(完整版)《直线、射线和线段》练习题

合集下载

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版数学四年级上册《线段、直线、射线》练习卷(含答案)

人教版四年级上册3.1 线段、直线、射线练习卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.一条_____长200米.()A.直线B.射线C.线段D.垂线2.在4时整的时候,钟面上时针与分针组成的角是()度.A.100°B.120°C.150°3.下面说法正确的有()①线段比射线短,射线比直线短。

①把写有1至9各数的九张卡片打乱后反扣在桌上,从中任意摸出一张,卡片上的数小于5算小强赢,否则算小林赢。

这个游戏规则不公平。

①如果被除数末尾有2个0,那么商的末尾至少有1个0。

①四(1)25名男生平均身高151厘米,那么不可能有男生的身高低于151厘米。

A.1句B.2句C.3句二、填空题4.图中有( )个角,( )个直角,( )个锐角,( )个钝角。

5.下面的图形中哪些是线段?在其下面的()里画“○”。

()()()()()()()()6.下图中有______条线段。

7.线段是直直的,有( )个端点,长度( )(填能或不能)度量.三、判断题8.长方形和正方形的四个角都是直角。

( )9.放风筝时的风筝线可以看成是一条直线。

( )10.把半圆等分成180份,每份所对的角就是1°的角._____ (判断对错)11.小刚画了一条6厘米长的直线。

( )12.两个直角就是一个平角。

()13.将圆平均分成360份,将其中1份所对的角作为度量角的单位,它的大小就是1度,记作1°。

根据这一原理人们制作了度量角的工具——量角器。

( ) 14.一条直线长10米.( )15.线段能测量长短,直线和射线不能测量长短。

( )四、作图题16.下面有五个点,每两点之间画一条线段,可以画多少条线段?先画一画,再填一填.( )条17.我会画。

画一条比1分米短1厘米的线段。

18.画一条比3厘米长15毫米的线段,并标出长度。

数学四年级上册《线段直线射线》练习题(含答案)

数学四年级上册《线段直线射线》练习题(含答案)

3.1线段、直线、射线(基础应用篇)一、单选题(共10题)1.过一点可以画出( )条直线.A. 1B. 2C. 无数D. 无法判断2.下面( )是线段.A. B. C. D.3.下面( )是射线。

A. 米尺B. 手电筒的光C. 竹棍D.卷尺4.一条直线长( )A. 5厘米B. 35厘米C. 70厘米D. 无法测量5.一只由几条线段组成的小鱼经过平移后,它( )平行。

A. 只有一组线段B. 有两组对应线段C. 所有线段都D. 所有对应线段都不6.把线段向一端无限延长,就得到一条( )A. 线B. 线段C. 射线D. 直线7.下图中共有( )线段。

A. 4条B. 5条C. 6条D.8条8.左图中有( )线段。

A. 2条B. 3条C. 4条D.10条9.下面说法中,正确的是( )A. 小明画了一条5厘米的射线B. 用二倍放大镜看45°的角,看到的角是90°C. 两个完全相同的梯形可以拼成一个平行四边形D. 教室的面积约是50公顷10.三条直线相交最多有( )个交点.A. 1B. 2C. 3D.4二、填空题(共10题)11.量一量下面各角的度数,再写出它们的名称.________________12.线段有________个端点,射线有________个端点,直线________个端点。

13.把线段的________端无限延长,就得到一条直线.14.________线、________线都可以无限延伸,其中________线没有端点,________只有一个端点。

15.画线段,量距离.以A、B为线段的两个端点,画出一条线段,并测量出它们的距离.(精确到毫米)这条线段的长度是________.16.过一个圆的圆心可画________条射线?17.________是直线,________是射线,________是线段,________是直角,________是锐角,________是平角,________是周角,________是钝角。

