循迹小车报告(终结版)

合集下载

51红外循迹小车报告(舵机版)最终版

51红外循迹小车报告(舵机版)最终版

简易教程前言往届全国大学生电子设计竞赛曾多次出现了集光、机、电于一体的简易智能小车题目,此次,笔者在通过多次论证、比较与实验之后,制作出了简易小车的寻迹电路系统。

整个系统基于普通玩具小车的机械结构,利用小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。

系统分为检测、控制、驱动三个模块。

首先利用光电对接收管和路面信号进行检测,然后经过比较器处理,对软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。

智能小车能在画有黑线的白纸“路面”上行驶,这是由于黑线和白纸对光线的反射系数不同,小车可根据接收到的反射光的强弱来判断“道路”---黑线,最终实现简单的循迹运动。

个人水平有限,有错误不足之处,还望各位前辈同学多多包含,指出修正,完善。

谢谢!李学云王维2016年7月27号目录前言 (1)第一部分硬件设计 (1)1.1 车模选择 (1)1.2传感器选择 (1)1.3 控制模块选择 (2)第二部分软件设计及调试 (3)2.1 开发环境 (3)2.2总体框架 (3)2.3 舵机程序设计与调试 (3)2.3.1 程序设计 (3)2.3.2 调试 (3)2.3.3 程序代码 (4)2.4 传感器调试 (5)2.4.1 传感器好坏的检测 (5)2.4.2 单片机能否识别信号并输出信号 (5)2.5 综合调试 (7)附录1 (9)第一篇舵机(舵机及转向控制原理) (9)1.1概述 (9)1.2舵机的组成 (10)1.3舵机工作原理 (11)1.4舵机使用中应注意的事项 (12)1.5如何利用程序实现转向 (12)1.6舵机测试程序 (13)附录2 (14)第二篇光电红外传感器 (14)2.1传感器的原理 (14)2.2红外光电传感器ST188 结构图 (15)2.3传感器的选择 (15)2.4传感器的安装 (16)2.5使用方法 (16)2.7红外传感器输入输出调试程序 (17)一、课题任务及要求用360°连续舵机设计一个自动循迹小车,可以自动行驶并检测到地面黑色轨迹,沿着黑色轨迹行驶.二、小车行驶基本原理小车在白色地板上循黑线行走,由于黑线和白色地板对光线的反射系数不同,可以根据接收到的反射光的强弱来判断“道路”。

循迹小车实习报告

循迹小车实习报告

一、实习背景随着科技的发展,自动化技术在各个领域得到了广泛应用。

智能循迹小车作为自动化技术的一个重要应用,具有广泛的前景。

为了提高我们的实践能力,培养我们的创新精神,我们参加了智能循迹小车实习课程。

通过本次实习,我们学习了智能循迹小车的设计、制作和调试方法,了解了其工作原理,提高了我们的动手能力和团队协作能力。

二、实习目的1. 熟悉智能循迹小车的结构、原理和功能。

2. 掌握智能循迹小车的制作方法,提高动手能力。

3. 学习电路设计、传感器应用、单片机编程等知识。

4. 培养团队协作精神,提高沟通能力。

三、实习内容1. 智能循迹小车原理及结构智能循迹小车主要由以下几部分组成:车体、驱动电机、传感器、单片机、控制电路等。

车体是智能循迹小车的承载部分,驱动电机负责提供动力,传感器用于检测路面信息,单片机负责处理传感器信息,控制电路负责将单片机的指令转换为电机驱动信号。

2. 电路设计电路设计主要包括以下几个方面:(1)电源电路:为智能循迹小车提供稳定的电源。

(2)驱动电路:将单片机的控制信号转换为电机驱动信号。

(3)传感器电路:将传感器信号转换为单片机可识别的信号。

(4)控制电路:对单片机输出的控制信号进行放大、滤波等处理。

3. 传感器应用智能循迹小车主要采用红外传感器进行路面检测。

红外传感器具有体积小、成本低、安装方便等优点。

在制作过程中,我们需要对红外传感器进行调试,使其能够准确检测路面信息。

4. 单片机编程单片机编程是智能循迹小车实现智能控制的关键。

我们主要学习了C语言编程,掌握了单片机的基本指令、函数、中断等知识。

在编程过程中,我们需要编写程序,使单片机能够根据传感器信息控制小车行驶。

5. 调试与优化在制作过程中,我们需要对智能循迹小车进行调试,使其能够稳定、准确地行驶。

调试过程中,我们需要对电路、传感器、单片机等部分进行调整,以达到最佳效果。

四、实习成果通过本次实习,我们成功制作了一台智能循迹小车,并使其能够稳定、准确地行驶。

循迹小车的实验报告

循迹小车的实验报告

循迹小车的实验报告循迹小车的实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够通过感知地面上的黑线,实现自主导航。

本次实验旨在探索循迹小车的工作原理及其应用,并对其性能进行评估。

一、实验背景循迹小车作为一种智能机器人,广泛应用于工业自动化、仓储物流、智能家居等领域。

其基本原理是通过光电传感器感知地面上的黑线,根据传感器信号控制电机的转动,从而实现沿着黑线行进。

二、实验过程1. 实验器材准备本次实验所需器材有循迹小车、黑线地毯、计算机等。

通过连接计算机和循迹小车,可以实现对小车的控制和数据传输。

2. 实验步骤(1)将黑线地毯铺设在实验场地上,并保证地毯表面光滑清洁。

(2)将循迹小车放置在地毯上,确保其底部的光电传感器与黑线接触。

(3)通过计算机控制循迹小车的启动,观察小车是否能够准确跟踪黑线行进。

(4)记录小车在不同条件下的行进速度、转弯半径等数据,并进行分析。

三、实验结果1. 循迹性能评估通过实验观察和数据记录,我们发现循迹小车在较为平整、光线充足的黑线地毯上表现较好,能够准确跟踪黑线行进。

然而,在黑线不明显、光线较暗的情况下,小车的循迹性能会有所下降。

2. 行进速度与转弯半径根据实验数据分析,循迹小车的行进速度受到多种因素的影响,包括地面摩擦力、电机功率等。

在实验中,我们发现增加电机功率可以提高小车的行进速度,但同时也会增大转弯半径。

3. 应用前景循迹小车作为一种智能机器人,具有广泛的应用前景。

在工业自动化领域,循迹小车可以用于物料搬运、装配线操作等任务;在仓储物流领域,循迹小车可以实现货物的自动分拣、运输等功能;在智能家居领域,循迹小车可以作为家庭服务机器人,提供家居清洁、送餐等服务。

