第三章-物理化学处理(4).
大学物理化学 第三章 多组分系统热力学习指导及习题解答
RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x
物理化学第三章(简)
(10)
有简并度时定域体系的微态数
S 定位=kN ln ∑ g i e
i
− ε i / kT
U + T
− ε i / kT
A定位= − NkT ln ∑ g i e
i
有简并度时离域体系的微态数
同样采用最概然分布的概念, 同样采用最概然分布的概念,用Stiring公 公 式和Lagrange乘因子法求条件极值,得到微态 乘因子法求条件极值, 式和 乘因子法求条件极值 数为极大值时的分布方式 N i* 离域子)为: (离域子)
)N
N!
U + T
A非定位= − kT ln
(∑ g i e −ε i / kT ) N
i
N!
Boltzmann公式的其它形式
能级上粒子数进行比较, 将 i 能级和 j 能级上粒子数进行比较,用最概然分布公式相 比,消去相同项,得: 消去相同项,
− ε i / kT
N gi e = − ε j / kT N g je
简并度增加,将使粒子在同一能级上的微态数增加。 简并度增加,将使粒子在同一能级上的微态数增加。
有简并度时定域体系的微态数
个粒子的某定位体系的一种分布为: 设有 N 个粒子的某定位体系的一种分布为:
能级 各能级简并度 一种分配方式
ε1 , ε 2 , ⋅ ⋅⋅, ε i
g1 , g 2 , ⋅ ⋅⋅, gi N1 , N 2 , ⋅ ⋅⋅, N i
等概率假定
对于U, 确定的某一宏观体系, 对于 V 和 N 确定的某一宏观体系,任何一个可能出 现的微观状态, 有相同的数学概率, 现的微观状态 , 都 有相同的数学概率 , 所以这假定又称为 等概率原理。 等概率原理。 等概率原理是统计力学中最基本的假设之一 , 它与求 等概率原理 是统计力学中最基本的假设之一, 是统计力学中最基本的假设之一 平均值一样,是平衡态统计力学理论的主要依据。 平均值一样,是平衡态统计力学理论的主要依据。 例如,某宏观体系的总微态数为 Ω ,则每一种微观状态 P 例如, 出现的数学概率都相等, 出现的数学概率都相等,即:
《物理化学》第三章(化学平衡)知识点汇总
第三章:化学平衡
第三章 化学平衡
化学反应的平衡条件
aA dD
dG SdT Vdp B dnB
B
gG hH
等温等压条件下:
AdnA DdnD GdnG HdnH
dG BdnB
B
35
根据反应进度的定义:
d
$
化学反应的等温方程式
40
平衡常数表示法
一、理想气体反应标准平衡常数
K$
pG pH p$ p$ eq eq p A pD p$ p$ eq eq
a d
g
h
K $ (1)
pNH3 $ p
g h nG nH a d nA nD
项减小,温度不变时, K
$
为一常数,则
项增大,平衡向右移动。
谢谢观看!!!
p Kn K p nB B
Kn
与温度、压力及配料比有关
45
复相化学反应 在有气体、液体及固体参与的多相体系中,如果凝聚相 (固相及液相)处于纯态而不形成固溶体或溶液,则在常 压下,压力对凝聚相的容量性质的影响可以忽略不计,凝 p p CaCO (s) CaO(s) CO ( g ) K p p 聚相都认为处于标准态。因此,在计算平衡常数时只考虑 气相成分。
$
$ ln K $ r H m 0, 0 T $ d ln K $ 0 r H m 0, dT
$ ln K $ r H m T RT 2 p
K $ 随温度的升高而增加 K
$
随温度的升高而降低
中和法
用CO2气体中和碱性废水时,为使气液充分接触反 应,常采用逆流接触的反应塔(CO2气体从塔底吹入,以 微小气泡上升;而废水从塔顶喷淋而下)。 用CO2做中和剂的优点在于:由于pH值不会低于6左 右,因此不需要pH值控制装置。
第三章 污水的化学及物理化学处理
第一节
第三节
中和法
化学沉淀法
第一节
中和法
一、概述
定义:
中和法是利用碱性药剂或酸性药剂将废水从酸性 或碱性调整到中性附近的一类处理方法。
酸性废水的成分包括:
无机酸:硫酸、硝酸、盐酸、氢氟酸、磷酸等 有机酸:醋酸、甲酸、柠檬酸等 金属盐:水解后导致的酸性
碱性废水的成分:
一、概述
2、酸性废水和碱性废水
对于酸含量小于5~10%或碱含量小于3~5% 的低浓度酸性废水或碱性废水,由于其中酸、碱含 量低,回收价值不大,常采用中和法处理,使其达 到排放要求。 此外,还有一种与中和处理法相类似的处理操 作叫pH调节。若将pH值由中性或酸性调至碱性, 称为碱化;若将pH值由中性或碱性调至酸性,称 为酸化。
三、酸性废水的中和处理
1、药剂中和法
2、过滤中和法