直线射线线段试题及答案

直线射线线段试题及答案

直线射线线段试题及答案1. 直线、射线和线段的定义是什么?答案:直线是无限延伸的,没有端点;射线有一个端点,无限延伸;线段有两个端点,长度有限。

2. 如何用字母表示一条直线?答案:直线可以用两个大写字母表示,如直线AB。

3. 线段的中点如何确定?答案:线段的中点可以通过将线段的两个端点的坐标相加后除以2得到。

4. 射线的端点如何表示?答案:射线的端点可以用一个字母表示,如射线OA。

5. 直线和线段的主要区别是什么?答案:直线是无限长的,没有端点;线段是有限的,有两个端点。

6. 线段的延长线是什么?答案:线段的延长线是将线段的一端无限延伸出去的直线。

7. 线段的对称轴是什么?答案:线段的对称轴是一条通过线段中点且垂直于线段的直线。

8. 如何用几何语言描述一个线段?答案:线段可以用两个端点的坐标表示,如线段AB,其中A(x1,y1),B(x2, y2)。

9. 射线可以被延长吗?答案:射线本身是无限延伸的,但可以延长其定义,使其成为一条新的射线。

10. 直线和射线的共同点是什么?答案:直线和射线都是无限延伸的,但直线没有端点,而射线有一个端点。

11. 线段的垂直平分线是什么?答案:线段的垂直平分线是一条通过线段中点且垂直于线段的直线。

12. 如何用几何画图工具画出一条射线?答案:首先确定射线的端点,然后从端点开始沿着射线的方向无限延伸。

13. 线段可以被分割成几个部分吗?答案:是的,线段可以被分割成几个长度不同的部分。

14. 直线上的点可以无限多吗?答案:是的,直线上的点可以无限多,因为直线是无限延伸的。

15. 线段的延长线和射线有什么区别?答案:线段的延长线是线段的延伸,而射线是从一个端点开始无限延伸的。

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案

人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案一、单选题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线2.M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( ) A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线 MN外3.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm4.如图,在数轴上,点A、B分别表示a、b,且,若,则点A表示的数为()A.B.0 C.3 D.5.杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票()A.20种B.15种C.10种D.5种6.如图,点A、B在数轴上所表示的数分别是2和5,若点C与A、B在同一条数轴上且AC-AB=m(m >0),则点C所表示的数为()A.B.C.或D.或7.已知数轴上的三点A,B,C所对应的数a,b,c满足,和,那么线段AB与BC的大小关系是()A.B.C.D.不能确定8.数轴上,点对应的数是,点对应的数是,点对应的数是0.动点、从、同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是()A.B.C.D.二、填空题9.一条直线上有n个不同的点,则该直线上共有线段条.10.已知线段AB=3cm,点C在直线AB上,AC= AB,则BC的长为.11.数轴上,如果点 A所表示的数是 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是.12.如图,点C,D为线段AB上两点,AC+BD=a,若AD+BC= AB,用含a代数式表示CD的长为.13.体育课上,小聪、小明、小智、小慧分别在点O处进行了一次铅球试投,若铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是三、解答题14.已知,点A、B、C在同一直线上,且,点、分别是线段、的中点,求线段的长.15.如图,C,D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=10cm.求:(1)线段AB的长;(2)线段DE的长.16.如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=24cm,CB=16cm,求线段MN的长.(2)若C为线段AB上任一点,且满足AC+BC=x(cm),其他条件不变,你能猜想MN的长度吗?请说明理由.(3)若点C在线段AB的延长线上,且满足AC﹣BC=y(cm),点M,N分别为AC,BC的中点,请画出图形,并求MN的长度.17.我们知道,若有理数、表示在数轴上得到点、且,则点点与点之间的距离为,现已知数轴上三点A、B、C,其中A表示的数为,B表示的数为3,C与A的距离等于m,C与B的距离等于n,请解答下列问题:(1)若点C在数轴上表示的数为,求的值(2)若,请你写出点C表示的数。

人教版四年级上册数学 3 1线段、直线、射线(同步练习)

人教版四年级上册数学  3 1线段、直线、射线(同步练习)

3.1线段、直线、射线同步练习一、选择题1.对下图中的射线描述正确的是()。

A.射线A B.射线AB C.射线BA2.冬冬家到学校最近的路是第()条.A.①B.①C.①3.丫丫画了一条长20厘米的()。

A.直线B.射线C.线段D.以上答案均错4.一条()长3米。

A.线段B.射线C.直线5.“有始有终”常常被用来形容一个人做事能够坚持到底,在数学上可以用这个成语来形容()。

A.射线B.直线C.线段6.把4厘米长的线段向两端各延长10厘米,得到一条()。

A.直线B.射线C.线段7.下图中共有()条线段。

A.8B.10C.5D.48.如图所画的线哪一条是射线?下面四个选项中正确的是()。

A.AB B.AC C.BA D.BC二、填空题9.线段有( )个端点,过一点可以画( )条直线。

10.如果把6厘米长的线段向两端各延长10厘米,得到的是一条( );如果把这条线段向一端无限延伸,得到的是一条( )。

11.直线( )端点,线段有( )端点,( )线和( )线都是无限长.12.射线有个端点,没有端点,线段有个端点.13.图中有( )组互相垂直的线段。

三、判断题14.一条射线长48米。

( )15.一条5米的直线比一条3米的射线长。

( )16.1条直线长6米.( )17.因为线段有两个端点,射线有一个端点,直线没有端点,所以线段比射线短,射线比直线短。

( )18.一条射线长20.5米.( )四、解答题19.把下列线进行分类,找出各类线之间有什么相同和不同之处?20.下图中一共有多少条射线?多少条线段?。

人教版版四年级上册数学《线段 直线 射线》练习题(附答案)

人教版版四年级上册数学《线段 直线 射线》练习题(附答案)

人教版版四年级上册数学线段直线射线练习题(附答案)一、单选题1.一条()长300米.A. 射线B. 直线C. 线段2.经过平面上的任意两点,可以画()条直线。

A. 1B. 2C. 无数D. 不确定3.把线段的一端无限延长,就得到一条()。

A. 垂线B. 射线C. 线段D. 直线4.下面图形中有条线段.()A. 3B. 6C. 10D. 155.下图中共有()线段。

A. 4条B. 5条C. 6条D. 8条二、判断题6.直线比射线长,射线比线段长.()7.一条直线长25厘米。

()8.一条直线长10分米.()9.线段有两个端点,是直线的一部分。

()三、填空题10.三角形由________条线段围成,长方形由________条线段围成。

11.在横线上填“经过”或“不经过”。

线段AB经过点C吗?________12.正方形是由________条线段围成的,三角形是由________条线段围成的.13.下图是由________条线段组成的,有________个直角。

14.手电筒发出的光是一条________。

四、解答题15.用两种不同的方法数出框中一共有()条线段,并在图中画出你数线段的方法。

16.画一条比4厘米短5毫米的线段,并给这条线段标上长度。

五、作图题17.过AB两点画一条直线,并量出线段AB的长度。

线段AB长()毫米。

答案一、单选题1. C2. A3. B4. C5. C二、判断题6. 错误7. 错误8. 错误9. 正确三、填空题10. 3;4 11. 不经过12. 4;3 13. 9;614. 射线四、解答题15. 解:,5+4+3+2+1=15(条)答:数出框中一共有15条线段。

16.五、作图题17.量得线段AB的长度是2厘米,即线段AB长20毫米。

人教版小学四年级数学上册《线段、直线、射线》同步练习(含答案)

人教版小学四年级数学上册《线段、直线、射线》同步练习(含答案)

人教版小学四年级数学上册同步练习3.1线段、直线、射线(含答案)一、填空题1.通过纸上一点,能画( )条直线,通过纸上两点,能画( )条直线。

2.下图中有( )条直线,有( )条射线,有( )条线段。

3.在直线、射线和线段中,( )有一个端点,( )有两个端点,( )没有端点。

4.手电筒发出的光束,舞台上的光束,都给人一种( )的形象。

5.两点之间的所有连线中( )最短,将它的一端无限延长,形成一条( ),将另一端也无限延长,形成一条( )。

二、选择题6.4个点可以连成()条线段。

A.6B.5C.77.()的长度是有限的。

A.直线B.射线C.线段8.经过一点画射线,可以画()射线。

A.1条B.2条C.无数条9.下列线中,()是直线。

A.B.C.D.10.直线与射线相比较,()。

A.直线更长B.射线更长C.一样长D.无法比较11.小丽画了一条12厘米长的()。

A.直线B.线段C.射线12.下面说法错误的是()。

A.射线比直线短B.5时整,钟面上的时针与分针成钝角C.边长200米的正方形麦田的面积是4公顷D.角的大小与角两边的长短无关三、判断题13.一条直线长1.5米。

( )14.线段是有限长的。

( )15.直线的长度是射线长度的一半。

( )16.线段和射线都是直线的一部分,所以线段和射线都比直线长。

( ) 17.直线和射线都可以无限延伸。

( )四、解答题18.先画一画,再回答问题。

(1)如图1所示过点A可以画几条直线?(2)如图1所示以点A为端点可以画几条射线?(3)如图2所示每两点之间画一条线段,如下四点可以画几条线段?参考答案:1.无数 1 一2. 1 一 6 六 3 三3.射线线段直线4.射线5.线段射线直线6.A7.C8.C9.A10.D11.B12.A13.×14.√15.×16.×17.√18.(1)一条(2)无数条(3)六条答案第1页,共1页。