四、实验总结通过本次实验,我们深入了解了循迹小车的工作原理和应用前景。

循迹小车的循迹性能受到地面条件和光线影响,需要进一步优化。

在实际应用中,循迹小车可以广泛应用于工业自动化、仓储物流和智能家居等领域,为人们的生活和工作带来便利。

循迹小车报告

循迹小车报告

循迹小车设计报告学校:定西师范高等专科学校产品名称:循迹小车日期:二〇一一年八月十八日摘要:本设计是一种基于单片机控制的简易自动寻迹小车系统,包括小车系统构成软硬件设计方法。

小车以AT89C51 为控制核心, 用单片机产生PWM波,控制小车速度。

利用红外光电传感器对路面白色轨迹进行检测,并将路面检测信号反馈给单片机。

单片机对采集到的信号予以分析判断,及时控制驱动电机以调整小车转向,从而使小车能够沿着白色轨迹自动行驶,实现小车自动寻迹的目的。

循迹小车的电路系统包括电源模块、单片机模块、传感器模块、电机驱动模块。

一、工作原理:1.利用红外采集模块中的红外发射接收对管检测路面上的轨迹将轨迹信息送到单片机2.单片机通过输入的信息分别控制小车左右两个电机的转速,用来控制小车的方向3.最终完成智能小车可以按照路面上的白色轨迹运行二、设计方案该车采用红外传感器对白色路面进行道路检测,把采集到的信号传给AT89C51单片机,AT89C51单片机根据收到的信号判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制。

三、硬件模块设计:3.1 电源模块:电源采用自制直流稳压电源,通过对220V的交流电压的变压,整流、滤波、稳压,分别输出12V和5V的直流电压。

用来给小车各模块供给所需电压。

电源电路如图:3.2电机驱动模块:电机驱动芯片L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。

是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。

其引脚排列如图1中U4所示,1脚和15脚可单独引出连接电流采样电阻器,形成电流传感信号。

L298可驱动2个电机,OUT1、OUT2和OUT3、OUT4之间分别接2个电动机。

5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB 接控制使能端,控制电机的停转。

循迹小车实习总结

循迹小车实习总结

循迹小车实习总结1. 引言本文是对我在ABC科技公司实习期间参与的循迹小车项目进行总结和回顾。

循迹小车是一种能够根据指定轨迹自动行驶的智能小车,通过感应地面上的黑线来调整行进方向。

在实习期间,我参与了该项目的设计、搭建和调试工作。

2. 项目背景循迹小车项目是ABC科技公司为了提高生产效率和降低人力成本而推出的一项智能化解决方案。

该小车可以在工厂车间内自动巡航,根据预定的线路完成指定任务,如搬运物料、检测设备等。

3. 设计与搭建在项目开始之前,我与团队成员共同制定了小车的设计和功能需求。

我们决定使用Arduino开发板作为控制器,并选择了红外传感器作为检测黑线的装置。

在搭建过程中,我按照设计要求购买了所需零件,并亲自组装了小车的机械结构。

经过反复测试和调整,我们最终得到了一个紧凑且稳定的小车平台。

4. 程序设计为了实现小车的循迹功能,我编写了一段基于Arduino的程序。

首先,我们需要通过红外传感器检测地面上的黑线,然后根据检测结果调整电机的转动方向。

我通过编写函数和模块化的方法,使得程序结构清晰,易于理解和维护。

在实际运行过程中,我发现红外传感器的精度和环境因素对循迹效果有一定影响。

通过不断优化程序和调整传感器的位置,我最终解决了这个问题,并获得了较为稳定的循迹效果。

5. 调试与优化在完成小车搭建和程序设计之后,我们进行了一系列的调试工作。

通过调整电机的转速和响应时间,我们使得小车能够在不同的运行速度下准确地循迹。

同时,我们还对传感器进行了灵敏度的调整,并增加了一些异常情况的处理逻辑。

调试的过程充满了挑战,但也让我学到了很多解决问题的方法和技巧。

经过不断的尝试和优化,我最终使得小车实现了预期的功能,并达到了较高的稳定性和可靠性。

6. 实习总结通过参与循迹小车项目的实习经历,我获得了丰富的实践经验和技术知识。

在项目中,我学会了如何将理论知识应用于实际项目中,并与团队成员合作解决问题。

通过与工程师们的交流和学习,我了解了业界对于智能小车的需求和发展趋势。

循迹小车的实习报告

循迹小车的实习报告

实习报告:循迹小车设计与实现一、实习背景与目的随着科技的不断发展,自动化技术在各个领域得到了广泛的应用。

循迹小车作为一种自动化设备,不仅可以用于娱乐和教育,还可以应用于工业、农业等领域。

本次实习旨在通过设计和制作循迹小车,掌握单片机原理、电路设计、传感器应用等技能,提高自己在自动化领域的实际操作能力。

二、实习内容与过程1. 设计思路在设计循迹小车时,首先需要确定设计思路。

通过对循迹小车的功能和性能要求进行分析,确定采用单片机作为控制核心,利用传感器检测路径,通过电机驱动实现小车的运动。

2. 硬件设计(1)单片机模块:选用51系列单片机作为控制核心,负责接收传感器信号,处理数据,发出控制命令。

(2)传感器模块:采用红外传感器检测路径,当传感器检测到黑线时,输出高电平信号。

(3)电机驱动模块:采用L298N电机驱动模块,负责驱动小车前进、后退和转向。

(4)电源管理模块:为整个系统提供稳定的电源供应。

(5)舵机控制模块:用于调整小车的方向。

3. 软件设计根据设计思路,编写单片机程序,实现对传感器的数据采集、处理和控制命令的发出。

程序主要包括以下部分:(1)传感器信号处理:通过判断传感器信号的变化,确定小车当前所处的状态。

(2)路径识别:根据传感器信号,判断小车是否偏离路径,并调整方向。

(3)速度控制:根据小车所处的状态,调整电机转速,实现速度控制。

(4)舵机控制:根据路径变化,调整舵机角度,使小车保持直线行驶。

三、实习成果与总结经过一段时间的紧张制作,循迹小车终于完成了。

在实际运行中,小车能够准确识别路径,稳定行驶。

通过本次实习,我收获颇丰,总结如下:1. 掌握了单片机原理和编程技巧,提高了自己在嵌入式系统领域的实际操作能力。

2. 学会了电路设计和搭建,熟悉了各种电子元器件的使用。

3. 了解了传感器在自动化设备中的应用,提高了自己在信息处理方面的能力。

4. 学会了团队合作,培养了沟通与协作能力。

总之,本次实习使我受益匪浅,为今后的学习和工作打下了坚实的基础。

循迹小车实验报告

循迹小车实验报告

循迹小车实验报告循迹小车实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够根据环境中的光线变化来调整行进方向。

