第5章 受压构件截面承载力计算

合集下载

终极版:第5章(受压构件的截面承载力)例题讲解

终极版:第5章(受压构件的截面承载力)例题讲解
As 选配 2 22 2 25( As 1742mm 2 ) As 选配 2 18 1 16( As 710mm 2 )
x
N f y As f y As
1 f c b
396 103 360 710 360 1742 1.0 14.3 300
h0 h as 600 45 555mm
ea h 30 600 30 20mm
N 4600 103 轴压比 1.15 0.9 f cbh 16.7 400 600
需考虑 P- 效应。
例 5-10 讲解
M1 Cm 0.7 0.3 0.7 0.3 0.5 0.85 M2
45 2 4600 103 206.74 2 0.8 360 615 1 2 0.518 0.8116.7 400 555 555 116.7 400 555 1.2358
u u 2 v 0.1136
例 5-10 讲解
h Ne f cbh h0 2 As as f yh0 4600 103 247 16.7 400 600 555 600 2 360 555 45 615mm 2 min bh 0.002 400 600 480mm 2
取 Cm ns 1
例 5-10 讲解
M Cm ns M 2 1130 130kN m
第5章 受压构件
M 130 106 28.26mm ( 通常取 e0 28mm 计算即可 ) e0 3 N 4600 10 ei e0 ea 28.26 20 48.26mm
第5章 受压构件

(轴心)受压构件正截面承载力计算

(轴心)受压构件正截面承载力计算

(2)破坏特征 1)螺旋筋或焊接环筋在约束 核心混凝土的横向变形时产生 拉应力,当它达到抗拉屈服强 度时,就不再能有效地约束混 凝土的横向变形,构件破坏。 2)螺旋筋或焊接环筋外的混 凝土保护层在螺旋筋或焊接环 筋受到较大拉应力时就开裂, 故在计算时不考虑此部分混凝 土。
螺旋箍筋柱破坏情况
2.适用条件和强度提高原理 12(短柱) ; (1)适用条件:①l0 / d ②尺寸受到限制。 注意:螺旋箍筋柱不如普遍箍筋柱经济,一般不宜采用。 根据图7-8 所示螺旋箍筋柱截面 受力图式,由平衡条件可得到
150mm或15倍箍筋直径(取较大者)范围,则应设置复合箍 筋。
a)、b)S内设3根纵向受力钢筋
c)S内设2根纵向 受力钢筋
复合箍筋的布置
7.2 螺旋箍筋轴心受压构件
1.受力分析及破坏特征 (1)受力分析 螺旋箍筋或焊接圆环箍筋能约束混凝土在轴向压力作用 下所产生的侧向变形,对混凝土产生间接的被动侧向压力,
d cor As 01
S
As 01
As 0 S d cor
将式(2)代入式(1),则可得到
2
2 f s As 01 2 f s As 0 S 2 f s As 0 f s As 0 f s As 0 2 2 d cor S d cor S d cor 2 Acor d cor d cor 2 4
态、承载力计算;
2.配有纵向钢筋和螺旋箍筋的轴心受压构件的破坏形 态、承载力计算; 3.稳定系数的概念及其影响因素; 4.核心混凝土强度分析及强度计算;
5.普通箍筋柱、螺旋箍筋柱的配筋特点和构造要求。
7.1 普通箍筋轴心受压构件
1.钢筋混凝土轴心受压柱的分类
普通箍筋柱:配有纵筋 和箍筋的柱 (图7-1a)。 螺旋箍筋柱:配有纵筋 和螺旋筋或焊接环筋的 柱,(图7-1b)。 其中:纵筋帮助受压、承 担弯矩、防止脆性破坏。 螺旋筋提高构件的强 度和延性。

5.受压构件的截面承载力

5.受压构件的截面承载力
α1fcbx
x ¢ ¢ N e f b x ( a¢ 或: u 1 c s ) s s As ( h0 a s ) 2 h

1 f ¢ s f y s y ss fy b 1
2
ei a¢ s
当偏心距很小且轴力较大时,能使远离轴向力一侧 纵筋屈服 ——反向破坏。
二、小偏心受压构件的计算
已知截面参数,N和M,求As’和As 。
公式:
未知量个数
¢ ¢ N 1 f cbx f y As s s As
1 ss fy b 1
x ¢ ¢ ¢ N e 1 f c b x (h0 ) f y As (h0 a s ) 2
> b ––– 小偏心受压 ae
偏心受压构件的试验研究
As<< As’时 会有As fy
e0 N e0 N e0 N e0 N
As
ss
As’f y’
fc
As
ss
As’f y’
fc
As
ss
As’f y’
fc
As fy
As’f y’
fc
h0
h0
h0
h0
e0 N e0很小 As适 中
Байду номын сангаас
e0 N
e0较小
f'yA's
Nu b 1 fcbh0b f A f y As
' y ' s
若N N u b则为小偏心受压 若N N u b则为大偏心受压
当ei 0.3h0时,按小偏心受压计算 , 当ei 0.3h0时,可按大偏心受压计 算(但不一定为大偏压 )