3、利用碱性废水和废渣的中和法
4、利用天然水体及土境中碱度的中和法
1、药剂中和法
药剂中和法最常采用的碱性药剂是石灰(CaO),有
时也选用苛性钠、碳酸钠、石灰石、白云石、电石渣 等。选择碱性药剂时,不仅要考虑它本身的溶解性、 反应速度、成本、二次污染、使用方便等因素,而且 还要考虑中和产物的性状、数量及处理费用等因素。 当投石灰进行中和处理时,Ca(OH)2还有凝聚作 用,因此对杂质多、浓度高的酸性废水尤其适宜。
2、过滤中和法
化工废弃物的处理与资源化利用
化工废弃物的处理与资源化利用第一章概述化工生产过程中产生的废弃物,如果不得当处理,会对人类和生态环境造成严重危害。
因此,对化工废弃物的处理和资源化利用是一个重要的问题。
本文将从化工废弃物的特点、处理方法、资源化利用等方面进行探讨。
第二章废弃物的特点及分类化工废弃物是指化工生产过程中产生的废弃物,包括废水、废气、废渣等。
它们的特点是含有大量的有机物、无机盐和重金属等物质,具有有毒、危险、腐蚀等性质。
根据其来源和性质的不同,废弃物可分为危险性废弃物和非危险性废弃物,其中,危险性废弃物是指具有可燃、易爆、有毒、有害等特性的废弃物,需要采取特殊的处理措施。
第三章废弃物的处理方法废弃物的处理是指采取各种方式把危险废弃物或非危险废弃物转化成无害物质,达到安全、环保、节能等目的的过程。
废弃物的处理方法有很多种,下面主要介绍常见的几种处理方式。
3.1 埋填废弃物埋填是指将废弃物填埋于土地之中,并通过固废填埋的排水和渗滤系统进行处理。
这种方法具有处理量大、成本低等优点,但也存在污染土壤、造成温室气体排放等问题。
3.2 焚烧焚烧是指将废弃物通过高温氧化分解的方式处理掉。
这种方法具有占地面积小、处理效果好等优点,但也存在烟气污染、能源消耗等问题。
3.3 物理化学处理物理化学处理是指采用物理和化学方法将废弃物转化成可无害化的物质。
这种方法具有处理效果好、适用范围广等优点,但处理成本较高。
第四章资源化利用废弃物的资源化利用是指对废弃物进行再加工、再利用的过程,目的是减少废弃物的产生量,提高其经济价值。
目前针对废弃物的资源化利用主要包括以下几个方面:4.1 回收再利用针对某些品种的废弃物,可以通过回收再利用的方式,将其变成有价值的资源。
例如,废旧电池中的铅、锌等金属可以通过化学反应进行提取和回收。
4.2 能源利用废弃物中含有丰富的可再生能源,如生物质能、沼气等。
通过生物质气化、沼气发电等方式,可以将废弃物转化为能源。
第五章废弃物的管理化工废弃物的处理和资源化利用是一项复杂的工程,需要采取全方位的管理措施。
物理化学第三章课后答案完整版
物理化学第三章课后答案完整版第三章热⼒学第⼆定律3.1 卡诺热机在的⾼温热源和的低温热源间⼯作。
求(1)热机效率;(2)当向环境作功时,系统从⾼温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的⾼温热源和的低温热源间⼯作,求:(1)热机效率;(2)当从⾼温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的⾼温热源和的低温热源间⼯作,求(1)热机效率;(2)当向低温热源放热时,系统从⾼温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在⾼温热源和低温热源间⼯作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率⼤于卡诺热机效率,其结果必然是有热量从低温热源流向⾼温热源,⽽违反势热⼒学第⼆定律的克劳修斯说法。
证:(反证法)设 r ir ηη>不可逆热机从⾼温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向⾼温热源放热则若使逆向卡诺热机向⾼温热源放出的热不可逆热机从⾼温热源吸收的热相等,即总的结果是:得⾃单⼀低温热源的热,变成了环境作功,违背了热⼒学第⼆定律的开尔⽂说法,同样也就违背了克劳修斯说法。
3.5 ⾼温热源温度,低温热源温度,今有120KJ的热直接从⾼温热源传给低温热源,求此过程。
解:将热源看作⽆限⼤,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的⾼温热源及的低温热源之间。
求下列三种情况下,当热机从⾼温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上⾯三种过程的总熵变分别为。
3.7 已知⽔的⽐定压热容。
今有1 kg,10℃的⽔经下列三种不同过程加热成100 ℃的⽔,求过程的。
(1)系统与100℃的热源接触。
物理化学答案――第三章_多组分系统热力学及其在溶液中的应用习.