本实验旨在通过搭建一个循迹小车模型,探索其原理和应用。

一、实验材料和方法本次实验所需材料包括Arduino开发板、直流电机、光电传感器、电池组等。

首先,我们将Arduino开发板与直流电机、光电传感器等器件进行连接,确保电路正常。

然后,将循迹小车放置在一个光线变化较大的环境中,例如黑白相间的地面。

最后,通过编写程序,使循迹小车能够根据光电传感器的信号来判断行进方向,并实现自动循迹。

二、实验过程和结果在实验过程中,我们首先对光电传感器进行了校准,以确保其能够准确地感知光线的变化。

然后,我们编写了一段简单的程序,使循迹小车能够根据光电传感器的信号来判断行进方向。

当光线较亮时,循迹小车向左转;当光线较暗时,循迹小车向右转。

通过不断调试程序,我们成功实现了循迹小车的自动循迹功能。

在实验过程中,我们还发现了一些有趣的现象。

例如,当循迹小车行进到黑白相间的地面上时,光电传感器能够准确地感知到黑白色块的变化,并根据信号进行相应的调整。

这说明循迹小车的循迹原理基于光线的反射和吸收,具有一定的环境适应性。

三、实验结果分析通过本次实验,我们深入了解了循迹小车的原理和应用。

循迹小车通过光电传感器感知环境中的光线变化,从而判断行进方向,实现自动循迹。

这种智能机器人在工业生产、仓储物流等领域具有广泛的应用前景。

然而,循迹小车也存在一些局限性。

首先,其循迹能力受到环境光线的影响较大,当环境光线较弱或过强时,循迹小车的准确性会受到一定的影响。

其次,循迹小车只能在特定的地面上进行循迹,对于其他类型的地面可能无法正常运行。

因此,在实际应用中,需要根据具体情况进行合理选择和调整。

四、实验总结通过本次实验,我们对循迹小车的原理和应用有了更深入的了解。

循迹小车作为一种基于光电传感器的智能机器人,具有自动循迹的功能,可以在工业生产、仓储物流等领域发挥重要作用。

电子实习循迹小车报告

电子实习循迹小车报告

一、实习目的本次电子实习旨在通过制作循迹小车,培养学生对电子电路、传感器、单片机应用及编程等知识的综合运用能力,提高学生的动手实践能力和创新意识。

通过实习,使学生掌握以下技能:1. 熟悉电子元器件的识别与选用;2. 掌握传感器的工作原理及在循迹小车中的应用;3. 学会单片机编程,实现小车循迹及避障功能;4. 培养团队协作精神和解决问题的能力。

二、实习内容1. 硬件设计(1)车架:选用轻便、坚固的塑料或木制材料制作车架,保证小车在行驶过程中的稳定性。

(2)传感器:选用红外传感器作为循迹传感器,用于检测地面上的黑线。

红外传感器应安装在车头两侧,保证对黑线的检测范围。

(3)电机驱动:选用直流电机作为动力来源,通过L298N电机驱动模块控制电机的正反转及速度。

(4)单片机:选用AT89S51单片机作为控制核心,编写程序实现小车循迹及避障功能。

2. 软件设计(1)循迹算法:通过红外传感器检测地面上的黑线,根据黑线与传感器的距离,调整单片机的PWM输出,控制电机速度,使小车保持直线行驶。

(2)避障算法:利用红外传感器检测前方障碍物,当检测到障碍物时,通过调整单片机的PWM输出,使小车改变行驶方向,绕过障碍物。

3. 实物组装与调试(1)按照设计图纸,将各元器件焊接在电路板上。

(2)将电路板安装到车架上,连接好传感器、电机驱动模块和电源。

(3)编写程序,实现小车循迹及避障功能。

(4)进行实地测试,调整参数,使小车性能达到最佳。

三、实习过程及心得体会1. 实习过程(1)查阅资料,了解循迹小车的工作原理及所需元器件。

(2)设计电路图,确定元器件清单。

(3)焊接电路板,组装小车。

(4)编写程序,实现循迹及避障功能。

(5)进行实地测试,调整参数。

2. 心得体会(1)通过本次实习,我对电子电路、传感器、单片机编程等知识有了更深入的了解,提高了自己的动手实践能力。

(2)在实习过程中,我学会了查阅资料、分析问题、解决问题,培养了团队协作精神。

智能循迹小车实验报告

智能循迹小车实验报告

智能循迹小车实验报告一、实验目的本次实验旨在设计并实现一款能够自主循迹的智能小车,通过传感器检测路径信息,控制小车的运动方向,使其能够沿着预定的轨迹行驶。

通过本次实验,深入了解自动控制、传感器技术和单片机编程等方面的知识,提高实际动手能力和问题解决能力。

二、实验原理1、传感器检测本实验采用红外传感器来检测小车下方的黑线轨迹。

红外传感器由红外发射管和接收管组成,当发射管发出的红外线照射到黑色轨迹时,反射光较弱,接收管接收到的信号较弱;当照射到白色区域时,反射光较强,接收管接收到的信号较强。

通过比较接收管的信号强度,即可判断小车是否偏离轨迹。

2、控制算法根据传感器检测到的轨迹信息,采用 PID 控制算法(比例积分微分控制算法)来计算小车的转向控制量。

PID 算法通过对误差(即小车偏离轨迹的程度)进行比例、积分和微分运算,得到一个合适的控制输出,使小车能够快速、准确地回到轨迹上。

3、电机驱动小车的动力由直流电机提供,通过电机驱动芯片(如 L298N)来控制电机的正反转和转速。

根据控制算法计算出的转向控制量,调整左右电机的转速,实现小车的转向和前进。

三、实验器材1、硬件部分单片机开发板(如 STM32 系列)红外传感器模块直流电机及驱动模块电源模块小车底盘及车轮杜邦线、面包板等2、软件部分Keil 等单片机编程软件串口调试助手四、实验步骤1、硬件搭建将红外传感器模块安装在小车底盘下方,使其能够检测到黑线轨迹。