第五章受压构件计算

第五章受压构件计算

8 f y Ass1 s dcor
Acor
20
2 、 正截面受压承载力计算
(a) (b)
2
s
(c)
Ass 1 Acor S d cor
Ass 1
2 d cor
S d cor
4
Ass 1 d cor 4S
箍筋的换算纵筋面积:
dcor
按体积相等原则换算
s
1.0l
0.7l 0.5l 实际结构按 规范规定取值
一端固定,一端自由
2.0l
4、公式应用
• 截面设计:
已知:fc, f y, l0, N, 求As、A
A N 0.9 ( f c ' f y' )
设ρ’(0.6%~2%), φ=1
N -f c Ac ) 0.9 As f y (
27
受拉破坏时的截面应力和受拉破坏形态 (a)截面应力 (b)受拉破坏形态
N
cu
e0 N
fyAs
f yAs
(a)
N
(b)
2、受压破坏
产生受压破坏的条件有两种情况: ⑴当相对偏心距e0/h0较小,截面全部受压或大部分受压 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
N N
As 太 多
17
混凝土圆柱体三向受压状态的纵向抗压强度
1 f c 4 2
2 、 正截面受压承载力计算
(a) (b)
2
s
(c)
dcor fyAss1
s
2
fyAss1
1 f c 4 2
达到极限状态时(保护层已剥落,不考虑)
Nu 1 Acor f y As

第五章1 钢筋混凝土受压构件正截面承载力计算w

第五章1 钢筋混凝土受压构件正截面承载力计算w
柱的破坏形态
5-6弯曲变形
5-7轴心受压长柱的破坏形态
试验结果表明长柱的承载力低于相同条件短柱的承载 试验结果表明长柱的承载力低于相同条件短柱的承载 力,目前采用引入稳定系数Ψ的方法来考虑长柱纵向 挠曲的不利影响, 挠曲的不利影响,Ψ值小于1.0,且随着长细比的增大 而减小。 而减小。
表5-1 钢筋混凝土轴心受压构件的稳定系数面承载力计
5.2.1 受力过程及破坏特征 轴心受拉构件从开始加载到破坏, 轴心受拉构件从开始加载到破坏,其受力过程可 分为三个不同的阶段: 分为三个不同的阶段: 1.第I阶段 开始加载到混凝土开裂前, 属于第I 阶段。 从 开始加载到混凝土开裂前 , 属于第 I 阶段 。 此 纵向钢筋和混凝土共同承受拉力, 时 纵向钢筋和混凝土共同承受拉力,应力与应变大致 成正比,拉力 N与截面平均拉应变 ε 之间基本上是线 成正比, 性关系, 性关系,如图5-2a中的OA段。
当现浇钢筋混凝土轴心受压构件截面长边或直径 小于300㎜时 ,式中混凝土强度设计值应乘以系数0.8 (构件质量确有保障时不受此限)。 4. 构造要求 (1)材料 混凝土强度对受压构件的承载力影响较大, 混凝土强度对受压构件的承载力影响较大,故宜 采用强度等级较高的混凝土 强度等级较高的混凝土, 采用强度等级较高的混凝土,如C25,C30,C40等。 在高层建筑和重要结构中, 在高层建筑和重要结构中,尚应选择强度等级更高的 混凝土。 混凝土。 钢筋与混凝土共同受压时, 钢筋与混凝土共同受压时 , 若钢筋强度过高 ( 如 则不能充分发挥其作用, 高于 0.002Es) , 则不能充分发挥其作用 , 故 不宜用高 强度钢筋作为受压钢筋。同时, 强度钢筋作为受压钢筋。同时,也不得用冷拉钢筋作 为受压钢筋。 为受压钢筋。

受压构件

受压构件

第 6 章 受压构件的截面承载力第 5 章 受压构件的截面承载力本章要点受压构件的一般构造要求; 轴心受压构件正截面受压承载力; 偏心受压构件正截面受压破坏形态; 矩形截面偏心受压构件受压承载力计算; 对称配筋 I 形截面偏心受压构件受压承载力计算; 偏心受压构件斜截面受剪承载力计算;第 6 章 受压构件的截面承载力概述以承受轴向压力为主的构件属于受压构件。

轴心受压构件 受压构件 偏心受压构件 单向偏心受压构件 双向偏心受压构件5.1 受压构件的一般构造要求截面形式及尺寸受压构件一般使用方形、矩形、圆形或多边形,为了 节省材料有时用I形截面,为了适应建筑要求,近些年 异形柱越来越多被使用。

第 6 章 受压构件的截面承载力方形柱的截面尺寸不宜小于250×250mm; 柱的长细比常取 l0/b ≤30, l0/h ≤25; 为施工方便,截面尺寸宜用 50mm的倍数(<800mm) 100mm的倍数(≥800mm) 对于I形截面 翼缘厚度不宜小于120mm 腹部厚度不宜小于100mm材料强度混凝土强度等级对受压构件的承载能力影响较大,为了减 小构件的尺寸,节省钢材,宜采用较高强度等级的混凝土。

纵向钢筋一般采用HRB400级、HRB335级和RRB400级, 不宜采用高强钢筋,这是因为它与混凝土共同受压时,不能 充分发挥其高强度的作用。

箍筋同梁。

第 6 章 受压构件的截面承载力纵筋配筋率:全部纵筋的配筋率≥ 0.6%,同时一侧≥0.2%; 全部纵筋的配筋率不宜大于5%; 钢筋的布置 轴心受压构件:沿截面四周均匀放置 ; 钢筋根数不少于4根 ; 偏心受压构件:纵向受力钢筋放置在偏心 方向截面的两边; h≥600mm,须设构造筋; 钢筋间距:净距不应小于50mm,中距不大于300mm; 钢筋连接:可用机械连接、焊接连接和搭接连接,对于 直径大于28mm的受拉钢筋和直径大于30mm的受 压钢筋接头不宜用绑扎搭接的连接方法。