第三章多组分系统热力学及其在溶液中的应用一、基本公式和内容提要1. 偏摩尔量定义:其中X为多组分系统的任一种容量性质,如V﹑U﹑S......全微分式:总和:偏摩尔量的集合公式:2. 化学势定义物质的化学势是决定物质传递方向和限度的强度因素,是决定物质变化方向和限度的函数的总称,偏摩尔吉布斯函数只是其中的一种形式。
3. 单相多组分系统的热力学公式4. 化学势判据等温等压、只做体积功的条件下将化学势判据用于多相平衡和化学平衡中,得多组分系统多相平衡的条件为:化学平衡的条件为:5.化学势与温度、压力的关系(1)化学势与压力的关系(2)化学势与温度的关系6.气体的化学势(1)纯组分理想气体的化学势理想气体压力为(标准压力)时的状态称为标准态,称为标准态化学势,它仅是温度的函数。
(2)混合理想气体的化学势式中:为物质B的分压;为物质B的标准态化学势;是理想气体混合物中B组分的摩尔分数;是B纯气体在指定T,p时的化学势,p是总压。
(3)实际气体的化学势式中:为实际气体或其混合物中物质B的化学势;为B的标准态化学势,其对应状态是B在温度T、压力、且假想具有理想气体行为时的状态,这个状态称为实际气体B的标准态;分别为物质B的逸度系数和逸度。
7. 稀溶液中的两个经验定律(1)拉乌尔定律一定温度时,溶液中溶剂的蒸气压与溶剂在溶液中的物质的量分数成正比,其比例系数是纯溶剂在该温度时的蒸气压。
用公式表示为。
对二组分溶液来说,,故拉乌尔定律又可表示为即溶剂蒸气压的降低值与纯溶剂蒸气压之比等于溶质的摩尔分数。
(2)亨利定律一定温度时,稀溶液中挥发性溶质的平衡分压与溶质在溶液中的物质的量分数成正比。
用公式表示。
式中:为溶质的浓度分别为摩尔分数、质量摩尔浓度和物质的量浓度表示时的亨利系数,单位分别为Pa、和。
使用亨利定律时应注意:①是溶质在液面上的分压;②溶质在气体和在溶液中的状态必须是相同的。
8.溶液的化学势(1)理想液态混合物中物质的化学势①定义:在一定的温度和压力下,液态混合物中任意一种物质在任意浓度均遵守拉乌尔定律的液态混合物称为理想液态混合物。
物理化学:第三章 多组分系统
dU TdS - pdV BdnB
B
B
U nB
S ,V ,nj B
二、广义化学势和热力学基本公式
同样的方法,按H=f(S,p,n1,n2……),F=f(T,V,n1,n2……) 及H、F的定义进行处理,可得化学势的另一些表示式:
B
U nB
S ,V ,nj B
H nB
S , p ,nj B
二广义化学势和热力学基本公式对于组成可变的系统四个热力学基本公式为???bbbddddnvpstu??bbbddddnpvsth????bbbddddnvptsf???bbbddddnpvtsg三温度压力对化学势的影响bbbbb????????????????????????????????????????????????????????????????????????????????????????????????????jiijinptntntnptntpgnngppvpgt????????????????????代入上式得压力对化学势的影响
(与等温、等压下某均相体系任一容量性质的全微分比较)
得 dX = n1dX1,m n2dX2,m … nidXi,m=0
吉布斯—杜亥姆公式
nBdXB,m =0
B
当一个组分的偏摩尔量增加时,另一个组分的偏摩尔量必将
减少,其变化是以此消彼长的方式进行。偏摩尔量之间是具
有一定联系的。某一偏摩尔量的变化可从其它偏摩尔量的变化
B
三、温度、压力对化学势的影响
B
p
T ,ni
p
G nB
T
,
p
,n
j
B
T
,ni
nB
G p
T ,ni T , p ,nj B
物理化学第3章 部分习题解答
m有机物
Tb ,有机物 W有机物 / M 有机物 W醇 Kb
M 有机物
K bW有机物 1.0291 2 0.1647 kg mol 1 W醇Tb ,有机物 100 0.1250
此有机物质的相对摩尔质量为0.1647kg · -1。 mol
12. 人的血液(可视为水溶液)在101.325kPa于-0.56℃凝固。已知 水的K f 1.86 K kg mol 1 。(1)求血液在37℃时的渗透压; (2)在同温度下,1dm3蔗糖(C12H22O11)水溶液中需含有多 少克蔗糖时才能与血液有相同的渗透压?