将直流电机与驱动模块连接,并安装在小车底盘上。

将单片机开发板、传感器模块、驱动模块和电源模块通过杜邦线连接起来,搭建好实验电路。

2、软件编程使用单片机编程软件,编写传感器检测程序、控制算法程序和电机驱动程序。

通过串口调试助手,将编写好的程序下载到单片机开发板中。

3、调试与优化启动小车,观察其在轨迹上的行驶情况。

根据小车的实际行驶情况,调整 PID 控制算法的参数,优化小车的循迹性能。

不断测试和改进,直到小车能够稳定、准确地沿着轨迹行驶。

循迹小车实习报告总结

循迹小车实习报告总结

实习报告总结:制作循迹小车首先,我要感谢学校为我们提供了这次宝贵的实习机会,让我们能够通过制作循迹小车来提高自己的实践能力和创新能力。

在这次实习中,我学到了很多关于电子工程和嵌入式系统的知识,也锻炼了自己的动手能力。

接下来,我将对这次实习进行总结。

一、实习目标本次实习的主要目标是让我们了解并掌握循迹小车的基本原理和制作方法,通过实际操作,培养我们的动手能力、创新能力和团队协作能力。

二、实习内容在实习过程中,我们首先学习了循迹小车的工作原理和相关知识,然后分组进行设计和制作。

我们小组成员共同讨论,确定了使用STC12C5A60S2单片机作为控制核心,利用红外传感器检测黑线来实现循迹功能,同时使用超声波传感器进行避障。

我们还设计了电路图,并完成了电路板的焊接和调试。

最后,我们将电路板与小车车体相连,编写了控制程序,使小车能够实现循迹行驶和遇障停止的功能。

三、实习收获通过这次实习,我收获颇丰。

首先,我深入了解了循迹小车的原理和制作过程,掌握了单片机的基本应用和电路设计技巧。

其次,我在实际操作中锻炼了自己的动手能力,学会了如何解决实际问题。

此外,我还学会了如何与团队成员协作,共同完成任务。

这次实习让我明白了理论联系实际的重要性,也让我对电子工程和嵌入式系统产生了更浓厚的兴趣。

四、存在问题及改进措施在制作过程中,我们遇到了一些问题。

例如,电路板焊接过程中出现了短路现象,导致小车无法正常工作。

为了解决这个问题,我们重新检查了电路图,发现并修复了短路部位。

此外,我们还发现小车的循迹精度不高,需要进一步优化控制程序。

在今后的实践中,我们将努力学习相关知识,提高自己的技能,不断改进小车的性能。

五、总结总之,这次实习让我们受益匪浅。

我们不仅学到了很多关于电子工程和嵌入式系统的知识,还锻炼了自己的动手能力和团队协作能力。

通过制作循迹小车,我们深刻体会到了理论与实践相结合的重要性。

在今后的学习和工作中,我们将不断努力,将自己所学知识运用到实际中,为我国电子工程事业做出贡献。

电动循迹小车实验报告

电动循迹小车实验报告

一、实验目的本次实验旨在设计和实现一款基于电动驱动的循迹小车,通过红外传感器检测地面上的黑线,实现对小车行进路径的自动控制。

通过本次实验,掌握以下技能:1. 红外传感器的原理和应用;2. 单片机的编程和驱动控制;3. 电动小车的组装与调试;4. 掌握电路设计和调试方法。

二、实验原理1. 红外传感器原理:红外传感器通过发射红外线并接收反射回来的红外线来检测物体的存在。

当红外线照射到黑色路线上时,反射回来的红外线强度减弱,传感器检测到变化后,将信号传输给单片机。

2. 单片机控制原理:单片机接收到红外传感器的信号后,根据预设的程序控制小车的前进、后退、转弯等动作。

3. 电机驱动原理:电机驱动电路将单片机的控制信号转换为电机所需的电流,驱动电机旋转,从而实现小车的运动。

三、实验器材1. 电动小车底盘;2. 红外传感器模块;3. 单片机(如Arduino);4. 电机驱动模块(如L298N);5. 电池;6. 连接线;7. 电阻、电容等电子元件;8. 黑色纸带。

四、实验步骤1. 组装电路:将红外传感器模块、单片机、电机驱动模块、电池等元件按照电路图连接起来。

2. 编写程序:根据实验要求,编写单片机的控制程序。

程序主要包括以下功能:- 红外传感器数据采集;- 小车运动控制(前进、后退、转弯);- 电机驱动控制。

3. 调试程序:将编写好的程序烧录到单片机中,连接电池,观察小车是否能够按照预期路径行进。

4. 调整传感器位置:根据红外传感器的实际工作情况,调整传感器位置,确保传感器能够准确检测到地面上的黑线。

5. 调整电机速度:通过调整电机驱动模块的PWM信号,调整电机的转速,使小车运动平稳。

6. 优化程序:根据实验结果,对程序进行优化,提高小车的循迹精度和稳定性。

五、实验结果与分析1. 实验结果:经过调试,小车能够按照地面上的黑线行进,实现自动循迹。

2. 分析:- 红外传感器对光线敏感,容易受到环境光线干扰。

在光线较强或较弱的环境中,需要对传感器进行调整,以确保其正常工作。

红外循迹小车实验报告

红外循迹小车实验报告

一、实验目的1. 熟悉红外循迹传感器的工作原理和特点;2. 掌握红外循迹小车的搭建方法;3. 理解红外循迹小车的工作原理;4. 通过实验验证红外循迹小车的性能。

二、实验原理红外循迹小车是一种利用红外传感器检测地面颜色变化来实现循迹的小车。

红外循迹传感器主要由红外发射管和红外接收管组成。

当红外发射管发射的红外线照射到地面时,如果地面是黑色,红外线会被吸收,传感器接收到的光强会减弱;如果地面是白色,红外线会被反射,传感器接收到的光强会增强。

通过检测红外接收管接收到的光强变化,可以判断地面颜色,从而实现循迹功能。

三、实验器材1. 红外循迹传感器模块;2. 51单片机;3. 步进电机驱动模块;4. 电池;5. 电机;6. 连接线;7. 平面黑线;8. 平面白线;9. 实验平台。