第五章 受压构件的截面承载力

第五章 受压构件的截面承载力

12
3.受压短柱承载力
N 混凝土压碎 钢筋凸出
钢筋屈服
混凝土压碎
N
达到最大承载力时混凝土压坏。 o
l
c' f c 应变 c' 0
如果 y 0则钢筋已经屈服 s' f y' 如果 y 0则钢筋未屈服但 f
' s ' y
fc f y As
(注意f y' 取值原则)
6e0 N 弹性材料 ( 1 ) A h
钢筋混凝土偏心受压构件的破坏形态与 偏心距e0和纵向钢筋配筋率有关
20
一、偏心受压短柱的破坏形态
(一)受拉破坏(大偏心受压破坏)
条件:偏性距较大且As不过多。 靠近纵向力一侧受压,远离纵向力一侧受拉。截面受拉侧混 凝土较早出现裂缝,As的应力随荷载增加发展较快,首先达 到屈服强度。此后,裂缝迅速开展,受压区高度减小,压区 混凝土压碎而达到破坏。受压侧钢筋A‘s 一般能受压屈服。
普通箍筋柱:
螺旋箍筋柱:箍筋的形状为圆形, 且间距较密,其对混凝土的约束作 用较强。
9
纵筋的作用:
◆ ◆ ◆
协助混凝土受压减小截面尺寸、改善截面延性。
承担弯矩作用
减小持续压应力下混凝土收缩和徐变的影响。
箍筋的作用: 与纵筋组成空间骨架,避免纵筋受压外凸。
10
一、配有纵向钢筋和普通箍筋柱
1.试验分析
混凝土:混凝土强度等级对受压构件的承载影响较大,一 般应采用强度等级较高的混凝土。目前我国一般结构中柱 的混凝土强度等级常用C30~C40,在高层建筑中, C50~C60级混凝土也经常使用。 钢筋:纵筋:HRB400 HRB500。箍筋:HRB400 HPB300。

第五章受弯承载力计算双筋矩形截面

第五章受弯承载力计算双筋矩形截面

M 0
hf M u 1 f cbf hf (h0 ) 2
判别条件:
h xh f M a1 f cbf hf (h0 ) 第一类 T形截面 2
f
f
• 截面设计时:
h xh f M a1 f cbf hf ( h0 ) 第二类 T形截面 2 • 截面复核时:
解两个联立方程,求两个未知数x和As:
M u M u1 + M u 2 M u1 As f y (h0 as ) M u 2 M u M u1 x 1 f cbx(h0 ) 2
Mu2 x f y (h0 ) 2
由求出x ,然后由式出As2:
As 2
_ φ 受压钢筋选用3 20mm钢筋,As’=941mm2 。
求:所需受拉钢筋截面面积As
【解】
由附表(纵向受力钢筋的混凝土保护层最小厚度表)知,
环境类别为二级b,假定受拉钢筋放两排,设保护层
最小厚度35mm为故设α s=35+25/2=47.5mm,则
h0=400-47.5=352.5mm
由混凝土和钢筋等级,查附表(混凝土强
1)求计算系数:
M 330 106 s 2 1.0 19.1 200 4002 1 f cbh0
0.446
1 1 2 s 1 1 2 0.4 46
0.672>b 0.55
∴应设计成双筋矩形截面。
取ξ = ξ b,
M u 1 f cbh (1
1 f cbx
fy
1

