素个数时,排列数公式简化为:P(7, 7) = 7! / (7-7)! = 7! / 0!由于0!的定义为1,所以:P(7, 7) = 7! / 1= 7!= 7 × 6 × 5 × 4 × 3 × 2 × 1= 5040所以,从7个元素中选取7个元素的排列数也为5040。

总结通过排列数公式,我们可以计算出从一组元素中选取部分元素的排列数。

根据公式,我们可以灵活地进行排列数的计算,以满足不同问题的需求。

例子4:从6个元素中选取3个元素的排列数我们可以使用排列数公式计算:P(6, 3) = 6! / (6-3)! = 6! / 3!= 6 × 5 × 4 × 3! / 3!= 6 × 5 × 4= 120所以,从6个元素中选取3个元素的排列数为120。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式? 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种; 丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种; 丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6 在(x- )10的展开式中,x 6的系数是( ) A.-27C 610 B.27C 410 C.-9C 610 D.9C 410 解 设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0. (五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式在我们的日常生活和学习中,经常会遇到需要计算可能性数量的情况,比如抽奖的中奖概率、体育比赛的对阵安排等等。

这时候,排列组合公式和计算公式就派上用场了。

首先,咱们来聊聊什么是排列。

排列指的是从给定的元素集合中,按照一定的顺序选取若干个元素进行排列。

比如说,从数字 1、2、3中选取两个数字进行排列,那么可能的情况有 12、21、13、31、23、32 这六种。

排列的计算公式是:A(n, m) = n! /(n m)!这里的“!”表示阶乘,比如 5! = 5 × 4 × 3 × 2 × 1 。

在这个公式中,n 表示总元素的数量,m 表示选取的元素数量。

举个例子,从 5 个不同的元素中选取 3 个进行排列,那么排列的数量就是 A(5, 3) = 5! /(5 3)!= 5 × 4 × 3 = 60 种。

接下来,咱们再说说组合。

组合则是从给定的元素集合中,选取若干个元素,不考虑它们的顺序。

比如说,从数字 1、2、3 中选取两个数字的组合,就只有 12、13、23 这三种情况。

组合的计算公式是:C(n, m) = n! / m! ×(n m)!同样,n 表示总元素的数量,m 表示选取的元素数量。

比如说,从 6 个不同的元素中选取 4 个元素的组合数量,就是 C(6, 4) = 6! /(4! ×(6 4)!)= 15 种。

为了更好地理解排列组合的概念和公式,咱们来做几道实际的题目。

假设一个班级有 10 名学生,要选出 3 名学生参加比赛。

如果是排列,那么这 3 名学生的出场顺序是有讲究的,可能的排列数就是 A(10, 3) = 10! /(10 3)!= 720 种。

但如果只是组合,也就是不考虑这 3 名学生的出场顺序,那么组合数就是 C(10, 3) = 10! / 3! ×(10 3)!= 120 种。

排列组合问题公式

排列组合问题公式

排列组合是数学中常见的一个概念,用于计算一组事物的不同选择和排列方式的总数。

在很多实际问题中,我们经常需要计算排列组合的个数,比如在概率论、统计学、计算机科学等领域中。

在排列组合中,我们常常遇到两个主要的概念,分别是排列和组合。

一、排列排列是指从一组事物中按照一定的顺序选取若干个事物进行排列,这些事物通常具有明确的先后次序。

如果从n个不同的事物中选取m个进行排列,这种排列的数目记为P(n, m)或者nPm。

排列的计算公式如下:P(n, m) = n! / (n - m)!其中,n!表示n的阶乘,即n! = n * (n - 1) * (n - 2) * … * 3 * 2 * 1。

排列的应用非常广泛,比如在密码学中,可以用来计算密码的位数和种类组合方式,从而确定密码的破解难度;在概率统计中,可以用来计算事件的发生概率等。

二、组合组合是指从一组事物中选取若干个事物进行组合,这些事物之间通常没有明确的先后次序。

如果从n个不同的事物中选取m个进行组合,这种组合的数目记为C(n, m)或者nCm。

组合的计算公式如下:C(n, m) = n! / (m! * (n - m)!)组合数目的计算方法比排列简单一些,因为组合只考虑选取事物的组合方式,而不考虑它们的排列顺序。

组合的应用也非常广泛,比如在概率统计中的二项分布、组合数学、图论、社会科学等领域都有它的身影。

三、排列组合的应用举例 1. 在一场比赛中,有8个选手参加,如果要计算前3名的组合方式,可以通过排列的方式计算,即P(8, 3) = 8! / (8 - 3)! = 8! / 5! = (8 * 7 * 6) / (3 * 2 * 1) = 8 * 7 * 6 = 336。