解:(1) m血液
c糖
M糖
V糖
c血 m 血 0.3011
W
糖
c糖V糖M 糖 0.3011 1 342 .3 103 .1 g
水溶液中需含有103.1克蔗糖时才能与血液有相同的渗透压。
20. 288.15K时,1mol NaOH溶在4.59mol H2O中所形成溶液的蒸气 压为596.5Pa。在该温度下,纯水的蒸汽压为1705Pa,求: (1)溶液中水的活度等于多少?(2)在溶液中,水的化学势 与纯水相差多少?
+
1 mol A + 2 mol B 混合物
分离前: G1 2mol ( A RT ln 0.5) 2mol ( B RT ln 0.5) 1 2 G 分离后: 2 1mol A 1mol ( A RT ln ) 2mol ( B RT ln ) 3 3 G G2 G1 2139 J, W G 2139 J, 即环境对体系所做的最小功为2139 J。
物化第三章
恒温恒压 H2O(s), 1 kg
S = ?
263.15 K 100 kPa
可逆相变 0℃、100kPa下的凝固或熔化过程; 可逆判断 不可逆相变过程; 过程设计
H2O(l), 1 kg 263.15 K 100 kPa S1 H2O(l), 1 kg 273.15 K 100 kPa
T2 1 T 1 源自 Q2 > 1 Q 1
T2 Q 2 > T1 Q1
Q1 Q2 > T1 T2
δ Q2 δ Q1 0 (2)无限小循环: T2 T1
<0 不可逆循环 =0 可逆循环
(3)任意循环:
δQ T 0
3.3 熵、熵增原理
Siso S sys Samb 0
> 0 ir =0 r
※iso——隔离系统 ※sys——封闭系统 ※amb——环境
三、应用
封闭 1.应用:判断隔离系统过程的可逆性; 2.说明:一般认为环境内部无不可逆变化; →→封闭系统+环境=隔离系统
※隔离系统可逆→→封闭系统可逆;
※隔离系统不可逆→→封闭系统不可逆。
→→ΔSiso>0即封闭系统过程不可逆;
ΔSiso=0即封闭系统过程可逆;
熵增原理例题
0。 1.一隔离系统可逆变化中,ΔSsys> 0,ΔSamb < 0。 0,ΔU = 2.实际气体经历不可逆循环,ΔSsys =
0。 0,ΔU < 3.实际气体绝热可逆膨胀,ΔSsys = 0。 0, ΔSamb > 4.理想气体经不可逆循环,ΔSsys = 0。 0, ΔSamb > 5.过冷水结成同温度的冰,ΔSsys <
;
S
2
Qr
T
1
物理化学第三章热力学第二定律
由下式计算在263.15K下的实际途径的凝固热:
H (T 2) H (T 1)T T 1 2 CpdT
26.13K 5
H(26.13K 5)H(27.13K 5)
(3.7 67.5 3)dT
27.13K 5
60 2(30.7 67.5 3)2 ( 6.13 527.13)5 J
56J4Q 3(系 ) 40
Second kind of perpetual motion machine
3
第三页,共49页
2. 两种表述是等效的。
证明
热量转化成功的最高效率是多少? 此即卡诺循环和卡诺定理。
第四页,共49页
卡诺循环
4
§3.2 卡 诺 循 环 Carnot cycle
1.热机: 就是通过工质(如气缸中的气体)从高温 热源吸热做功,然后向低温热源放热复原 ,如此循环操作,不断将热转化为功的机 器。
27
第二十七页,共49页
2.凝聚态物质变温过程熵变的计算
H 2O (l) H 2O (l)
101.325kPa 50℃
200kPa 100℃
QnCP,mdT,
dSQnCP,mdT TT
S T2nCp,mdT(液体或固体)变温
T1
T
TS0
(液体或 恒固 )温体
28
第二十八页,共49页
(4)理想气体的混合过程
凝聚态物质变温过程熵变的计算295传热过程例74理想气体的混合过程例6303相变熵的计算1可逆相变过程在无限趋近相平衡的条件下进行的相变化为可逆相变化平衡温度和平衡压力演示图片1312不可逆相变过程不可逆相变化
物理化学第三章热 力学第二定律
1
第一页,共49页
物理化学第3章热力学第二定律
§3.2 热力学第二定律
事实证明: 功可自发地全部地转化为热,而热不可能全部
转化为功而不引起任何其它变化。 自发过程的不可逆性可归结为热功转化的不可逆性
总结出:可用某种不可逆过程概括其它不可逆过程
T I ,AB
(3.12)
或
B Q
SAB (
A
T )I 0
(3.13)
Q是实际过程的热效应,T是环境温度。若是不
可逆过程,用“>”号,可逆过程用“=”号,
这时环境与系统温度相同。
可见:不可逆过程的热温商小于系统的熵变
对第二定律的理解: 12、、“第热二不类可永能动全机部不转违化反为热功力”学是第指一在定律不引起其 它