As1
As f y fy
As f y + 1 f cbx fy

混凝土考试简答题总结

混凝土考试简答题总结

第一章绪论混凝土结构:包括素混凝土结构、钢筋混凝土结构、预应力混凝土结构。

钢筋混凝土结构:由配置受力的普通钢筋,钢筋网或钢筋骨架的混凝土制成结构。

配筋的作用与要求。

作用:在混凝土中配置适量的受力钢筋,并使得混凝土主要承受压力,钢筋主要承受拉力,就能充分起到利用材料,提高结构承载力和变形能力的作用。

要求:在混凝土中设置受力钢筋构成钢筋混凝土,这就要求受力钢筋与混凝土之间必须可靠地粘结在一起,以保证两者共同变形,共同受力。

钢筋和混凝土为什么能有效地在一起共同工作?1)混凝土结硬后,能与钢筋牢固地粘结在一起,相互传递内力。

即粘结力。

2) 由于钢筋和混凝土两种材料的温度线膨胀系数十分接近。

当温度变化时钢筋与混凝土之间不会产生由温度引起的较大相对变形造成的粘结破坏。

3)钢筋埋置于混凝土中,混凝土对钢筋起到了保护和固定作用,使钢筋不容易发生锈蚀,且使其受压时不易失稳,在遭受火灾时不致因钢筋很快软化而导致结构整体破坏。

因此,在混凝土结构中,钢筋表面必须留有一定厚度的混凝土作保护层,这是保持二者共同工作的必要措施。

钢筋混凝土有哪些主要优点和主要缺点。

优点:取材容易,合理用材,耐久性较好,耐火性好,可模性好,整体性好。

缺点:自重较大。

(对大跨度,高层结构抗震不利。

也给运输带来困难)抗裂性较差,施工复杂,工序多,隔热和隔声性能较差。

结构有哪些功能要求?建筑结构的功能包括安全性,适用性和耐久性三个方面。

简述承载力极限状态和正常使用极限状态的概念?承载力极限状态:结构或构件达到最大承载力或变形达到不适用继续承载状态。

正常使用极限状态:结构或构件达到正常使用或耐久性能某项规定限度的状态。

第二章混凝土结构材料的物理力学性能混凝土的变形模量:割线混凝土的弹性模量(原点模量):原点切线混凝土的切线模量:切线。

图2-14徐变:结构或材料承受的应力不变,而应变随着时间增长的现象称为徐变。

徐变对混泥土影响:使构件的变形增加,在钢筋混凝土截面中引起应力重分布的现象,在预应力混凝土结构中会造成预应力损失。

受压构件的截面承载力

受压构件的截面承载力

第3章 受压构件的截面承载力本章提要受压构件是钢筋混凝土结构中的重要章节,它分为轴心受压和偏心受压(单向偏心受压构件和双向偏心受压构件)两部分。

轴心受压构件截面应力分布均匀,两种材料承受压力之和,在考虑构件稳定影响系数后,即为构件承载力计算公式。

对于配有纵筋及螺旋箍筋的柱,由于螺旋箍筋约束混凝土的横向变形,因而其承载力将会有限度的提高。

偏心受压构件因偏心距大小和受拉钢筋多少的不同,截面将有两种破坏情况,即大偏心受压(截面破坏时受拉钢筋能屈服)和小偏心受压(截面破坏时受拉钢筋不能屈服)构件。

在考虑了偏心距增大系数后,根据截面力的平衡条件,即可得偏心受压构件的计算公式。

截面有对称配筋和不对称配筋两类,实用上对称配筋截面居多。

无论是对称配筋或不对称配筋,计算时均应判别大、小偏心的界限,分别用其计算公式对截面进行计算。

本章学习目标:了解轴心受压构件的受力全过程,偏心受压构件的受力工作特性;熟悉两种不同偏心受压构件的破坏特征及由此划分成的两类偏心受压构件,掌握两类偏心受压构件的判别方法;掌握轴心受压构件、两类偏心受压构件的正截面承载力计算方法;掌握偏心受压构件的斜截面承载力计算方法;熟悉受压构件的构造要求。

课堂教学学时:12学时主要教学内容:3.1 受压构件一般构造要求3.1.1 截面型式及尺寸1. 截面型式一般采用方形或矩形,有时也采用圆形或多边形。

偏心受压构件一般采用矩形截面,但为了节约混凝土和减轻柱的自重,较大尺寸的柱常常采用I形截面。

拱结构的肋常做成T形截面。

采用离心法制造的柱、桩、电杆以及烟囱、水塔支筒等常用环形截面。

2. 截面尺寸:(1) 方形或矩形截面柱截面不宜小于300mm×300mm。

为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,通常取l0/b≤30,l0/h≤25。

此处l0为柱的计算长度,b为矩形截面短边边长,h为长边边长。

为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸≤800mm,以50mm 为模数;截面尺寸>800 mm ,以100mm 为模数。

第五章 受弯构件正截面承载力答案

第五章 受弯构件正截面承载力答案

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

1.“噢,居然有土龙肉,给我一块!”2.老人们都笑了,自巨石上起身。

而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

第五章 钢筋混凝土受弯构件正截面承载力计算一、填空题:1、钢筋混凝土受弯构件,随配筋率的变化,可能出现 少筋、 超筋 和 适筋 等三种沿正截面的破坏形态。

2、受弯构件梁的最小配筋率应取 %2.0m i n =ρ 和 y t f f /45min =ρ 较大者。

3、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 。

4.受弯构件min ρρ≥是为了____防止产生少筋破坏_______________;max ρρ≤是为了___防止产生超筋破坏_。

5.第一种T 形截面梁的适用条件及第二种T 形截面梁的试用条件中,不必验算的条件分别是____b ξξ≤___及__min ρρ≥_______。

6.T 形截面连续梁,跨中按 T 形 截面,而支座边按 矩形 截面计算。

7、混凝土受弯构件的受力过程可分三个阶段,承载力计算以Ⅲa 阶段为依据,抗裂计算以Ⅰa 阶段为依据,变形和裂缝计算以Ⅱ阶段为依据。

8、对钢筋混凝土双筋梁进行截面设计时,如s A 与 's A 都未知,计算时引入的补充条件为 b ξξ=。

钢结构受压构件截面承载力计算

钢结构受压构件截面承载力计算

偏心受压构件正截面受压破坏形态偏心受压短柱的破坏形态试验表明,钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。

1.受拉破坏形态受拉破坏又称大偏心受压破坏,它发生于轴向力N的相对偏心距较大,且受拉钢筋配置得不太多时。

受拉破坏形态的特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎,是与适筋梁破坏形态相似的延性破坏类型。