4.2.1 直线、射线、线段(分层作业)【原卷版】

4.2.1 直线、射线、线段(分层作业)【原卷版】

4.2.1 直线、射线、线段分层作业1.如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C.直线AO比直线BO长D.经过A,B两点的直线有且只有一条2.下列说法中正确的是()A.延长直线ABB.反向延长射线ABC.线段AB与线段BA不是同一条线段D.射线AB与射线BA是同一条射线3.如图,下列说法错误的是()A.点A在直线AC上,点B在直线m外B.射线AC与射线CA不是同一条射线C.直线AC还可以表示为直线CA或直线m D.图中有直线3条,射线2条,线段1条4.如图,王伟同学根据图形写出了四个结论:①图中共有4条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线;其中结论错误的有()A.1个B.2个C.3个D.4个5.下面说法与几何图形相符的是()A.点P在直线n上B.直线OA与OB都经过点OC.1∠D.直线OA和直线m表示同一条直线∠可以表示成O6.如图,小轩同学根据图形写出了四个结论:①图中共有2条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BD与射线CD是同一条射线.其中结论错误的是()A.①③④B.①②③C.②③④D.①②④+等于()7.平面内两两相交的4条直线,其交点个数最少为m个,最多为n个,则m nA.6 B.11 C.7 D.17个端点.9.如图,点P在直线AB ;点Q在直线AB ,也在射线AB ,但在线段AB的上.10.下列说法:①两点确定一条直线;②射线OA和射线AO是同一条射线;③对顶角相等;④三角形任意两边和大于第三边的理由是两点之间线段最短.正确的序号是.11.有下列语句:①在所有连接两点的线中,直线最短;②线段AB是点A与点B的距离;③取直线AB的中点;④反向延长线段AB,得到射线BA,其中正确的是.12.如图所示,共有直线条,射线条,线段条.13.如图,(1)点B在直线AD ,点F在直线上;(2)点C在直线AD ,点E是直线和的交点;(3)经过点C的直线共有条,它们分别是.14.判断下列说法是否正确:(1)线段AB和射线AB都是直线AB的一部分(2)直线AB和直线BA是同一条直线;(3)射线AB和射线BA是同一条射线;(4)把线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直线.15.根据下列语句画出图形.(1)点A在直线l上,点B在直线l外;(2)过点N画射线MN;(3)画一条与线段AB相交的直线CA.16.如图,已知A,B,C、D四个点,按要求画出图形.(1)画直线AB,CD相交于点P;(2)画射线AC;(3)连接BD;(4)图中共有几条线段?17.(尺规作图,保留作图痕迹)如图,已知四点A,B,C,D,(1)作线段AB,直线CD,射线CB;(2)反向延长线段AB到E,使AE BC;(3)在图中确定点O,使点O到A,B,C,D距离之和最小.18.往返于甲、乙两市的列车,中途需停靠4个站,如果每两站的路程都不相同,这两地之间有多少种不同的票价()A.15 B.30 C.20 D.1019.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2017厘米的线段AB,则线段AB盖住的整点共有()个A.2018或2019 B.2017或2018 C.2016或2017 D.2015或201620.如图,在线段MN上有P、Q两点,PQ长度为2cm,MN长为整数,则以M、P、Q、N为端点的所有线段长度和可能为()A.19cm B.20cm C.21cm D.22cm车票.22.同一平面内有四点A,B,C,D,经过每两点作一条直线,则可以作条直线.23.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:(1)这n条直线共有多少个交点?(2)这n条直线把平面分割为多少块区域?24.如图,如果直线l上依次有3个点A、B、C,那么(1)在直线l上共有多少射线?多少条线段?(2)在直线l上增加一个点,共增加了多少条射线?多少条线段?(3)如果在直线l上增加到n个点,则共有多少条射线?多少条线段?。

射线直线线段练习题

射线直线线段练习题

射线、直线、线段练习题一、选择题1. 下列说法正确的是:A. 射线有一个端点,无限长B. 直线有两个端点,有限长C. 线段有一个端点,有限长D. 射线与直线长度相等2. 在下列图形中,哪个是线段?A. 两条平行线B. 一个端点,向一方无限延伸C. 两个端点,有限长D. 一个端点,向两边无限延伸A. 两个端点,有限长B. 一个端点,向一方无限延伸C. 两个端点,无限长D. 无端点,无限长二、填空题1. 线段是由两个______和它们之间的______组成的。

2. 射线有一个______,向一方______延伸。

3. 直线无______,______延伸。

三、判断题1. 射线的长度大于线段的长度。

()2. 直线比射线更长。

()3. 线段有两个端点,有限长。

()四、连线题请将下列射线、直线、线段的定义与相应的图形连线:1. 直线:______2. 射线:______3. 线段:______五、作图题1. 画出一条线段,长度为5厘米。

2. 画出一条射线,从一个端点出发,经过点A。

3. 画出一条直线,使它与线段AB平行。

六、简答题1. 请简要说明射线、直线和线段的特点。

2. 如何用直尺和三角板画出一条指定长度的线段?3. 在日常生活中,你能找到哪些射线、直线和线段的例子?请分别列举。

七、应用题1. 在平面直角坐标系中,点A(2,3)和点B(5,3)是线段AB的两个端点,求线段AB的长度。

2. 已知射线OC从点O(0,0)出发,经过点C(4,0),求射线OC上距离点O 6个单位长度的点D的坐标。

3. 在直角坐标系中,直线l经过点P(1,2)和点Q(4,6),请写出直线l的方程。

八、拓展题1. 如果一条射线逆时针旋转90度,它变成了什么?2. 在平面上,两条直线相交,形成的四个角中,有几个角是相等的?3. 有一根无限长的直线,你在上面任意取两点,这两点之间的是什么?九、探究题1. 如何证明两条平行线之间的距离处处相等?2. 在同一平面内,如果两条直线不相交,那么它们一定是平行的吗?3. 请设计一个实验,证明线段的长度是可以通过测量得到的。

直线、射线、线段练习题及答案

直线、射线、线段练习题及答案

直线、射线、线段一、选择题1. 下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C . 7 D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B. 6CM C .2 或6CM D .无法确定4.下列说法正确的是()A.延长直线AB到C; B.延长射线OA到C;C.平角是一条直线; D.延长线段AB到C 5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个 B.两个 C.三个 D.无数个6.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个7. 如图所示,从A地到达B地,最短的路线是().A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B8..如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A .2()a b- B .2a b-C .a b+ D .a b-9..在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝10.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上 B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外二、填空题1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作_____条直线;经过四点最多能确定条直线。