四、实验步骤1. 搭建红外循迹小车电路:将红外循迹传感器模块、51单片机、步进电机驱动模块、电池、电机等连接起来,确保电路连接正确。

2. 编写程序:编写51单片机程序,实现对红外循迹传感器数据的读取、处理和电机驱动的控制。

3. 调试程序:将编写好的程序烧录到51单片机中,调试程序,确保小车能够按照预期循迹。

4. 实验验证:将小车放置在实验平台上,将地面铺设成黑线和白线交替的模式,观察小车是否能够按照黑线行驶。

五、实验结果与分析1. 实验结果:经过调试,小车能够按照地面上的黑线行驶,实现循迹功能。

2. 实验分析:(1)红外循迹传感器模块在接收到的光强变化时,会产生高低电平信号,通过读取这些信号,可以判断地面颜色;(2)51单片机根据红外循迹传感器模块的信号,计算出小车与黑线的距离,从而控制步进电机驱动模块,使小车按照黑线行驶;(3)在实验过程中,发现红外循迹小车的循迹性能与地面材质、光线等因素有关,需要根据实际情况调整红外循迹传感器模块的安装角度和距离。

六、实验总结通过本次实验,我们了解了红外循迹传感器的工作原理和特点,掌握了红外循迹小车的搭建方法,并验证了红外循迹小车的性能。

循迹小车设计概述总结报告

循迹小车设计概述总结报告

循迹小车设计概述总结报告一. 引言循迹小车是指通过光电传感器感知地面上的黑线,并根据黑线的位置来调整车身方向,从而实现沿着黑线自动行驶的一种智能小车。

本篇报告旨在总结循迹小车设计的整体思路、实施过程以及遇到的问题与解决方案。

二. 设计思路循迹小车的设计主要包含以下几个关键要点:1. 感应模块选择选择合适的光电传感器作为感应模块,用于检测地面上的黑线。

常见的光电传感器有红外线传感器、RGB传感器等,可以根据实际需求选择适合的传感器。

2. 控制模块选择选择合适的控制模块,负责接收感应模块的数据,并控制小车的电机进行相应的运动。

常见的控制模块有单片机、树莓派等,可以根据需求和个人技术储备来选择。

3. 算法设计设计循迹算法,根据光电传感器的反馈数据,判断车身当前位置与黑线的位置关系,并根据判断结果来调整小车的行驶方向。

常见的算法有PID控制算法、模糊控制算法等,可以根据实际需求选择适合的算法。

4. 机械结构设计设计小车的机械结构,包括底盘、电机、车轮等。

确保机械结构的稳定性和可靠性,同时要考虑小车的大小、重量和外观等因素。

三. 实施过程在设计循迹小车的过程中,我们按照以下步骤逐步实施:1. 硬件搭建首先,搭建循迹小车的硬件系统,包括连接光电传感器、控制模块和电机等。

确保各个模块之间的连接正确无误,以及硬件系统的稳定性和可靠性。

2. 程序编写根据设计思路和需求,编写程序实现循迹小车的控制逻辑。

涉及到光电传感器数据的读取、算法的实现和电机控制等方面的内容。

在编写过程中,需要进行调试和测试,确保程序的准确性和稳定性。

3. 测试和优化在完成程序编写后,对循迹小车进行测试和优化。

通过实际测试,了解小车在各种情况下的表现,并根据实际情况对程序进行优化和调整,以提高小车的稳定性和自动化程度。

四. 遇到问题与解决方案在循迹小车设计的过程中,我们遇到了一些问题,但通过不断努力和寻找解决方案,最终都得到了解决。

以下是我们遇到的一些问题及解决方案的总结:1. 光照干扰在室外测试时,光照强度的变化会对光电传感器的检测结果产生影响。

电子实习循迹小车实验报告

电子实习循迹小车实验报告

电子实习循迹小车实验报告一、实验目的1. 学习基本的电子电路设计、搭建和调试方法;2. 掌握单片机的基本原理及应用;3. 培养动手能力、团队协作能力和创新思维。

二、实验原理1. 循迹原理:通过传感器检测赛道上的黑线,将信号输入单片机,单片机处理信号并控制电机驱动电路,使小车沿着黑线行驶;2. 单片机原理:使用STC89C52单片机作为主控制器,实现对电机驱动电路的控制;3. 电机驱动电路:采用L298N电机驱动模块,实现对电机的驱动和调速。

三、实验器材与步骤1. 器材:STC89C52单片机、L298N电机驱动模块、红外传感器、电源、电机、小车底盘等;2. 步骤:(1)设计并绘制电路原理图,包括单片机、电机驱动电路、传感器等;(2)根据电路原理图,搭建电路,连接电源、单片机、电机驱动模块和传感器;(3)编写单片机程序,实现对电机驱动电路的控制;(4)调试电路,使小车能够沿着黑线行驶;(5)优化程序,提高小车的行驶速度和稳定性。

四、实验结果与分析1. 实验结果:(1)小车能够沿着黑线行驶,完成循迹任务;(2)通过调整程序,小车行驶速度稳定,反应灵敏;(3)小车在行驶过程中,能够克服一定的障碍物。

2. 分析:(1)本实验采用了STC89C52单片机作为主控制器,具有较高的性能和稳定性;(2)L298N电机驱动模块具有良好的驱动能力和调速性能;(3)红外传感器具有较高的检测灵敏度,能够准确检测黑线;(4)程序设计合理,能够实现对电机驱动电路的控制,使小车完成循迹任务。

五、实验总结本次电子实习循迹小车实验,通过学习基本的电子电路设计、搭建和调试方法,掌握了单片机的基本原理及应用,培养了动手能力、团队协作能力和创新思维。

实验过程中,我们学会了如何面对问题、分析问题、解决问题,为今后的科研和工作打下了坚实的基础。

六、实验展望1. 优化电路设计,提高小车的行驶速度和稳定性;2. 引入其他传感器,使小车具备更丰富的功能,如避障、远程控制等;3. 探索更深层次的单片机应用,如实现循迹小车的智能控制;4. 将循迹小车应用于实际场景,如智能物流、无人驾驶等。