构件破坏时,其正截面上的应力状态如上图(a)所示;构件破坏时的立面展开图见下图(b)。

2.受压破坏形态受压破坏形态又称小偏心受压破坏,截面破坏是从受压区开始的,发生于以下两种情况。

(1)当轴向力N的相对偏心距较小时,构件截面全部受压或大部分受压,如图(a)或下图(b)所示的情况。

(2)当轴向力的相对偏心距虽然较大,但却配置了特别多的受拉钢筋,致使受拉钢筋始终不屈服。

破坏时,受压区边缘混凝土达到极限压应变值,受压钢筋应力达到抗压屈服强度,而远侧钢筋受拉而不屈服,其截面上的应力状态如下图(a)所示。

破坏无明显预兆,压碎区段较长,混凝土强度越高,破坏越带突然性,见下图(c)。

总之,受压破坏形态或称小偏心受压破坏形态的特点是混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都不屈服,属于脆性破坏类型。

在“受拉破坏形态”与“受压破坏形态”之间存在着一种界限破坏形态,称为“界限破坏”。

它不仅有横向主裂缝,而且比较明显.。

其主要特征是:在受拉钢筋应力达到屈服强度的同时、受压区混凝土被压碎。

界限破坏形态也属子受拉破坏形态。

长柱的正截面受压破坏试验表明,钢筋混凝土柱在承受偏心受压荷载后,会产生纵向弯曲。

但长细比小的柱,即所谓“短柱”,由于纵向弯曲小,在设计时一般可忽略不计。

对于长细比较大的柱则不同,它会产生比较大的纵向弯曲,设计时必须予以考虑。

下图是一根长柱的荷载一侧向变形(N -f)实验曲线。

偏心受压长柱在纵向弯曲影响下‘可能发生两种形式的破坏。

长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”。

钢筋混凝土受压构件

钢筋混凝土受压构件

§5-3 偏心受压构件正截面承载力计算
1.2 第二类破坏情况——受压破坏
(3)偏心距较大,受拉钢筋配置过多。(超筋) 如图,当偏心距较大时,本应发生第一类大偏心受压破 坏,但若受拉钢筋配置过多,则受拉一侧的钢筋应力达 不到屈服强度,这种破坏与超筋梁类似。设计应避免。
实际工程中真正的轴心受压 构件是没有的。 我国规范目前仍把这两种构 件分别计算。 对偏心很小的构件可略去不 计,构件按轴心受压计算。
(a)轴心受压
(b)单向偏心受压 (压构件的构造要求
1.截面形式和尺寸 ❖为了模板的制作方便,受压构件一般均采用方形或矩形截面。
§5-1 受压构件的构造要求
4. 箍筋
3)间距:柱中箍筋直径不应小于0.25倍纵筋的最大直径,也不应小 于6mm。 箍筋间距s应符合下列三个条件: І)s 15d(绑扎骨架)或s 20d(焊接骨架),d为纵筋的最小直径。 П)s b,b为截面的短边尺寸。 Ⅲ) s400mm。 4)当纵筋的接头采用绑扎搭接时,则在搭接长度范围内箍筋应加密。
根据上述试验分析,配置普通箍筋的钢筋砼短柱的正截面极限承载 力由砼及纵向钢筋两部分受压承载力组成。即
Nu
fc Ac
f y
As
适用于比较粗的短柱
Nu——破坏时的极限轴向力; Ac——混凝土截面面积; As’——全部纵向受压钢筋截面面积。
§5-2 轴心受压构件正截面承载力计算
2. 普通箍筋短柱正截面极限承载力
§5-2 轴心受压构件正截面承载力计算
2. 普通箍筋短柱正截面极限承载力
受压构件的计算长度l0与其两端的约束情况有关,可自表5-2查得。
§5-2 轴心受压构件正截面承载力计算
3. 普通箍筋柱的计算

05偏心受压构件斜截面受剪承载力计算

05偏心受压构件斜截面受剪承载力计算

偏心受压构件斜截面受剪承载力计算
一、偏心受压构件斜截面受剪承载力设计值
式中:1、偏心受压构件计算截面的剪跨比;
①对各类结构的框架柱,
②当框架结构中柱的反弯点在层高范围内时,,(为柱的净高)
③时,;时,
④为计算截面上与剪力设计值对应的弯矩设计值;
⑤承受均布荷载时
⑥承受集中荷载时(包括作用由多种荷载且集中荷载对支座截面或节点边缘所产生的剪力值占总
剪力的75%以上的情况),取当时,取当时,取
2、与剪力设计值相应的轴向压力设计值;当时,取。

二、符合下列公式要求时,可不进行斜截面受剪承载力计算,仅需根据构造要求配置箍筋;。

第5章 受压构件思考题和习题答案

第5章 受压构件思考题和习题答案

钢筋混凝土受压构件计算题1、某轴心受压柱,截面尺寸b ×h =400×500mm ,计算长度l 0=4.8m ,采用混凝土强度等级为C25,HPB235级钢筋,承受轴向力设计值N =1670kN ,计算纵筋数量。

【解】由已知条件知:ƒc =11.9N/mm 2, f y '=210N/mm 2⑴计算稳定系数φl 0/b =4800/400=12,查表得:φ=0.95⑵计算纵筋截面面积A s ',并校验ρ'由于11.940050023801670c f A KN KN =⨯⨯=>,即混凝土的抗压能力已经满足轴向力的要求,所以纵筋按照构造要求配置即可。