七年级数学上册直线、射线、线段练习题

七年级数学上册直线、射线、线段练习题

七年级数学上册直线、射线、线段练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图,M ,N 是线段AB 的三等分点,C 是NB 的中点,若AB =10cm ,则CM 的长度为___cm .2.如图,长度为12cm 的线段AB 的中点是点M ,点C 在线段MB 上,且:1:2MC CB =,则线段AC 的长为______.3.比较两条线段长短的方法有______和______.4.已知线段AB ,延长AB 到C ,使12BC AB =,再反向延长线段AB 至D ,使32AD AB =,则线段CD 的中点是_________.5.已知线段AB =5cm ,延长AB 到C 使得BC =2AB ,再反向延长AB 到D 使得AD =3AB ,则线段DB =_______cm ,点______是线段_______的中点. 6.如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,8AC =,5NB =,则线段MN =__________.二、单选题7.如图,线段AB =12,点C 是它的中点.则AC 的长为( )A .2B .4C .6D .88.如图,点B 是线段AD 的中点,点C 在线段BD 上,且AB a ,CD b =,则下列结论中错误..的是( )A .2AD a =B .BC a b =- C .2AC a b =-D .13BC b = 9.下列语句:其中错误的个数是( )①直线AB 与直线BA 是同一条直线;①射线AB 与射线BA 是同一条射线;①两点确定一条直线;①经过一点有且只有一条直线与已知直线平行;①经过一点有且只有一条直线与已知直线垂直;①两点之间的线段叫做两点之间的距离.A .3B .4C .5D .610.已知直线AB 上有两点M ,N,且MN = 8cm,再找一点P,使MP + PN = 10cm,则P 点的位置( ) A .只能在直线AB 上B .只能在直线AB 外C .在直线上或在直线AB 外D .不存在11.如图,90ACB ∠=︒,AC=BC .AD CE ⊥,BE CE ⊥,垂足分别是点D 、E .若AD=6,BE=2,则DE 的长是( )A .2B .3C .4D .512.小亮在解方程37a x +=时,由于粗心,错把x +看成了x -,结果解得2x =,则a 的值为( )A .53a =B .3a =C .3a =-D .35a =三、解答题13.如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①①①①四部分,点A ,B ,C 对应的数分别是a ,b ,c ,已知bc <0.(1)原点在第______部分;(2)若AC =5,BC =3,b =﹣1,求a 的值;(3)在(2)的条件下,数轴上一点D 表示的数为d ,若BD =2OC ,直接写出d 的值.14.如图,点B 在线段AC 上.按要求完成下列各小题.(1)尺规作图:在图中的线段AC 的延长线上找一点D ,使得CD AB =;(2)在(1)的基础上,图中共有______条线段,比较线段大小:AC ______BD (填“>”“<”或“=”);(3)在(1)的基础上,若2BC AB =,6BD =,求线段AD 的长度.15.已知线段15cm AB =,点C 在线段AB 上,且:3:2AC CB =.(1)求线段AC ,CB 的长;(2)点P 是线段AB 上的动点且不与点A ,B ,C 重合,线段AP 的中点为M ,设cm AP m =①请用含有m 的代数式表示线段PC ,MC 的长;①若三个点M ,P ,C 中恰有一点是其它两点所连线段的中点,则称M ,P ,C 三点为“共谐点”,请直接写出使得M ,P ,C 三点为“共谐点”的m 的值.参考答案:1.5【分析】根据已知得出AM=MN=BN,AB=3BN,BN=2CN,根据AB=10cm求出BN和CN,由CM=MN+CN 即可求出答案.【详解】解:①M、N是线段AB的三等分点,①AM=MN=BN,AB=3BN,①C是BN的中点,①BN=2CN,①AB=10cm,①BN=103cm,CN=53cm,①CM=MN+CN=103+53=5cm.故答案为:5.【点睛】本题考查了求两点之间的距离的应用,掌握中点与等分点的意义以及线段的和与差是解决问题的关键.2.8cm##8厘米【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC 得其长度.【详解】解:①线段AB的中点为M,①AM=BM=6cm,设MC=x,则CB=2x,①x+2x=6,解得x=2,即MC=2cm,①AC=AM+MC=6+2=8(cm).【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.叠合法度量法【分析】根据比较两条线段长短的方法,即可解答【详解】解:比较两条线段长短的方法有:叠合法和度量法,故答案为:叠合法,度量法.【点睛】本题考查了比较两条线段长短的方法,熟练掌握和运用比较两条线段长短的方法是解决本题的关键.4.点A【分析】利用线段的等量关系和中点的概念列式求解即可.【详解】解:如图,①12BC AB =,32AD AB =, ①AC AB BC =+=12AB AB +=32AB AD =,故线段CD 的中点是点A . 故答案为:点A【点睛】本题主要考查了线段之间的数量关系,作出图形解答是解题的关键.5. 20 A DC【分析】根据题意画出图形,由AB =5cm ,从而可求出AC 和DB 的长度,继而可得出答案.【详解】解:如图所示:①AB =5cm ,则BC =10cm ,DA =15cm ,①可得:DB =DA +AB =15+5=20(cm ),AC =AB +BC =5+10=15(cm ),①DA =AC =15(cm ),即点A 是线段DC 的中点.故答案为:20,A ,DC .【点睛】本题考查了线段的中点,线段的和差等相关知识点,重点掌握直线上两点间的距离求法. 6.4【分析】根据中点的性质可得BC 的长,根据线段的和差可得AB 的长,根据中点的性质可得BM 的长,再根据线段的和差可得MN 的长.【详解】由N 是CB 的中点,NB =5,得:BC =2NB =10.由线段的和差,得:AB =AC +BC =8+10=18.