变化情况下 理想气体等温膨胀,△T=0 , △U=0 , Q = -W, 但是 △V>0 , △P<0
3、可用第二定律判断过程的方向和限度
关键:寻找简易、普遍适用的方法——判据
§3.3 卡诺定理
R
Th Tc Th
1 Tc Th
根据卡诺定理: R > I
则
Qc Qh 0
Tc Th
推广为与多个热源接触的任意不可逆循环得:
n ( Q i )
T i1
ii
<0
(3.11)
不可逆过程的热温商与熵变的关系:
可推导出:
S (SB SA ) >
i
( Q )
3.14 热力学第三定律与规定熵
§3.1 自发变化的共同特征-不可逆性
自发变化 无需借助外力,任其自然,可以自动发生的 变化称为自发变化。 任何自发变化的逆过程是不能自动进行的。例如:
物理化学 第三章 相平衡
T2 398K 125℃
固-液平衡:
根据克拉贝龙方程
fus H m dT dp fusVm T
T2 p 2 p1 ln fusVm T1 fus H m
例题3 溜冰鞋下面的冰刀与冰接触的地方,长度为 7.62×10-2 m, 宽度为2.45 ×10-5 m。 (1)若某人的体重为60 kg,试问施加于冰的压力? (2)在该压力下冰的熔点?(已知冰的熔化热为 6.01 kJ· -1,Tf*=273.16 K,冰的密度为920 kg.m-3, mol 水的密度为1000 kg· -3)。 m
8 5 1
fus H m
3.2.2 水的相图 (由实验测得)
——描述水的状态如何随系统的T,p而变化的图 3个单相区、3条两相线、1个三相点 各相区的位置 水 冰 汽
?
p
pθ
线 区
临界点
●
常压加热干燥
610.6 Pa
点
273.16 K
升华 真空冷冻干燥
(可保持生物活性)
汽
T
水的冰点 273.15K、 101325Pa 0 ℃
第三章 相平衡
相平衡是热力学在化学领域中的重要应用之一。 研究多相体系的平衡在化学、化工的科研和生产中
有重要的意义。
例如:溶解、蒸馏、重结晶、萃取、提纯及金
相分析等方面都要用到相平衡的知识。
3.1
3.1.1 基本概念
相律
1.相与相数(P)
相:体系中物理、化学性质完全均匀(一致)
的部分。
相与相:明显界面;物理方法可分开;
2.组分和组分数
组分(Component),也称独立组分
描述体系中各相组成所需最少的、能独立存在 的物质(讨论问题方便)。 组分数: 体系中组分的个数,简称组分,记为C。
物理化学第三章资料
气态溶液 固态溶液 液态溶液
化学势
正规溶液
非电解质溶液
2009-4-14
第三章 化学势
3.1 偏摩尔量 3.2 化学势 3.3 气体物质的化学势 3.4 理想溶液中物质的化学势 3.5 稀溶液中物质的化学势 3.6 不挥发性溶质稀溶液的依数性 3.7 非理想溶液中物质的化学势
100cm3乙醇(l)+100cm3乙醇(l)=200cm3乙醇(l) 2、100cm3H2O (l)+100cm3乙醇(l)≈192cm3溶液
150cm3H2O (l)+ 50cm3 乙醇(l) ≈195cm3溶液 50cm3H2O (l)+ 150cm3 乙醇(l) ≈193cm3溶液 3、100cm3含20%乙醇的水溶液+100cm3含20%乙醇 的水溶液=200cm3含20%乙醇的水溶液
1. 偏摩尔量的定义
使用偏摩尔量时应注意:
1.偏摩尔量的含义是:在恒温、恒压、保持B物质 以外的所有组分的物质的量不变的条件下,改变 dnB 所引起广度性质X的变化值,或在恒温、恒压条件 下,在大量的定组成体系中加入单位物质的量的B 物质所引起广度性质X的变化值。 2. 只有广度性质才有偏摩尔量,而偏摩尔量是强度 性质。
mB def
nB mA
溶质B的物质的量与溶剂A的质量之比称为 溶质B的质量摩尔浓度,单位是 mol kg-1 。这个 表示方法的优点是可以用准确的称重法来配制溶 液,不受温度影响,电化学中用的很多。
2009-4-14
复习: 多组分系统组成的表示法
2.质量摩尔浓度mB(molality)
mB def
2009-4-14
复习:多组分系统组成的表示法
物理化学第七版第三章 多组分系统热力学
B1
常见偏摩尔量如下:
VB ,m
V ( nB
)T , p,n jB
U B ,m
U ( nB
)T , p,n jB
H
H B,m
( nB
)T , p,n jB
S SB,m ( nB )T , p,njB
F FB,m ( nB )T , p,njB
G
GB,m
( nB
)T , p,n jB
注意:1、只有广度性质才有偏摩尔量,偏摩尔量是 强度性质的状态函数。
广义化学势:保持特征变量和除B以外其它组分不变 时,某热力学函数随物质的量 nB的变化率称为广义化 学势。