2min0.6%4005001200s A A mm ρ''=⨯=⨯⨯= ⑶配筋采用4Φ20,2212561200sA mm mm '=>,可以。

截面每一侧配筋率0.512560.003140.2%400500ρ⨯'==>⨯,可以。

所以,选用4根直径20mm 的HPB235级钢筋,21256sA mm '=。

2、某钢筋混凝土偏心受压柱,承受轴向压力设计值N =250kN ,弯矩设计值M =158kN·m ,截面尺寸为b ×h =300×400mm ,a s =a s '=40mm ,柱的计算长度l 0=4.0m ,采用C25混凝土和HRB335钢筋,进行截面对称配筋设计。

【解】由已知条件知:ƒc =11.9N/mm 2, f y '=f y =300N/mm 2⑴计算初始偏心距e ie 0=N M =631581025010⨯⨯=632mm e a ={30h ,20mm }max ={13mm ,20mm }max =20mmi 0a ⑵计算偏心距增大系数ηh 0=400-40=360mml 0/h =4000/400=10>5,应考虑附加弯矩的影响。

钢筋混凝土偏心受压构件正截面承载力计算

钢筋混凝土偏心受压构件正截面承载力计算

2、受压破坏(小偏心受压) As受压不屈服
As受拉不屈服
As受压屈服
As受压屈服时 As受压屈服判断条件
大小偏心近似判据 真实判据
不对称配筋
大偏心受压不对称配筋 小偏心受压不对称配筋
实际工程中,受压构件常承受变号弯矩作用,所以采用对 称配筋 对称配筋不会在施工中产生差错,为方便施工通常采用对 称配筋
随l 0/h的增加而减小,通过乘一个修正系数ζ2(称为偏
心受压构件长细比对截面曲率的影响系数)
实际考虑是在初始偏心距ei 的基础上×η
上节课总结
一、初始偏心距
e0=M/N
附加偏心距ea取20mm与h/30 两者中的较大值, h是指偏心方向的截面尺寸。
二、两类偏心受压破坏的界限
ξ ≤ξb, 受拉钢筋先屈服,然后混凝土压碎-
1、大偏心受压 x=N/a1 fcb
若x=N /a1 fcb<2a",可近似取x=2a",对受压钢筋合力点取矩可
e" = hei - 0.5h + a"
2、小偏心受压 x=N /a1 fcb>
对称配筋截面设计
对称配筋截面校核 例5-9、5-10及5-11 构造要求(配筋率问题讲解) 作业:5.4、5.5、5.6、5.7、5.8
对称配筋
大偏心受压对称配筋 小偏心受压对称配筋
非对称配筋矩形截面
截面设计
按e i ≤ 0.3h0按小偏心受压计算
若ei > 0.3h0先按大偏心受压计算, (ξ≤ξb确定 为大偏心受压构件。若求得的ξ>ξb时,按小
偏心受压计算。) 强度复核
一s 不对称配筋截面设计 1 s 大偏心受压(受拉破坏)
受压构件正截面承载力计算

混凝土结构设计原理 第5章 受压构件的截面承载力

混凝土结构设计原理 第5章 受压构件的截面承载力
构件破坏时,首先在靠近凹边出现大致平行于纵轴方向的纵 向裂缝,同时在凸边出现水平的横向裂缝,随后受压区混凝土被 压溃,纵筋向外鼓出,横向挠度迅速发展,构件失去平衡,最后 将凸边的混凝土拉断。
《混凝土结构设计规范》采用稳定系数来表示长柱承载力的降 低程度。
5.1 轴心受压构件承载力计算
第5章 受压构件的截面承载力
受压钢筋应力一般都能达到屈服强度
受拉破坏的主 要特征:
破坏从受 拉区开始,受 拉钢筋首先屈 服,而后受压 区混凝土被压 坏。
§5.3 偏心受压构件正截面的破坏形态
第5章 受压构件的截面承载力
受压破坏(小偏心受压破坏) 产生受压破坏的条件有两种情况:
⑴当相对偏心距e0/h0较小,截面全部受压或大部分受压 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
§5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
试验研究
长柱的承载力<短柱 的承载力(相同材料、 截面和配筋)
原因:长柱受轴力和 弯矩(二次弯矩)的 共同作用
§5.2 轴心受压构件正截面受压承载力
第5章 受压构件的截面承载力
轴心受压长柱的破坏过程
由于初始偏心距的存在,构件受荷后产生附加弯矩,伴之发 生横向挠度。
r

2 f y Ass1 sd c or

2 f y Ass1d cor
4
d
2 cor
s

f y Ass0 2 Acor
4
f ——为被约束后混凝土的轴心抗压强度;
β——为系数。
间接钢筋 的换算面 积
核心区混 凝土的截 面积
螺旋式或焊接环式间接钢筋柱的承载力计算公式