循迹小车焊接实习报告

循迹小车焊接实习报告

一、实习背景随着科技的发展,智能机器人技术逐渐应用于各行各业。

为了培养具备实际操作能力的工程技术人才,我国高校纷纷开设了机器人技术相关课程。

本人在此背景下,参加了智能循迹小车焊接实习,通过实践操作,掌握了焊接技能和智能循迹小车的制作过程。

二、实习目的1. 熟练掌握焊接技能,提高焊接质量。

2. 了解智能循迹小车的构成和工作原理。

3. 培养团队协作和沟通能力。

4. 提高动手能力和创新意识。

三、实习内容1. 焊接技能培训实习期间,我们学习了焊接的基本原理、焊接设备的使用方法以及焊接操作技巧。

在老师的指导下,我们进行了焊接实践,包括锡焊、焊接接头、焊接修复等。

通过实践,我们掌握了焊接技能,提高了焊接质量。

2. 智能循迹小车制作(1)了解智能循迹小车的构成智能循迹小车主要由以下几部分组成:电机、舵机、传感器、单片机、电池等。

通过学习,我们了解了各部分的功能和作用。

(2)焊接实践在老师的指导下,我们进行了智能循迹小车各个部件的焊接工作。

具体包括:1)电机与舵机的焊接:将电机和舵机连接在一起,确保连接牢固。

2)传感器与单片机的焊接:将传感器与单片机连接,实现数据采集和控制。

3)电池与电路板的焊接:将电池与电路板连接,为整个系统提供电源。

(3)调试与测试在完成焊接工作后,我们对智能循迹小车进行了调试和测试,确保各个部件正常工作。

四、实习收获1. 焊接技能得到提高,焊接质量得到保证。

2. 深入了解了智能循迹小车的构成和工作原理,为以后的学习和研究打下了基础。

3. 培养了团队协作和沟通能力,提高了自己的动手能力和创新意识。

4. 激发了对机器人技术的研究兴趣,为今后的职业发展奠定了基础。

五、实习总结本次智能循迹小车焊接实习,让我收获颇丰。

通过实践操作,我掌握了焊接技能,了解了智能循迹小车的制作过程,提高了自己的综合素质。

在今后的学习和工作中,我将继续努力,不断提高自己的专业技能,为我国机器人技术的发展贡献自己的力量。

循迹小车报告精选全文完整版

循迹小车报告精选全文完整版

可编辑修改精选全文完整版创新制作循迹小车制作报告班级:学号:姓名:一、设计方案路面检测模块电路检测路面信息,区分黑色与白面,并形成相对应的高电平与低电平提供给单片机;单片机对路面循迹模块提供的高低电平进行分析,并形成相应的对策(直行、左转、右转和停止等),并将其转化成对应的电压输出给电机驱动模块;电机驱动模块根据单片机提供的电压信号驱动对应的电机,得到与对策相同的执行动作;电源模块电路为三个模块提供所需要的电。

电路框图如下图所示:电路框图二、路面检测模块工作原理一对光电开光的发射管不停的发射红外光,经过路面发射回来的被接受管接收到。

因为白色路面和黑线对光的反射不同,所以正对白色路面的光电对管的接收管接收到更多的红外光,而正对黑线的光电对管的接收管收到较少的红外光。

经过光电开关的接收电路将接收到红外光的多少转化为正相关的电流大小,并进一步转化成接收电路的输出电压(A点电压)的较小值和较大值。

输出电压的较小值和较大值进一步与一个居中的基准电压分别进行比较,对应比较器的输出端(C点)分别为高电平还是低电平,并进一步输出给单片机,同时对应指示发光管的不亮与亮。

路面循迹模块电路如下图所示:D1路面循迹模块电路三、单片机最小系统单片机最小系统包括了时钟电路和复位电路。

时钟电路为单片机工作提供基本时钟,复位电路用于将单片机内部各电路的状态恢复到初始值。

单片机是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号下严格地按时序进行工作。

时钟电路用于产生单片机工作所需要的时钟信号。

时钟信号的产生是在MCS-51系列单片机内部有一个高增益反相放大器,其输入端引脚为XTAL1,其输出端引脚为XTAL2。

只要在XTAL1和XTAL2之间跨接晶体振荡器和微调电容,就可以构成一个稳定的自己振荡器。

复位电路由一个按键、电解电容和电阻组成,它是使CPU 和系统中的其他功能部件都恢复到一个确定的初始状态,并从这个状态开始工作。

制作循迹小车实习总结

制作循迹小车实习总结

制作循迹小车实习总结‎制作循迹小车实习总‎结‎篇一:‎电子实习报告‎智能循迹小车电子实‎习报告学院:‎电气学院专业‎班级:学生‎姓名:指导‎教师:完成时‎间:成绩:‎目录‎一、设计要求‎及注意事项.....‎..........‎..........‎..........‎2二、设计的‎作用、目的.....‎..........‎..........‎..........‎........2 ‎三、设计的具体‎实现........‎..........‎..........‎..........‎.2 1.系统‎概述........‎..........‎..........‎..........‎..........‎. (2)2‎.单元电路设计(或仿‎真)与分析.....‎..........‎..........‎........3 ‎(1)电源模块‎..........‎..........‎..........‎..........‎..........‎. (3)(‎2)电机驱动模块..‎..........‎..........‎..........‎..........‎. (4)‎(3)简易控制模‎块.........‎..........‎..........‎..........‎. (6)(‎4)红外循迹模块..‎..........‎..........‎..........‎..........‎. (7)‎ 3.电路的安装与‎调试........‎..........‎..........‎..........‎..........‎ (8)(1‎)安装.......‎..........‎..........‎..........‎..........‎. (8)(‎2)调试......‎..........‎..........‎..........‎..........‎.. (10)‎四、心得体会,存在‎的问题和进一步改进的‎意见........‎.. (11)‎五、附录.....‎..........‎..........‎..........‎........11‎1.元件说明‎..........‎..........‎..........‎..........‎..........‎ (11)(‎1)电阻......‎..........‎..........‎..........‎..........‎.. (11)‎(2)电解电容..‎..........‎..........‎..........‎..........‎.. (11)‎(3)LED...‎..........‎..........‎..........‎..........‎........12‎(4)芯片.‎..........‎..........‎..........‎..........‎..........‎12 电子实习报告‎一、设计‎要求及注意事项‎1.能独立完成设计‎内容并完全掌握其内部‎结构、工作原理和安装‎调试过程。