①M 是AB 的中点,①1118922MB AB==⨯=,由线段的和差,得:MN=MB-NB=9-5=4,故答案为:4.【点睛】本题主要考查了线段中点的性质和线段的和差,线段的中点分线段相等是解题的关键.7.C【分析】根据中点的性质,可知AC的长是线段AB的一半,直接求解即可.【详解】解:①线段AB=12,点C是它的中点.①1112622AC AB==⨯=,故选:C.【点睛】本题考查了线段的中点,解题关键是明确线段的中点把线段分成相等的两部分.8.D【分析】根据线段中点的定义与线段的和差逐项分析可得答案.【详解】解:①点B是线段AD的中点,AB=a,①AD=2AB=2a,故A正确,不符合题意;①BD=AB=a,①BC=BD﹣CD=a﹣b,故B正确,不符合题意;①AC=2AB=2a,CD=b,①AC=AD﹣CD=2a﹣b,故C正确,不符合题意;①点C不是CD的四等分点,①BC≠13b,故D错误,符合题意.故选:D.【点睛】本题考查线段中点的定义与线段的和与差,熟练掌握线段中点的定义与线段的和差是解题关键.9.B【分析】①根据直线的定义进行判断即可;①根据射线的定义进行判断即可;①根据两点确定一条直线进行判断即可;①点是否在该直线上进行判断即可;①根据是否在平面内这一条件进行判断即可;①根据两点间距离的定义进行判断即可.【详解】①直线AB与直线BA是同一条直线,故原题说法正确;①射线AB与射线BA不是同一条射线,因为射线有方向,故原题说法错误;①两点确定一条直线,故原题说法正确;①经过直线外一点有且只有一条直线与已知直线平行,故原题说法错误;①平面内,经过一点有且只有一条直线与已知直线垂直,故原题说法错误;①两点之间的线段长度叫做两点之间的距离,故原题说法错误.错误的说法有4个,答案:B .【点睛】本题考查了直线、射线的定义,本题错点一是在平面内才有经过一点有且只有一条直线与已知直线垂直;二是经过直线外一点有且只有一条直线与已知直线平行;三是两点间的距离不是线段而是线段的长度.10.C【详解】①MP+PN=10cm >MN=8cm ,①分两种情况(如图):在直线AB 上或在直线AB 外;故选C .11.C【分析】由一线三直角①ADC=①CEB=90º推得①ACD=①CBE ,再加上AC=BC ,易证①ACD①①CBE (AAS ) 便可求出ED=EC -CD 即可.【详解】①90ACB ∠=︒,①①ACD+①ECB=90º,①AD CE ⊥,BE CE ⊥,①①ADC=①CEB=90º,①①ECB+①CBE=90º,①①ACD=①CBE ,在①ACD 和①CBE 中,①①ADC=①CEB=90º,①ACD=①CBE ,AC=BC ,①①ACD①①CBE (AAS ),①AD=CE=6,CD=BE=2,①ED=EC -CD=6-2=4.故选择:C .【点睛】本题考查全等三角形中的线段差问题,关键掌握三角形全等的证明方法,会用差线段来解决问题. 12.B【分析】将2x =代入方程37a x -=即可得出a 的值.【详解】解:① 解方程37a x +=时把x +看成了x -,结果解得2x =,①2x =是方程37a x -=的解,将2x =代入37a x -=得:327a -=,解得:3a =.故选B .【点睛】本题考查一元一次方程的解及解一元一次方程,解题的关键是掌握方程的解的概念,即使方程左右两边相等的未知数的值,叫方程的解.13.(1)①(2)a 的值为﹣3(3)d 的值为3或﹣5【分析】(1)由bc <0可知b 、c 异号,进而问题可求解;(2)根据数轴上两点距离可进行求解;(3)根据数轴上两点距离及线段和差关系可进行求解.(1)解:①bc <0,①b ,c 异号,①原点在B ,C 之间,即第①部分,故答案为:①;(2)解:①BC =3,b =﹣1,点C 在点B 的右边,①C 表示的数为:﹣1+3=2,①AC =5,A 点在点C 的左边,①点A表示的数为:2﹣5=﹣3,①a的值为﹣3;(3)解:①C表示的数为2,①OC=2,①点B表示的数为﹣1,点D表示的数为d,BD=2OC,①|d﹣(﹣1)|=4,解得:d=3或﹣5,①d的值为3或﹣5.【点睛】本题主要考查数轴上两点距离及线段的和差关系,熟练掌握数轴上两点距离及线段的和差关系是解题的关键.14.(1)作图见解析(2)6;=AD=(3)8【分析】(1)根据要求画出图形即可;(2)根据线段的定义,判断即可;(3)利用线段和差定义解决问题即可.(1)解:如图,线段CD即为所求;(2)解:图中共有6条线段,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,故答案为:6,=;(3)解:由(1)知AB=CD.因为BC=2AB,所以BC =2CD ,所以BD =BC +CD =3CD =6,所以CD =2=AB ,所以AD =2+6=8.【点睛】本题考查作图﹣复杂作图,直线,射线,线段的定义等知识,解题的关键是理解直线,射线,线段的定义.15.(1)AC =9cm ,CB =6cm(2)①(9)cm PC m =-或(9)cm m -,19cm 2MC m ⎛⎫=- ⎪⎝⎭;①6或12【分析】(1)由:3:2AC CB =可得35AC AB =,25CB AB =,从而可求得AC 、CB 的长; (2)①分点P 在线段AC 上和点P 在线段CB 上两种情况分别计算即可;①分点P 在线段AC 上和点P 在线段CB 上两种情况列方程,可求得m 的值.(1)①15cm AB =,点C 在线段AB 上,且:3:2AC CB = ①33159(cm)55AC AB ==⨯=,22156(cm)55CB AB ==⨯= (2)①M 为线段AP 的中点 ①11cm 22AM MP AP m === ①当点P 在线段AC 上时(9)cm PC AC AP m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭ 当点P 在线段CB 上时(9)cm PC AP AC m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭ ①当点P 在线段AC 上时,则MP =PC ①192m m =-解得:m =6当点P 在线段CB 上时,则MC =PC ①1992m m -=-解得:m=12综上所述,m=6或12【点睛】本题考查了求线段长度,线段中点的意义及线段的和差,掌握线段中点的意义、线段的和差是解题的关键.注意(2)小题要分类讨论.第8页共11页。