第05章 受压构件的截面承载力

第05章 受压构件的截面承载力

第5章 受压构件
2.承载力计算计算
轴心受压短柱 轴心受压长柱
N f c A f y As
s u
N N
l u
s u
稳定系数
N N
l u s u
稳定系数 主要与
柱的长细比l0/b有关
N N u 0.9 ( f c A f y As )
可靠度调整系数 0.9是考虑初始偏心的影响,以及主要承受恒 载作用的轴心受压柱的可靠性。
第5章 受压构件
箍筋
第5章 受压构件
截面形状复杂的构件,不可采用具有内折角的箍筋
第5章 受压构件
箍筋的作用
(1)与纵筋形成骨架,便于施工; (2)防止纵筋的压屈; (3)对核心混凝土形成约束,提高混凝土的抗压强度,增加构件的延性。
第5章 受压构件
柱钢筋图
第5章 受压构件
电渣压力焊
第5章 受压构件
第5章 受压构件
表5-1
6.1 轴心受压构件的承载力计算
第5章 受压构件
5.2.2 轴心受压螺旋箍筋柱的正截面受压 承载力计算
Õ ¨Ö ¿ ù Æ Í ¸ ¹ Ö
Ý ý Ö ¿ ù Â Ð ¸ ¹ Ö
6.1 轴心受压构件的承载力计算
第5章 受压构件
混凝土圆柱体三向受压状态的纵向抗压强度
f f c r
第5章 受压构件
(2)随着荷载的增大,构件变形迅速增大,此时混凝
土塑性变形增加,弹性模量降低,应力增加缓慢,而钢
筋应力的增加则越来越快。在临近破坏时,柱子表面出 现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间 的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏。 破坏时混凝土的应力达到棱柱体抗压强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Nc
Nc
标距
普通钢筋 混凝土柱
螺旋箍筋 钢筋混凝 土柱
Nc
荷载不大 时螺旋箍 柱和普通 箍柱的性 能几乎相 同
素混凝土 柱

3.承载力计算
约束混凝土的抗压强度
(a)
(b)
2
s
(c)
fcc fc r
当箍筋屈服时径向压应力r达最大值
由力的平衡,得:
间接钢筋 的换算面 积
dcor fyAss1
较快,首先达到屈服强度。
◆ 此后,裂缝迅速开展,受压区高度减小。 ◆ 最后受压侧钢筋A's 受压屈服,压区混凝土压碎而达到破坏。 ◆ 这种破坏具有明显预兆,变形能力较大,破坏特征与配有受
压钢筋的适筋梁相似,承载力主要取决于受拉侧钢筋。
◆ 形成这种破坏的条件是:偏心距e0较大,且受拉侧纵向钢筋
配筋率合适,通常称为大偏心受压。
◆ 螺旋箍筋的约束效果与其截面面积Ass1和间距s有关,为保证有一定约束效果,《规 范》规定:
3.螺旋箍筋的换算面积Ass0不得小于全部纵筋A‘s 面积的25%。螺旋箍筋的间距s 不应大于dcor/5,且不大于80mm,同时为方便施工,s也不应小于40mm。
§5.3
偏心受压构件正截面受压破坏形态
N M=N e0 e0 N
ei e0 ea
参考以往工程经验和国外规范,附加偏心距ea取20mm与h/30 两者中的较大值,此处h是指偏心方向的截面尺寸。
(二)偏心距增大系数
ei y
y f sin
◆ 由于侧向挠曲变形,轴向力将
N
x
le
f
le
x ei
N
产生二阶效应,引起附加弯矩。 ◆ 对于长细比较大的构件,二阶 N ei 效应引起附加弯矩不能忽略。 ◆ 图示典型偏心受压柱,跨中侧 向挠度为 f 。 N ( ei+ f ) ◆ 对跨中截面,轴力N的偏心距 为ei + f ,即跨中截面的弯矩 为 M =N ( ei + f )。 ◆ 在截面和初始偏心距相同的情 况下,柱的长细比l0/h不同, 侧向挠度 f 的大小不同,影响 程度会有很大差别,将产生不 同的破坏类型。
2、承载力计算公式
Nu 0.9 ( fc A f y` As` )
纵筋配筋率>3% 时 A应该用(A-As`) 长期荷载作用下的应力分布图
【5-1】某高层办公楼门厅的钢筋混凝土圆柱,承受轴向
力设计值N=3000kN。柱的计算长度为4.2m,根据建筑设 计的要求,柱截面的直径不得大于400mm。混凝土的强度 等级为C35,纵筋为HRB335,箍筋为热轧HPB235级钢筋。 试确定该柱钢筋用量。
2、受压破坏(小偏心受压破坏)
N
N
As 太 多
sAs
f'yA's
sAs
f'yA's
◆ 截面受压侧混凝土和钢筋的受力较大。 ◆ 而受拉侧钢筋应力较小。 ◆ 当相对偏心距e0/h0很小时,‘受拉侧’还可能出现“反向破坏”情况。 ◆ 截面最后是由于受压区混凝土首先压碎而达到破坏。 ◆ 承载力主要取决于压区混凝土和受压侧钢筋,破坏时受压区高度较大, 远侧钢筋可能受拉也可能受压,破坏具有脆性性质。 ◆ 第二种情况在设计应予避免,因此受压破坏一般为偏心距较小的情况, 故常称为小偏心受压。
选用8Φ 28, As' =4926mm2 。 配筋率ρ= As/A =4926/125600=3.92%
5.2.2
轴心受压螺旋式箍筋柱的正截面受压承载力计算
1.配筋形式
螺旋钢箍柱 和 焊接环筋柱
s
s
dcor
dcor
2.试验研究
保护层剥落 使柱的承载 力降低
螺旋箍筋的 约束使柱的 承载力提高
fyAss1 f A f A c cor y s