智能循迹小车报告.doc

智能循迹小车报告.doc

智能循迹小车报告.doc一、前言智能循迹小车是一款基于机器人技术的智能装备,主要实现对机器人的智能控制和追踪操作,适用于各种场景中的巡航及运输。

智能循迹小车在各类工业现场、家庭生活中得到广泛应用。

本报告将对智能循迹小车的相关技术、应用及未来发展进行分析与总结。

二、技术原理智能循迹小车的核心技术是基于计算机视觉和机器人导航领域中的视觉跟踪技术,实现对目标的追踪和路径规划。

该技术主要包括如下步骤:1. 传感器采集数据:智能循迹小车配备了多种传感器,如激光雷达、摄像头、红外线传感器等,用于采集目标物体的信息;2. 数据处理:接收传感器采集的数据后,智能循迹小车通过算法处理,将数据转化成可供计算机识别的数字信号;3. 目标检测:将数字信号传入计算机,通过人工智能、机器学习等技术实现对目标的识别、分类和跟踪;4. 路径规划:根据目标的位置和运动轨迹,智能循迹小车通过算法实现路径规划和自主导航,避开障碍物,寻找最短路径;5. 控制执行:根据路径规划生成的控制信号,智能循迹小车对轮子和电机执行精确的控制,实现移动和自动导航。

三、应用现状智能循迹小车在生产、物流、安防、家庭生活等众多领域得到广泛应用,以下列举几种应用场景。

1. 工业自动化:在工业生产自动化方面,智能循迹小车可以用于运输原材料和成品、仓库货物的自动化管理、装配线物料转移等。

机器人可以根据目标位置和运动方向,自动运行到指定位置,精准地完成操作任务。

2. 物流配送:智能循迹小车可以用于大型物流中心的快递配送、医院内的物资搬运等场景。

机器人通过自主路径规划和导航,可以自动避开障碍物,并将货物准确地送到目的地,提高了生产效率和准确性。

3. 家庭服务:智能循迹小车还可应用于家庭服务领域,如智能扫地机器人、智能花盆机器人等。

机器人自动巡航,清洁地面,喷水浇花,实现人机交互。

4. 安防监控:在安防监控领域,智能循迹小车可以应用于产品物流追踪、边境巡逻等领域。

机器人对区域进行自动巡航,通过多种传感器检测目标,将异常情况反馈给监控中心,实现精确的实时监控。

循迹小车设计个人工作总结

循迹小车设计个人工作总结

一、项目背景随着科技的不断发展,智能机器人技术日益成熟,循迹小车作为智能机器人的一种,具有广泛的应用前景。

本设计旨在利用单片机技术,实现循迹小车的自主循迹、避障等功能,提高小车的智能化水平。

二、设计目标1. 实现小车在预设路线上自动循迹,提高行驶精度;2. 实现小车在遇到障碍物时自动减速、避障;3. 通过遥控器实现小车的远程控制;4. 实现小车状态参数的实时显示。

三、设计过程1. 硬件设计(1)选择合适的单片机作为控制核心,本设计采用STC89C52单片机;(2)选用红外传感器作为循迹模块,实现小车在预设路线上自动循迹;(3)采用电机驱动模块,实现小车的前进、后退、左转、右转等动作;(4)配置电源模块,为整个系统提供稳定的电源供应;(5)通过LCD显示屏实时显示小车状态参数。

2. 软件设计(1)编写循迹算法,实现小车在预设路线上自动循迹;(2)编写避障算法,实现小车在遇到障碍物时自动减速、避障;(3)编写遥控器控制程序,实现小车的远程控制;(4)编写LCD显示程序,实时显示小车状态参数。

3. 系统调试(1)对循迹模块进行调试,确保小车在预设路线上准确循迹;(2)对避障模块进行调试,确保小车在遇到障碍物时能够及时减速、避障;(3)对遥控器控制程序进行调试,确保遥控器能够远程控制小车;(4)对LCD显示程序进行调试,确保小车状态参数能够实时显示。

四、成果与总结1. 成果(1)设计并实现了基于单片机的循迹小车,实现了自动循迹、避障等功能;(2)通过遥控器实现了小车的远程控制;(3)通过LCD显示屏实时显示小车状态参数。

2. 总结(1)在循迹小车设计中,硬件和软件设计是关键,需要合理选择元器件和编写程序;(2)在系统调试过程中,要注重各个模块之间的协同工作,确保系统稳定运行;(3)循迹小车的设计具有实际应用价值,可以应用于家庭、教育、工业等领域;(4)通过本次设计,提高了自己的单片机编程、硬件设计、系统调试等方面的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