注意:任意热力学函数的偏摩尔量并不都是化学势, 只有偏摩尔吉布斯能才是化学势。
二、化学势与温度及压力的关系(自学)
G f (T , p, n1, n2 , ...) 组成恒定时 dG -SdT Vdp
dG SdT Vdp BdnB
恒温恒压下: dG BdnB
化学势判据:恒温恒压且不做非体积功时:
dG BdnB 0
dG BdnB 0
k
dG BdnB 0 B1
自发进行 可逆或平衡 不能进行
1、化学势在相平衡中的应用
恒温恒压下,dnB摩尔的B物质由 相转移到 相:
dG=dG+dG 相 dnB
H* m,A
(s)
RT 2
dT
ln
xA
fus
H* m,A
R
1
Tf
1 Tf*
Tf
RTf*Tf
fus
H* m,A
ln xA
K f
ln
xA
K f
ln(1
xB )
物理化学第三章2-04摩尔热容
U m Vm V p T p m T
C p,m CV ,m 很小
U m ② 理想气体: V m
Vm 0 , R T T p p
PVm=RT
Cp,m CV,m R
(1)定义 在某温度T 时,物质的量为n 的物质在恒压
且非体积功为零的条件下,若温度升高无限小量dT 1 δ Qp 所需要的热量为Q,则就定义 为该物质在该温 n dT 度下的摩尔定压热容,以 表示, C p ,m
C p ,m
1 δQ p = n dT
对恒压过程 δQ p = dH p = n dH m,p 代入有
C p ,m = a + bT + cT C p ,m = a + bT + cT2 2 3+来自dT6. 平均摩尔热容
C
p ,m
的定义:
——即单位物质的量的物质在恒压且非体积功 为零的条件下,在T1——T2温度范围内,温度 平均升高单位温度所需要的热量 恒压热的计算公式:
Q p = nC p ,m (T 2 - T 1 )
代入前式,得: Cp ,m CV ,m
U m Vm V p T p m T
4. Cp , m与CV , m的关系:
⑵结论:
T p
C p ,m C V ,m
Vm ①凝聚态物质 很小
U = U1 = nCV,m(T2-T1) = 1 25.29(352.15-298.15)J = 1366J (空气视为理想气体) W = U = 1366J 因是非恒容过程, Q不是恒容热, 故Q U, 也不能用CV,m 直接求非恒容过程的热. 返回
物理化学第三章化学平衡
• 代入Δr G =-RTlnKθ θ • 得: lnK
θ m
θ Δ H - r m T2 p
ΔH T p RT
θ θ • 若 Δr Hm 与温度无关,或温度变化范围较小, 可视为常数。 Δr Hm
反应自发向右进行,趋向 平衡 反应自发向左进行,趋向 平衡
=0 反应达到平衡
化学平衡的实质,从动力来看,是正、 逆反应的速率相等:从热力学来看, 是产物的化学势总和等于发育物化学 势的总合。
ΔG
G T, p r m ξ
vBuB 0
B
严格讲,反应物与产物处于统一 体系的反应都是可逆的,不能进 行到底。
• 二、反应的方向和平衡的条件
• 设某不做非膨胀功的封闭系统有一化学反应, • aA + dD = gG + hH • 在等温等压下,若上述反应向右进行了无限小量的反应,此时体 系的吉氏函数为: • dG(T,p) uBdnB
B
因
dG(T , p ) uBvBdξ ( vBuB )dξd
vB
• 这时Kθ、Kc、Kx 均只是与温度有关。
第三节 平衡常数的计算
• (一)平衡常数的测定和平衡转化率的计算
• 1.平衡常数的测定
• ① 如果外界条件不变,体系中各物质的浓度不随时间改变,表明体系达到平衡。
• ②从反应物开始正向进行方向或者从产物开始逆向进行反应,若测得的平衡常数相同
• 表明体系已达到平衡。 • ③改变参加反应各物质的初浓度,若多得平衡常数相同,表明体系已达到平衡。 A
• 对第二式不定积分,有:
•
物理化学复习 第三章
山东科技大学
dA T W ; 或 AT W
可逆过程: dA T WR; 或 AT WR
★ 恒温过程中系统 A 的减小值等于可逆过程中系统所做的功。 ★ 恒温可逆过程中系统做最大功—最大功原理。 ★ A 可以看作系统做功的能力—功函。
第三章 热力学第二定律
山东科技大学
如两相达到相平衡时,在相同T、P时,则相同组份在两相 中化学势必然相等,如一相中化学势大于另一相,则从高 的向低的转移直到相等。 3)理想气体混合物的化学势: 对于1mol纯理想气体组份,在T下从标准态压力p0恒温变 压至p时,其化学势μ0(Pg,T,p0)变至μ*(Pg,T,p)则二者 之间关系为: μ*(Pg,T,p) =μ0 (Pg,T,p0)+RTln(p/p0). 上述简写: μ* =μ0+RTln(p/p0).