2
s
s fyAss1
令 2
f y Asso
2
间接钢筋的 换算面积:
Ass 0
d cor Ass 1

2
考虑可靠度调整系数0.9,规范规定:
) N Nu 0.9( f c Acor 2 f y Ass 0 f yAs
间接钢筋对承载力的影响系数,当fcu,k≤50N/mm2时,取 = 1.0;当 fcu,k=80N/mm2时,取 =0.85,其间直线插值。
4.公式适用条件: Nu 0.9( fc Acor 2f y Asso f y` As` ) d cor Ass 1
Asso s
螺旋箍筋对承载力的影响系数a,当fcu,k≤50N/mm2时,取a = 1.0;当fcu,k=80N/mm2 时,取a =0.85,其间直线插值。采用螺旋箍筋可有效提高柱的轴心受压承载力。
受压破坏时的截面应力和受压破坏形态 (a)、(b)截面应力 (c)受压破坏形态
5.3.2 长柱的正截面受压破坏
长细比在一定范围内时, 属“材料破坏”,即截 面材料强度耗尽的破坏; 长细比较大时,构件由 于纵向弯曲失去平衡, 即“失稳破坏”。 结论:构件长细比的加大会 降低构件的正截面受压 承载力; 长细比较大时,偏心 受压构件的纵向弯曲引 起不可忽略的二阶弯矩。
§5.1 受压构件一般构造要求
5.1.1 截面型式及尺寸 • 轴心受压构件:方形或矩形、圆 形或多边形 • 偏心受压构件:矩形、I型或T型
5.1.2 5.1.3 5.1.4
• 封闭式
材料强度要求
• 采用高强度砼,不宜采用 高强度钢筋
纵筋 箍筋
• 配筋率0.6%≤ρ≤5%
§5.2
轴心受压构件正截面受压承载力
M0
◆ 虽然最终在M和N的共同作用下达到截面承载力极限状态,但轴 向承载力明显低于同样截面和初始偏心距情况下的短柱。 ◆ 因此,对于中长柱,在设计中应考虑侧向挠度 f 对弯矩增大的影 响。
M
N
长细比l0/h >30的长柱
◆侧向挠度 f 的影响已很大
N0 Nus Num Nul Nusei Numei Nul ei Num fm Nul fl
As s
As’fy’ fc
As s
As’fy’ fc
As s
As’fy’ fc h0
As fy
As’fy’ fc h0
h0 e0 N
h0 e0 N
e0
N
e0 N
e0很小 As适中
e0较小
e0较大 As较多
e0较大 As适中
受压破坏(小偏心受压破坏) 接近轴压
受拉破坏(大偏心受压破坏) 接近受弯
受拉破坏时的截面应力和受拉破坏形态 (a)截面应力 (b)受拉破坏形态
2、受压破坏(小偏心受压破坏)
产生受压破坏的条件有两种情况:
⑴当相对偏心距e0/h0较小,截面全部受压或大部分受压
⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
N N
As 太 多
sAs
f'yA's
sAs
f'yA's
f
l0le
l02 f 10


c s
h0
x ei
N
0.00331.25 0.0017 1 1 b h0 171.7 h0 0 .5 f c A l0 1 , 2 1.15 0.01 N h
◆ 如螺旋箍筋配置过多,极限承载力提高过大,则会在远未达到极限承载力之前保护 层产生剥落,从而影响正常使用。 《规范》规定:下列情况不考虑间接钢筋的影响: 1.按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载力的50%。 ◆ 对长细比过大柱,由于纵向弯曲变形较大,截面不是全部受压,螺旋箍筋的约束作 用得不到有效发挥。《规范》规定: 2.对长细比lo/d大于12的柱不考虑螺旋箍筋的约束作用。

5.3.3 附加偏心距和偏心距增大系数
(一)附加偏心距 由于施工误差、荷载作用位置的不确定性及材料的不均匀等 原因,实际工程中不存在理想的轴心受压构件。为考虑这些因 素的不利影响,引入附加偏心距ea,即在正截面受压承载力计 算中,偏心距取计算偏心距e0=M/N与附加偏心距ea之和,称为 初始偏心距ei
◆在未达到截面承载力极限状
态之前,侧向挠度 f 已呈不 稳定发展 即柱的轴向荷载最大值发生在 荷载增长曲线与截面承载力 Nu-Mu相关曲线相交之前
◆这种破坏为失稳破坏,应进
M0
M
行专门计算
偏心距增大系数
ei y
y f sin
ei f f 1 ei ei
N
x
le
2 d2y f 2 f 2 10 2 dx x l / 2 l0 l0 0

5.3.1 偏心受压构件的截面受力性能
a
As
a'
As
As
=
As
As
h0
As
b
压弯构件
偏心受压构件
偏心距e0=0时,轴心受压构件 当e0→∞时,即N=0时,受弯构件 偏心受压构件的受力性能和破坏形态界于轴心受压构件和受弯 构件。
一、偏心受压构件的试验研究
As<< As’时 会有As fy e0 N e0 N e0 N e0 N
◆ 但有些构件,如以恒载为主的等跨多层房屋的内柱、桁架中的 受压腹杆等,主要承受轴向压力,可近似按轴心受压构件计算。
纵筋的作用:
◆ 协助混凝土受压 受压钢筋最小配筋率:0.6% (单侧0.2%) ◆ 承担弯矩作用 ◆ 减小持续压应力下混凝土收缩和徐变的影响。
实验表明,收缩和徐变能把柱截面中的压力由混凝土向钢筋转移,从而使 钢筋压应力不断增长。压应力的增长幅度随配筋率的减小而增大。如果不 给配筋率规定一个下限,钢筋中的压应力就可能在持续使用荷载下增长到 屈服应力水准。
相关文档
最新文档