2.在一个班级中,有10个男生和12个女生,如果要从中选出5个人组成一个小组,可以通过组合的方式计算,即C(22, 5) = 22! / (5! * (22 - 5)!) = 22! / (5! * 17!) = (22 * 21 * 20 * 19 * 18) / (5 * 4 * 3 * 2 * 1) = 22 * 21 * 20 * 19 *18 / 5 * 4 * 3 * 2 * 1 = 33649。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百位 十位 个位 百位 十位 个位 百位 十位 个位
0
0
A
3 9
A
3
2 9
A
2
2 9
根据加法原理
648 A9 2 A9
解法三:间接法.
从0到9这十个数字中任取三个 3 数字的排列数为 10 ,
A
其中以0为排头的排列数为
A
. 9
2
∴ 所求的三位数的个数是
A A
3 10
10 9 8 9 8 648 . 9
例 由数字1,2,3,4可 以组成多少个没有重复数字 的三位数?
1 2
1 3 1 4
1 2 3 1 2 4 1 3 2
2 1
2 3 2 4
2 1 3 2 1 4 2 3 1
1
1 3 4 1 4 2
1 4 3 3 1 2 3 1 4
2
2 3 4 2 4 1
2 4 3 4 1 2 4 1 3
3 1 3 3 2
2
( 2) A A A
m n k n
mk nk
(k m n)
(n 1)! n! (n k 1) n! (3) k! (k 1)! k!
你能用学过的方法,举一实际的 例子说明(1)、(2)吗?
练习:
求解下列各式的值或解方程。
(1) A
4 2 n 1 4 8 8 8
4 1 4 2
3 2 1
3 2 4 3 4 1 3 4 2 4
4 2 1
4 2 3 4 3 1 4 3 2
3 4
4 3
一般地说,从 n 个不同元素 中,任取 m (m≤n) 个元素(本章 只研究被取出的元素各不相同的 情况),按照一定的顺序排成一 列,叫做从 n 个不同元素中取出 m 个元素的一个排列。
下列问题是排列问题吗?
(1)从1,2,3,4四个数字中,任选两个做加 法,其结果有多少种不同的可能?
(2)从1,2,3,4四个数字中,任选两个做除 法,其结果有多少种不同的可能? (3)从1到10十个自然数中任取两个组成点的坐 标,可得多少个不同的点的坐标?
(4)平面上有5个点,任意三点不共线,这五点 最多可确定多少条直线?可确定多少条射线? (5)10个学生排队照相,则不同的站法有多少 种?
2 (1) An 56,求n。
(2) A 2 A ?
4 8 2 8 7 5 An An (3)已知 89,求n。 5 An 5 6 2 A7 A6 (4) ? 6!5! 3 2 2 (5)3 Ax 2 Ax 6 A 1 x ,求x。
例5 求证下列各式: m m 1 (1) An n An 1
排列 与 排列数公式
10.2 排列 问题1 北京、上海、广 州三个民航站之间的直达 航线,需要准备多少种不 同的飞机票?
起点站 北京
上海
终点站
上海 广州
飞机票
北京 北京 上海 广州
北京
广州
上海
上海 广州
北京
广州 北京
广州
北京
上海
广州
上海
我们把上面问题中被取的对象 叫做元素。于是,所提出的问题就 是从3个不同的元素a、b、c中任取 2个,然后按一定的顺序排成一列, 求一共有多少种不同的排列方法。
cdbd bc cdadacbd ad ab bcacab
b c d
a
a c d
b
a b d
c
a b c
d
所有的排列为:
abc bac cab dab
abd
acb acd
bad
bca bcd
cad
cba cbd
dac
dba dbc
adb
adc
bda
bdc
cda
cdb
dca
dcb
排列数公式
从 n 个不同元素中取出 m (m≤n) 个元素的所有排列的个数, 叫做从 n 个不同元素中取出 m 个 m 元素的排列数,用符号 n 表示。
140 A
5 8
3 n
4A 2A ( 2) ? 5 A A9 A A (3) ? A A
5 8 6 9 4 8 5 9
( 4) A
n3 2n
A
n 1 6
?
例6 某信号兵用红、黄、蓝三面 旗从上到下挂在竖直的旗杆上表示 信号,每次可以任挂一面、二面或 三面,并且不同的顺序表示不同的 信号,一共可以表示多少种不同的 信号?
n
n ( n 1 ) ( n 2 ) •· · · •3 •2 •1 An
n An !
n
例1 计算:
(1) A ; A ( 2) ; A (3) A .
16 8 12 7 12 6 6
3
161514 3360
121110 9 8 7 6 5 5 121110 9 8 7 6
例2 某段铁路上有12个 车站,共需要准备多少种 普通客票?
12 11 132 ( 种 ) A12
2
例3
有5名男生,4名女生排队。
(1)从中选出3人排成一排,有多 少种排法? (2)全部排成一排,有有多少种排 法? (3)排成两排,前排4人,后排5人, 有多少种排法?
例4 应用公式解以下各题:
A
第 1位
第 2位
A
n n-1
第 1位 第 2位 第 3位
2
n ( n 1 ) n
第 m位
· · · · · ·
n n-1 n-2 n-m+1
A
m n
n (n 1) (n 2) (n m 1)
A
m n
n (n 1) (n 2) (n m 1)
例7 用 0 到 9 这十个数字, 可以组成多少个没有重复数 字的三位数?
解法一:对排列方法分步思考。
百位
1 1
十位
1
个位
9 9 8 648 A9 A9 A8
9 9 8 648 A9 A9
1 2
解法二:对排列方法分类思考。 符合条件的三位数可分为两类:
(从中归纳这几类问题的区别)
排列的定义中包含两个基本内容: 一个是“取出元素”;二是“按照 定顺序排列”,“一定顺序”就是 位置有关,这也是判断一个问题 是不是排列问题的重要标志。 根据排列的定义,两个排列相同, 且仅当两个排列的元素完全相同, 而且元素的排列顺序也相同。
例 写出从 a , b , c , d 四 个元素中 任取三个元素的 所有排列。
6!=6×5×4×3×2×1=720
变式题:
m 1 、如果An 17 16 5 4
则n ,m Biblioteka 2、若n N , 则 (55 n)(56 n) (68 n)(69 n) 用排列数符号表示为
3 3 3 、如果A2 10 A n n , 则n
7 5 An An 4、如果 89, 则n 5 An
相关文档
最新文档