X i dni
第三章 热力学第二定律
偏摩尔量的物理意义 (1) 偏摩尔量是一个变化率。
◆
山东科技大学
向 T,p,n j≠i 恒定的多组分系统中加入 dni (mol )的i 物质,广延性质X增加dX, 偏摩尔量为 dX / dni 。 (2) 偏摩尔量是一个增量。 向 T,p,n j≠i 恒定的无限大多组分系统 中加入 1 mol 的i 物质,广延性质X增加ΔX, 偏摩尔量为 Δ X 。 (3) 偏摩尔量是一个实际的摩尔贡献量。 偏摩尔量是1 mol 的i 物质对T,p,n j≠i 恒定的多组分系统的广延 性质X的实际贡献量。
2.液体或固体恒压变温过程
S nCp,m ln(T2 / T1 )
第三章 热力学第二定律
4.环境熵变与隔离体系熵变:
山东科技大学
因环境是一个无限大的热源,与体系换热不会对其压力 和温度有影响,因此与体系换热引起的环境熵变为: △S环境=Q环/T=-Q体系/T; △S隔离 =△S环境+ △S体系;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
见图3。 H:峰点 B:折点
氯胺分解,存在 一氯胺二氯胺
形
成 一 氯
自由 性余
胺
氯为
主
❖ OA段:水中杂质把氯消耗光。 ❖ AH段:氯与氨反应,有余氯存在,有一定消毒效果,
但余氯为化合性氯,其主要成分是一氯氨。 ❖ HB段:仍然是化合性余氯,加氯量继续增加,氯氨
被氧化成不起消毒作用的化合物,余氯反而减少。 2NH2Cl + HOCl→N2↑+ 3HCl + H2O
微生物指标
(生活饮用水卫生标准GB5749-2006)
指标
限制
总大肠菌群/(MPN/100mL或CFU/mL)
不得检出
耐热大肠菌群/(MPN/100mL或CFU/mL) 不得检出
大肠埃希氏菌/(MPN/100mL或CFU/mL) 不得检出
菌落总数/(CFU/mL)
100
MPN表示最可能数;CFU表示菌落形成单位。当水样检出总大 肠菌群时,应进一步检验大肠埃希氏菌或耐热大肠菌群;水样 未检出总大肠菌群,不必检验大肠埃希氏菌或耐热大肠菌群。
❖ HOCl和OCl-都有氧化能 力,但细菌是带负电的, 所以一般认为主要是通过 HOCl的作用来消毒的。只 有它才能扩散到细菌表面, 并穿透细胞壁到细菌内部, 破坏细菌酶系统。实践也 表明pH越低,消毒作用越 强。
❖ 有关氯消毒理论仍有待研 究。
(二)原水中含氨时:
❖ 如果有氨存在: NH3 + HOCl NH2Cl + H2O NH2Cl + HOCl NHCl2 + H2O NHCl2 + HOCl NCl3 + H2O
❖ BC段:折点B以后,已经没有耗氯物质了,出现自由 性余氯。
❖ 加氯量超过折点B需要量——折点氯化 ❖ 当原水游离氨<0.3mg/L时→→加氯量控制在折点后; ❖ 当原水游离氨>0.5mg/L时→→加氯量控制在峰点前;
1. 地面水→混凝→沉淀→过滤,或清洁地下水, 加氯量可采用1.0~1.5mg/l 2. 地面水→混凝→沉淀未经过滤时可采用
消毒
❖ 消毒定义:
❖ 将水体中的病原微生物(pathogenic organisms) 灭活,使之减少到可以接受的程度。
❖ 消毒与灭菌(sterilization)不同:灭菌是消灭所 有活的生物。
❖ 评价指标:生活饮用水卫生规范,(卫生部, 2001.6) 细菌总数:<100个/mL 总大肠菌群:每100mL水样中不得检出 粪大肠菌群:每100mL水样中不得检出
❖ 三种氯胺中,二氯胺消毒效果最好,但有嗅味。三氯胺消 毒作用极差,且有恶嗅味。
❖ HOCl、OCl-称为自由性或游离性氯(free available chlorine)。