直线、射线、线段练习题(含答案)

直线、射线、线段练习题(含答案)

1.下列各说法一定成立的是A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线4.下列语句正确的是A.延长线段AB到C,使BC=ACB.反向延长线段AB,得到射线BAC.取直线AB的中点D.连接A、B两点,并使直线AB经过C点5.如图所示,不同的线段的条数是A.4条B.5条C.10条D.12条6.如图所示,该条直线上的线段有A.3条B.4条C.5条D.6条7.射线OA与OB是同一条射线,画图正确的是A.B.C.D.8.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是A.1cm B.9cmC.1cm或9cm D.以上答案都不正确9.如图,对于直线AB,线段CD,射线EF,其中能相交的图是A.B.C.D.10.经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.11.如图,该图中不同的线段数共有__________条.12.如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.13.如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.14.如图,已知线段AB,反向延长AB到点C,使AC=12AB,D是AC的中点,若CD=2,求AB的长.15.如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.16.AB、AC是同一条直线上的两条线段,M在AB上,且AM=13AB,N在AC上,且AN=13AC,线段BC和MN的大小有什么关系?请说明理由.17.如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.18.如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB;(2)连接AC、BD,相交于点O;(3)画射线AD、BC,交于点P.19.如图,点C在线段AB上,点D是AC的中点,如果CB=32CD,AB=7cm,那么BC的长为A.3cm B.3.5cmC.4cm D.4.5cm20.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是A.CD=AD–AC B.CD=12AB-BDC.CD=14AB D.CD=13AB21.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上22.已知点P是线段AB的中点,则下列说法中:①PA+PB=AB;②PA=PB;③PA=12AB;④PB=12AB.其中,正确的有A.1个B.2个C.3个D.4个23.如图,D是线段AB中点,E是线段BC中点,若AC=10,则线段DE=________.24.在直线l两侧各取一定点A、B,直线l上动点P,则使PA+PB最小的点P的位置是________.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC–BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由.26.如图所示,直线l是一条平直的公路,A、B是某公司的两个仓库,位于公路两旁,请在公路上找一点建一货物中转站C,使A、B到C的距离之和最小,请在图中找出点C的位置,并说明理由.27.(2017•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=__________.28.(2017•河北)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.1.【答案】D【解析】A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选D.4.【答案】B【解析】A、延长线段AB到C,使BC=AC,不可以做到,故本选项错误;B、反向延长线段AB,得到射线BA,故本选项正确;C、取直线AB的中点,错误,直线没有中点,故本选项错误;D、连接A、B两点,并使直线AB经过C点,若A、B、C三点不共线则做不到,故本选项错误.故选B.5.【答案】C【解析】图中线段有:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10条.故选C.6.【答案】D【解析】线段有:AB,AC,AD,BC,BD,CD共6条.故选D.7.【答案】B【解析】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.8.【答案】C【解析】如图所示,当点C在AB之间时,AC=AB−BC=5−4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选C.10.【答案】1或3【解析】若A,B,C三点在同一直线上,可作出1条直线;若A,B,C三点不在同一直线上,可作出3条.故答案为:1或3.11.【答案】6【解析】因为图中的线段有:BC、DC、AC、BD、BA、DA,所以共有6条线段.故答案为:6. 12.【答案】③;两点之间,线段最短【解析】从小华家去学校共有4条路,第③条路最近,理由是:两点之间,线段最短.13.【答案】1【解析】因为EC=3,E是BC中点,所以BC=2EC=2×3=6,因为AC=8,所以AB=AC–BC=8–6=2,因为D是AB中点,所以AD=12AB=12×2=1.14.【解析】因为D是AC的中点,所以AC=2CD,因为CD=2cm,所以AC=4cm,因为AC=12AB,所以AB=2AC,所以AB=2×4cm=8cm.15.【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.16.【解析】BC=3MN.分三种情况:17.【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).18.【解析】(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.19.【答案】A20.【答案】D【解析】因为C是AB的中点,所以CA=CB,又因为D是BC的中点,所以DC=DB,所以CD=DB=14AB;CD=BC−BD=12AB−BD;CD=AD−AC.故选D.21.【答案】A【解析】当P点在线段AB的延长线上,则PA+PB=PB+AB+PB=AB+2PB;当P点在线段AB的反向延长线上,则PA+PB=PA+AB+PB=AB+2PA;当P点在线段AB上,则PA+PB=AB,所以当P点在线段AB上时PA+PB的值最小.故选A.22.【答案】D【解析】由P是线段AB的中点,得①PA+PB=AB②PA=PB③PA=12AB④PB=12AB,故选D.23.【答案】5【解析】因为D是线段AB中点,E是线段BC中点,所以BD=12AB,BE=12BC,所以DE=BD+BE=12AB+12BC=12(AB+BC)=12AC,因为AC=10,所以DE=1102=5.故答案为:5.24.【答案】点P是直线AB与l的交点【解析】由两点之间,线段最短可知:当点P位于直线AB与l的交点时,PA+PB最小.故答案为:点P是直线AB与l的交点.25.【解析】(1)因为点M、N分别是AC、BC的中点,因为点M、N分别是AC、BC的中点,所以MC=12AC,NC=12BC,所以MN=MC–CN=12(AC–BC)=12b(cm).26.【解析】如图所示,理由:两点之间,线段最短.27.【答案】4【解析】因为点C是线段AD的中点,若CD=1,所以AD=1×2=2,因为点D是线段AB的中点,所以AB=2×2=4.故答案为:4.28.【解析】(1)若以B为原点,则C表示1,A表示–2,。

人教数学四上《线段、直线、射线》习题及答案

人教数学四上《线段、直线、射线》习题及答案

四年级上册数学一课一练-3.1线段、直线、射线一、单选题1.以一点为端点,可以作出()A. 一条射线B. 两条射线C. 无数条射线2.下面说法中,错误的是()。

A. 平角是一条直线B. 直线没有端点C. 钝角总比锐角大3.射线和直线相比()A. 射线比直线长B. 直线比射线长C. 无法比较长度4.学校的一条直跑道长60米,这条直跑道是()A. 直线B. 射线C. 线段二、判断题5.把5厘米长的线段向两端各延长100米,得到的是一条直线。

6.小红画了一条长20厘米的线段。

7.图中共有3条线段、6条射线、1条直线。

8.一条射线长5米.三、填空题9.经过一点,可以画________条直线,经过两点可以画________条射线.10.在________内永不相交的两条直线叫做平行线。

11.经过两点可以画________条直线,梯形有________条高.12.图中有________条射线,________条线段.四、解答题13.太阳射出来的光线是什么线?14.下面哪条线段最长?①②③五、作图题15.画一条比3厘米4毫米还长7毫米的线段。

参考答案一、单选题1.【答案】 C【解析】【解答】解:以一点为端点,可以作出无数条射线;故选:C.【分析】根据射线的特点:有一个端点,无限长;可以得出由一点可以引出无数条射线,由此解答即可.2.【答案】 A【解析】【解答】解:平角不是直线。

故答案为:A。

【分析】平角是两条射线组成的角,不是直线。

3.【答案】 C【解析】【解答】解:由于射线和直线都能够无限延伸,则无法比较长短.故答案为:C.【分析】直线没有端点,无限长,射线只有一个端点,无限长,因此直线和射线都是无法比较长短的.4.【答案】 C【解析】【解答】能测量出跑道的长度,说明跑道是线段.故答案为:C【分析】直线没有端点,无限长;射线有一个端点,无限长;线段有两个端点,有限长;由此判断即可.二、判断题5.【答案】错误【解析】【解答】直线可以向两边无限延伸,是不能度量的。