void Timer0_Init( uint32 timer0 )
{
T0TCR = 0x02;
T0TC = 0;
T0PR = 0;
T0MCR = 0x03;
//中断并复位
T0MR0 = Fpclk/timer0;
//p0.2 捕获
T0TCR = 0x01;
//启动定时器
}
/******************************************************************************************* ** 函数名称:IRQ_Timer0() ** 函数功能:中断函数 ** 输入参数:无 ** 输出参数:无 *******************************************************************************************/ void __irq IRQ_Timer0(void) {
我们设计并论证了光电对管检测及调理电路,电路原理图分别如 4 所示:
-5-
图 4 光电对管检测电路 1 图 4 所示电路中,R1 起限流电阻的作用,当有光反射回来时,光电对管中的三极管导 通,R2 的上端变为高电平,此时 VT1 饱和导通,三极管集电极输出低电平。 当没有光反射回来时,光电对管中的三极管不导通,VT1 截至,其集电极输出高电平。 VT1 在该电路中起到滤波整形的作用。 经试验和示波器验证,该电路工作性能一般,输出还有杂散干扰波的成分。如果输出 加施密特触发器就可以实现良好的输出波形。 但是这种电路用电量比较大,给此种传感器调理电路供电的电池压降较快。究其原因, 是因为光敏三极管和三极管 VT1 导通时的导通电流较大。 而且检测距离不稳定,和环境有很大关系。
由三极管 Q9、Q10、Q11、Q12 构成 H 桥驱动电路,控制着几个管子的通断就可以控制直 流电机的正转、反转。
P0.3 1 0 1 0
.
.
P0.2 0 1 0 1
Q1
10K Q13 NEC772
Q3 10K
表 3.2.1
P0.1 0 1 1 0
VCC
Q9 NEC882
MG1
Q1M5 OTOR DC NEC772
2.2 传感器系统
反射式红外发射—接收装置,只有物体反射红外光时才有信号输入,其信号强度与小车 距障碍物的距离成正比。因此可利用信号强度作为循迹依据。
红外探测器以其发射功率大、抗干扰能力强而在工业生产中有着广泛的应用,红外探测 器按其工作模式可大致分为主动式与被动式,主动式红外探测器自带红外光源,通过对光源 的遮挡、反射、折射等光学手段可以完成对被探测物体位置的判别。被动式红外探测器本身 没有光源,通过接受被探测物体的特征光谱辐射来测量被探测物的位置、温度或进行红外成 像。直流直接驱动方式装置简单但检测距离和抗干扰能力都比较差;交流调制方式由于可以 采用交流耦合方式解决了放大器的直流漂移问题从而可以大大提高检测的距离,同时由于环 境光产生的干扰多数情况是信号的直流或低频分量可以由滤波器加以隔绝,因此交流调试方 式抗干扰能力也比较强,缺点是系统相对复杂。在本体中我们要利用红外探测器检测障碍物 的距离,显然选用主动式红外传感器比较合适,系统的造价可以降低可靠性可以提高。
//PWM 数组
zkb[8]
= {0,0,11,11,11,11,0,0};
//占空比数组
volatile uint32 timeflag=0,
//时钟标志
timerflag=0,
//闪烁标志
PWM=1000,
//输出 PWMW 周期
timer=500;
//定时器 0 的参数
volatile uint8
i=0,
//位码标志
KEY=10,
//按键
Modifly=0,
//修改及确定键
yiweiflag=0,
//移位标志
page=0,
//换页键
zkb1,
//占空比 1 路
zkb2,
//占空比 2 路
flag0=0,
//加速标志 1
flag1=0,
//加速标志 2
key4flag=0,
/*******************************************************************************************
1.2 技术指标
1、智能寻迹小车需基于 ARM LPC2000 系列进行开发和设计。 2、能实现在椭圆轨道、S 形轨道,等多种规则黑线轨道上寻迹运行。 3、小车外观包装优美、电路设计制作焊接等工艺精良、软件程序可读性强。 4、可扩展其它功能。
-4-
第二章 设计方案的选择和确定
2.1 主控系统方案
选择 LPC2103 ARM 作为小车的控制中枢。
-6-
3.1 整体构思
第三章 系统硬件设计
经过方案论证的过程之后,我们选定了仅采用 lpc2103 作为核心部件的方案,其系统 总方框图如图 3.1.1 所示。
具体的功能设置已通过该图做了直观的说明。通过主控芯片控制各传感器输入的信号, 控制方式由软件来实现,其中包括两个红外传感器用来循迹。在功能和作用上,我分成
uint8 const duanma[8]={ 0xfe, 0xfd, 0xfb, 0xf7,
0xef, 0xdf, 0xbf, 0x7f};
//从右至左的位码
volatile uint8
shizhong[8] = {5,5,10,9,5,10,3,2},
//时间数组 从左向右的码
pwm[8]
= {0,0,0,0,1,0,10,2},
** 函数名称:Timer0_Init()
** 函数功能:定时器 0 cap 捕获
** 输入参数:无
** 输出参数:无
- 13 -
*******************************************************************************************/
经过几天的琢磨,我们慢慢的有了眉目,构思出了大概的原理框图和搭建实验电路的所 需元器件。到了周末,就开始画 PCB 板了。第二周的时候就开始制电路板了。
这四周工程训练虽然很辛苦,但我们还是学到了很多东西的。学会独立思考和独立解决 问题。不足的地方还有很多,例如焊接技术还有待于提高,工作原理不是掌握的很透彻,希 望自己以后进一步改进。
P0.0 1 0 0 1
Q10 Q2 10K
NEC882 Q16
状态 前行 后退 左转 右转
. .
Q17
NEC772
Q7 10K
NEC772
6
8
UD 74LS04
UC 7
.
.
图 3.2.3 小车驱动
.
-9-
第四章 系统的软件设计
4.1 主程序流程图 我们所设计的软件的主程序流程图如图 4.1.1 所示:
由 I/O 的脉冲来控制 H 桥中三极管的通断,从而来控制直流电机的前进、后退、左转和 右转的动作,具体如下表 3.2.1。
采用普通直流电机,通过控制脉冲占空比算法,实现对小车速度的控制。这种调速方式 有调速特性优良、调整平滑、调速范围广、带载能力大,能承受频繁的负载冲击,还可以实 现频繁的无级快速启动、制动和反转等优点。
左避子 程序
停止 返回
图 3.1.2 主程序框图
3.2 直流电机的驱动电路(H 桥 L298)
-8-
由于我们做的是循迹小车,只需要前进就可以了,所以没有用到 H 桥前进后退的功能 了。但还是介绍 L298。
设计中,驱动电路的四个输入端我们只用了两路输入分别与 ARMLPC2103 的 P0.15 和 P0.14 连接。这样四路输入就有高低电平了,轮子就能转起来。再接入两路 PWM 驱动,就能 控制速度。P0.19 控制车的右轮,P0.20 控制车的左轮。一驱动电路如图 3.2.3。
#define right 0x01<<7
#define left 0x01<<8
#define LED1 0x01<<17
#define LED2 0x01<<18
uint8 const weima[12]={ 0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d,
0x7d, 0x07, 0x7f, 0x6f, 0x40, 0x00}; //0--9 和"-" "黑"的段码
如图 4.2.1 所示:
- 10 -
4.3 系统完整电路图 稳压整流原理图、PCB
图 4.2.1 传感器信息处理子程序流程图
- 11 -
H 桥原理图、PCB 红外对管原理图、PCB
- 12 -
4.5 ARM 控制小车程序
#include "config.h"
#define key 0x02
#define RCK 0x01
主动式红外传感器又可分为分立元件型、透射遮挡型和反射型(如图 1.2.3 示),分立 元件型发光管与接收管相互独立,用户在使用时可以根据需要灵活的设定发光管与接受管的 位置,并可利用棱镜、透镜等完成特殊的目的,缺点是装置麻烦。透射遮挡型和反射型通过 塑料模具将发光管与接收管封装在一起,非常方便用户使用,在本题中对障碍物的检测我使 用红外对管 TCRT5000。 2.3 光电对管电路的设计
4.4 基于 Altium Designer 6.9 的 PCB 板电路图
4.5 ARM 控制小车程序
第五章 性能测试与分析
-3-
第一章 智能寻迹小车的概述
1.1 设计的目的与要求
相关文档
最新文档