❖ 水中所含的氯以氯胺存在时,称为化合性氯或结合性氯 (combined available chlorine)。
(二) 加氯量 加氯量=需氯量+余氯
(四) 加氯设备、加氯间和氯库 人工操作的加氯设备主要包括加氯机、氯瓶和校核
氯瓶重量的磅秤等。 ❖ 加氯机:转子加氯机,自动加氯机需配以相应的
自动检测与控制设备。
❖ 加氯间:可以和氯库合建,是安置加氯设备的操 作间
❖ 氯库:是储备氯瓶的仓库。
❖ 加氯间与氯库应有通风、照明、防火、保温、报 警、事故处理等措施。
一、氯消毒(chlorination)原理:
(一)原水中不含氨时: 氯易溶于水中,在清水中,发生下列反应: ❖ Cl2 + H2O HOCl + H+ + Cl❖ HOCl H+ + OClHOCl和OCl-的比例与水中温度和pH有关。pH高时,
OCl-较多。 ❖ pH>9,OCl-接近100%。 ❖ pH<6,HOCl接近100%。 ❖ pH=7.54, [HOCl]=[OCl-]
其比例与pH有关。
❖
pH>9,一氯胺占优势
❖
pH为7时,一氯胺和二氯胺同时存在。
❖
pH<6.5时当水中有氯氨时,消毒也是依靠HOCl。只有HOCl消耗得 差不多时,反应才会向左移动。
❖ 因此,有氯胺存在时,消毒作用比较缓慢。
❖ 如氯消毒5分钟,杀灭细菌99%以上,而用氯胺消毒,相同 条件下仅杀灭50%。
1.5~2.5mg/l
一级处理排放 污废水不完全二级处理
二级处理
20~30mg/l 10~15mg/l 5~10mg/l
(三) 加氯点: ❖ 滤后加氯 ❖ 滤前加氯――混凝剂投加时加氯,提高混凝效果。 ❖ 管网中途加氯
1.滤后投加 在滤池出水口、清水池进口处、滤池至清水池管道 上。 适用:原水水质较好,处理后水中有机物、细菌大 部分被去除,加氯量很少,满足余氯要求。
2.滤前加氯 在投加混凝剂的同时投加氯(助凝剂)。 有以下作用:氧化有机物,高色度水,提高混凝效 果。 用FeSO4做混凝剂时,加Cl2,氧化成三价Fe,促进 凝聚作用。 防止构筑物内孳生青苔,延长氯胺消毒的接触时间, 使加氯量维持在AH段,节省加氯量。
3.中途加氯 加压泵站,管网长时,防止水厂出水余氯过高。
❖ 需氯量:灭活水中微生物、氧化有机物和还原性 物质所消耗的部分。
❖ 余氯:出厂水接触30分后余氯不低于0.3mg/L;在 管网末梢不应低于0.05mg/L。
❖ 加氯曲线: 水中无任何微生物、有机物等,加氯量=余氯, 图2中的① 水中有机物较少时,需氯量满足以后就是余氯。 图2中的②
当水中的污染物主要是氨和氮化合物时,情况复杂。
❖ 加氯设备
一般用氯气:有毒气体, 在6-8气压下变成液氯
使用时采用氯瓶。干燥氯 气和液氯对钢瓶无腐蚀作 用,但遇水或受潮则会严 重腐蚀金属。因此,必须 严格防止水和潮气进入氯 瓶。
❖ 加氯机:转子加氯机
二、其它消毒方法
(一) 二氧化氯消毒 1.特性 ❖ 二氧化氯(ClO2)在常温下是一种黄绿色气体,
极不稳定,气态和液态CLO2均易爆炸。故必须以 水溶液的形式现场制取。 2.制取方法 ❖ (1)亚氯酸钠和氯制取
3.作用机理
ClO2既是消毒剂又是氧化能力很强的氧化剂, 对 细菌的细胞具有较强的吸附和穿透能力,能有效地破坏 细菌内含巯基的酶;消毒能力比氯强。
ClO2的投加量约为1.0~2.0 mg/L。 ClO2本身和副产物ClO2-对人体血红细胞有损害。 有报道认为还对人的神经系统及生殖系统有损害。因此, 美国对水的剩余ClO2和ClO2-的总量规定不超过 1.0mg/L。欧洲一些国家有自己的一些规定。但目前我 国还没有规定。