直线射线线段练习题

直线射线线段练习题

直线射线线段练习题一、选择题(每题2分,共20分)1. 下列关于直线、射线、线段的描述,正确的是:A. 直线没有端点B. 射线有一个端点C. 线段有两个端点D. 所有选项都是正确的2. 线段AB的长度为5cm,线段CD的长度为3cm,若线段AB与线段CD 平行,则:A. AB和CD可能相等B. AB一定比CD长C. AB一定比CD短D. AB和CD长度没有关系3. 如果线段MN和线段PQ相交于点O,那么点O是线段MN的:A. 中点B. 端点C. 任意一点D. 无法确定4. 直线l上的点A和点B确定了一条:A. 直线B. 线段C. 射线D. 无法确定5. 射线OA和射线OB的共同点是:A. 点OB. 点AC. 点BD. 没有共同点二、填空题(每题2分,共20分)6. 线段的两个端点分别记作____和____。

7. 如果线段AB和线段CD相交,那么交点可以记作____。

8. 直线可以无限延伸,因此它的长度是____。

9. 射线从一点出发,向一方无限延伸,这个点称为射线的____。

10. 若线段AB的中点为M,则AM的长度等于____。

11. 直线上的任意两点都可以确定一条____。

12. 线段的延长线是一条____。

13. 如果线段AB和线段CD重合,那么它们的长度____。

14. 线段AB和线段CD平行,且线段AB的长度为10cm,则线段CD的长度也是____。

15. 射线OA和射线OB的端点都是____。

三、简答题(每题10分,共30分)16. 描述如何确定一条线段的中点。

17. 解释直线、射线和线段的区别。

18. 如果线段AB和线段CD相交,且交点为E,说明线段AE和线段BE 的关系。

四、计算题(每题15分,共30分)19. 已知线段AB的长度为8cm,线段BC的长度为6cm,线段AC的长度为10cm。

如果线段AB和线段BC在同一直线上,求线段AC的长度。

20. 射线OA和射线OB从同一点O出发,分别向不同方向延伸。

人教版数学四年级上册《线段、直线、射线》同步练习(含答案)

人教版数学四年级上册《线段、直线、射线》同步练习(含答案)

人教版四年级上册3.1 线段、直线、射线一、选择题1.可以无限延长的是().A.直线和线段B.直线和射线C.射线和线段2.直线、射线与线段中,()的长度可以是100米。

A.线段B.射线C.直线3.3时整,时针和分针组成的角是直角,那3时半,时针和分针组成的角()A.是直角B.是钝角C.是锐角D.无法确定4.下面各个角中,可以用一副三角尺直接画出来的是()A.35°B.135°C.65°D.95°二、填空题5.像手电筒,汽车灯和太阳等射出的光线,都可以近似地看成是( ),射线有( )和端点,直线有( )个端点,线段有( )个端点.6.把一条5厘米长的线段向两端各延长3厘米,得到一条( );把一端无限延长,得到一条( )。

7.9时整时,时针和分针构成的角是( )度,这个角是一个( )角;6时整时,时针和分针构成的角是( )度。

8.在括号里填上“垂直”或“平行”。

(1) AB和CD互相( )。

(2) CD和GH互相( )。

(3) BC和BF互相( )。

(4) CG和CD互相( )。

9.从一点出发,可以画( )条直线,过两点能画( )直线。

A.1条B.2条C.无数10.(沙县)6个点连成直线的条数是,8个点连成直线的条数是.点数增加条数 2 3 4总条数1 3 6 10三、判断题11.由两条射线组成的图形叫做角( )12.两条平行线长都是8分米。

( )13.一条直线长60厘米。

( )14.一条射线长30厘米。

( )15.小红说:我画的射线长1米.( )16.一条线段有2个端点.( )17.角的方向不一样,大小也就不一样.( )四、作图题18.画一条射线,并在射线上截取2厘米长的线段。

19.下面有A、B、C、D四个点,请你画出射线BA,直线CD,线段AD。

五、解答题20.量一量、画一画。

(1)下面的线段长()厘米。

(2)画一条比上面的线段短3厘米的线段。

参考答案:1.B【详解】2.A直线上任意两点之间的一段叫做线段;把线段的一端无限延长,得到一条射线;把线段的两端无限延长,得到一条直线;线段的长度是有限的,直线和射线的长度都是无限的。

人教版七年级数学上册《6.2直线、射线、线段》同步测试题及答案

人教版七年级数学上册《6.2直线、射线、线段》同步测试题及答案

人教版七年级数学上册《6.2直线、射线、线段》同步测试题及答案一、单选题1.下列语句准确规范的是()A.直线a,b相交于点m B.反向延长线AB至点CC.延长射线OA D.延长线段AB至点C,使得BC AB2.下列几何图形与相应语言描述相符的有()①如图1,直线a b,相交于点A;②如图2,直线CD与线段AB没有公共点;③如图3,延长线段AB;④如图4,直线MN经过点A.图1图2图3图4A.1个B.2个C.3个D.4个3.如图,给出下列语句:①直线l经过点A和点B;②点A和点B都在直线l 上;③直线l是A,B两点所确定的直线;④线段AB是直线l的一部分.其中能正确表达出图形特点的有()A.1个B.2个C.3个D.4个4.小涵家所在的小区、小区附近的一个大型超市和新华书店均位于一条东西走向的公路两旁,且超市和书店与小涵家的距离分别为800米和300米,则超市和书店之间的距离为()A.500米B.1100米C.300米或500米D.500米或1100米5.如图,点D是线段AC上一点,点C是线段AB的中点,则下列等式不成立的是()A .AD BD AB += B .BD CD CB -=C .2AB AC =D .12AD AC =6.已知线段12cm AB =,C 为直线AB 上的一点,且2cm BC =,M ,N 分别是AB ,BC 的中点,则MN 的长度是( )A .6cmB .7cmC .5cm 或6cmD .5cm 或7cm7.如图,线段AB 的长为m ,点C 为AB 上一动点(不与A ,B 重合),D 为AC 中点,E 为BC 中点,随着点C 的运动,线段DE 的长度( )A .随之变化B .不改变,且为23mC .不改变,且为35mD .不改变,且为12m8.已知线段AB 及一点P ,若PA PB AB +=,则( ) A .P 为线段AB 的中点B .P 在线段AB 上C .P 在线段AB 外D .P 在线段AB 的延长线上 9.如图,下列关系式中与图不一定符合的式子是( )A .AD CD AB BC -=+ B .AC BC AD BD -=- C .AC BC BD BC -=-D .AC AB BD CD -=-10.如图所示,点C 是线段AB 的中点,点D 是线段BC 的中点,则下列结论错误的是( )A .14CD AB =B .AD AB BD =-C .2AB BC CD =+ D .2AD CD =11.如图 AC BD >,比较线段AB 与线段CD 的大小( )A .AB CD =B .AB CD >C .<AB CDD .无法比较12.如图3BC AB =,点D 为线段AC 的中点,点E 为线段AD 的三等分点,已知18BC =,则BE 的长为( )A .1B .2C .3D .4二、填空题13.已知线段5AB =,点C 是AB 所在的直线上的点 2BC =,则AC 的长为 . 14.同一条直线上有三点A B C ,,且线段3BC AB =,点D 是BC 的中点,3CD =厘米,则线段AC 的长为 . 15.将线段AB 延长到点C ,使得23BC AB =,若15AC =,点D 为线段AC 的中点,则BD 的长为 .16.已知线段20cm AB =,点C 是直线AB 上一点 8cm BC =,若M 为AB 中点,N 为BC 中点,则线段MN 的长度为 cm .三、解答题17.画出下列语句表达的图形: (1)点A 在直线a 上,点B 在直线a 外 (2)直线a 、b 、c 相交于点M ;18.如图,已知点C 为AB 上一点 210cm 3AB CB AC ==,,,D E 分别为,AC AB 的中点.求DE 的长.19.如图,线段16AB =,点C 是线段AB 的中点,点D 是线段BC 的中点.(1)求线段AD 的长;(2)若在线段AB 上有一点E ,14CE BC =,求AE 的长. 20.如图,点B ,D 在线段AC 上.(1)填空:①图中有______条线段,以A 为端点的线段有_____条; ②AB AD =+_____AC =-______.(2)若D 是线段AC 的中点,点B 在点D 的右侧,且38cm BC BD AC ==,,求线段AB 的长.参考答案1.D2.B3.D4.D5.D6.D7.D8.B9.C10.D11.B12.B13.3或714.8或4/4或815.1.516.6或1417.(1)解:如图所示,即为所求:;(2)解:如图所示,即为所求:;18.解:210cm3AB CB AC ==, ∴10cm AC BC AB +== 即210cm 3AC AC += ∴6cm AC =E 是AB 的中点,D 是AC 的中点∴15cm 2AE AB == 13cm 2AD AC ==∴2cm DE AE AD =-=.19.(1)解:∵16AB =,点C 是AB 的中点,点D 是BC 的中点 ∴182AC BC AB === 142CD BD BC === ∴8412AD AC CD =+=+=; (2)解:由(1)知8AC BC == ∵124CE BC ==当点E 在C 点的左边时826AE AC CE =-=-= 当点E 在C 点的右边时8210AE AC CE =+=+=. 综上:AE 的长为6或10.20.(1)解:①图中的线段有AD BD BC AB DC AC ,,,,,共6条线段,其中以A 为端点的线段有3条;②由题意得,AB AD BD AC BC =+=-; (2)解:∵D 是线段AC 的中点 8cm AC∴14cm 2DC AC ==. ∵3BC BD = ∴33cm 4BC DC == ∴5cm AB AC BC =-=.。

直线、射线、线段练习40题

直线、射线、线段练习40题

直线、射线、线段练习1、已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC= .2、在锯木料时,一般先在木板上画出两点,然后过这两点弹出一条墨线,这是因为.3、往返于A、B两地的客车,中途停靠四个站,共有种不同的票价,要准备种车票.4、如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为___________cm.5、平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定条直线.6、已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm.则线段AC= cm.7、点A、B、C在同一条直线上,AB=6,BC=10,D、E分别是AB、BC的中点,DE的长8、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是cm.9、如图,点A、B、C在直线l上,则图中共有________条线段,有________条射线.10、如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD= cm.11、如图所示,点A,B,C,D在同一条直线上,则这条直线上共有线段条.12、两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.13、点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC= .14、如图,平面内有公共端点的四条射线OA,OB,OC,OD,从射线OA开始按逆时针方向依次在射线上写出数字2,﹣4,6,﹣8,10,﹣12,….则第16个数应是;“﹣2016”在射线上.15、已知线段AB=6cm,AB所在直线上有一点C, 若AC=2BC,则线段AC的长为cm.16、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .17、如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3 cm,则BC=18、已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.19、如图,已知线段AB=4,延长线段AB到C,使BC =2AB,点D是AC的中点,则DC的长等于 .20、如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线、射线和角》
一、填空
1、直线上两点间的一段叫做(),线段有()个端点。

2、()、()都可以无限延长,其中()没有端点,()只有一个端点。

3、从一点引出两条射线所组成的图形叫做()。

这个点叫做它的(),这两条射线叫做它的()。

4、线段是直的,有()个端点;将线段向两个方向无限延长,就形成了()线;从线段的一个端点向一个方向无限延长,就得到一条()线。

5、过一点可以画出()条直线,过两点只能画出()条直线;从一点出发可以画()条射线。

6、测量角的大小要用()。

角的计量单位是(),用符号()表示。

7、角的大小要看两条边()的大小,两边()的越大角越大。

角的大小与角的两边画出的()没有关系。

8、
①②③④
()是直线()是射线()是线段()是直角
()是锐角()是平角()是周角()是钝角
7、手电筒、太阳等射出来的光线,都可以近似地看成是,因为它们都只有端点。

二、请在括号里对的画“√”,错的画“×”。

1、线段是直线上两点之间的部分。

()
2、过一点只能画出一条直线。

()
3、一条射线长6厘米。

()
4、手电筒射出的光线可以被看成是线段。

()
5、过两点只能画一条直线。

()
6、线段比射线短,射线比直线短。

( )
7、经过一点可以画一条直线。

( )
8、一条射线OA,经过度量它的长度是5厘米。

()
三、选择
1、下图中,一共有()条线段。

A、5
B、10
C、4
2、直线与射线比较()。

①直线长一些②一样长③无法比较/
3、过两点能画()条直线。

A.0 B.1 C.3 D.无数
4、下面()是射线。

A、米尺
B、手电筒的光
C、
D、竹棍
5、小强画了一条()长5厘米。

A、直线
B、射线
C、线段
D、角
四、动手画一画
1、一条线段
2、一条射线
3、一条直线
4、一个角
五、数一数
()个角()个角()个角
()条线段()条线段()条线段六、角的名称。

相关文档
最新文档