物理化学处理优秀课件

合集下载

烧结过程物理化学反应课件PPT

烧结过程物理化学反应课件PPT

平衡水分:
当一种物料与一定温度及湿度的空气接触时,物料势必会放出 或吸收一定量的水分,物料的含水量会趋于一定值。此时,物 料的含水量称为该空气状态下的平衡水分。
平衡水分代表物料在一定空气状态下的干燥极限,即用热空气 干燥法,平衡水分是不能去除的
2021/3/10
6
5.1 水分在烧结过程中的行为与作用
2021/3/10
9
5.1 水分在烧结过程中的行为与作用
(五)水分的冷凝
烧结过程水汽的冷凝现象 由于废气一步降低,致使其水蒸气分压(Pg)大于物料表面上的饱和蒸汽 压(Ps)废气中的水汽再次返回到物料中,即在物料表面冷凝下来,导 致烧结料层中部分物料超过原始水分,而形成所谓“过湿带”。
烧结废气的露点约60℃左右。

的 矿 化
KHCa总 O C Ca a游 总 O O Ca残 O 10 %0
与烧结温度,石灰石和矿石粒度,碱 度或矿石与熔剂的比例等有关
2021/3/10
15
5.2 烧结过程中固体物料的分解
(三)氧化物的分解
2M2O (s)2M (s)O2 H 0
K P p
O2(M2O)
当Po2>P'o2 ΔG<0,氧化物分解; 当Po2<P'o2 ΔG>0,氧化物生成; 当Po2=P'o2 ΔG=0, 体系趋于平衡;
2021/3/10
17
5.3 烧结过程中氧化物的还原及氧化
(一)铁氧化物的还原
(1)标准状态下还原反应的热力学条件
MO+N=M+NO
利用氧势图进行分析,凡位于下图 下面的元素,都能够还原在它上面 的一些元素的氧化物。
在氧势图上CO的生成自由能曲线与众不同的走向,

物理化学处理PPT课件

物理化学处理PPT课件

③孔口直径约为9~12 mm,设于支管两侧,与垂线呈 45O角向下交错排列。
④干管横截面与支管总横截面之比应大于1.75~2.0。当 干管直径于300mm时,干管顶部也应开孔布水,并 在孔口上方设置挡板。
⑤孔口总面积与滤池面积之比称为开孔比,其值可按下
式计算:
f 100% Q / v 1 100% q 100%
生水头损失的主要部分。
d80——通过滤料重量80%的筛孔孔径(mm) 反映粗颗粒尺寸 不均匀系数K80——表示粗细颗粒差别的大小或不均匀程度。 (通常要求K80 <2.0)
砂粒级配对滤池的运行的影响 :
砂样颗粒大小K80越大,则大小颗粒差别越大, 颗粒越不均匀。这对过滤和反冲洗都会产生不利 影响,因为K80较大时,大小颗粒掺杂的结果,过 滤时会降低滤料层的孔隙率,影响滤层的含污能 力以及增加过滤时的阻力,反冲洗满足细颗粒膨 胀要求,粗颗粒将得不到很好清洗;若为满足粗 颗粒膨胀要求,则细颗粒可能被冲出池外。
F
Q / q 1000
1000v
大阻力配水系统构造尺寸计算的依据
f
o
2
f
na
2
0.29
式中:ω0 —干管截面积,m2 ωa —支管截面积,m2 f—配水系统孔口总面积,m2
上式说明:①大阻力配水系统配水的均匀性只与干管 截面积、支管截面积、支管个数、孔口总面积等有关, 而与其它因素无关。②当将对冲洗效果产生影响。
滤料组成 不均匀系数
K80 <2.0 <2.0
<2.0
<1.7
<1.5
<1.7
厚度 (mm)
700 300~400
400 450 230 70

物理化学整理PPT0-25393页PPT

物理化学整理PPT0-25393页PPT
pVZnRT pVmZRT
(1) Z的意义:压缩因子。Z与1的差值 代表气体对理想气体的偏差 程度,理想气体的Z=1。
pVZnRT pVmZRT
(2) 如何求Z:Z不是特性参数,随气体状态而改变 Z = f(T, p)
Z pVm 代入对比参数 ( pcpr)(VcVr)
RT
R(TcTr )
启示:f (pr, Vr, Tr)=0。即不同气体如果它们具有相同的pr 和Tr,则Vr必相同。称它们处在相同对比状态。
2. 对比状态原理: 处在相同对比状态的各种气体(乃至 液体),具有相近的物性(如摩尔热容、 膨胀系数、压缩系数、黏度等)。
三、用压缩因子图计算实际气体 (Calculation of real gases with compression factor figure)
2. 分压定律: 对理想气体混合物
pBpBx nVR xB T(nB V )xR TnB V RT
∴ 在理想气体混合物中,任意组 分气体的分压等于同温下该气体 在容器中单独存在时的压力
§1-2 实际气体 (Real gas)
一、实际气体状态方程 (Equation of state for real gas)
z
xy xz zxxy
大纲(一) 气体的PVT关系
• 1、理想气体状态方程 • 2、理想气体混合物 • 3、气体的液化及临界参数 • 4、真实气体状态方程 • 5、对应状态原理及普遍化压缩因子图
大纲 考试要求
(一) 气体的PVT关系 • 掌握理想气体状态方程和混合气体的性质
pcVc RTc
prVr Tr
Zc
prVr Tr
∴ Zf(Zc,pr,Tr)
Zc: Critical compression factor

物理化学ppt课件

物理化学ppt课件
态函数就有单一定值,状态不变它不变)。
状态改变了,不一定所有性质都改变,但性质改 变了,状态一定改变。
例:理气的等温过程:(P1,V1)→(P2,V2) 状态改变了,T不变
3 状态改变时,状态函数的变化量只与变化的始末 态有关,而与变化的途径无关。
14
状态函数在数学上具有全微分的性质。
若x为状态函数,系统从状态A变化至状态B:
经验定律特征: 1. 是人类的经验总结,其正确性由无数次实验事实
所证实; 2. 它不能从逻辑上或其他理论方法来加以证明(不
同于定理)。
4
4.热力学研究方法
严格的数理逻辑的推理方法,即演绎法 (1) 广泛性:只需知道体系的起始状态、最 终状态,过程进行的外界条件,就可进行相 应计算;而无需知道反应物质的结构、过程 进行的机理,所以能简易方便地得到广泛应 用。
Ⅱ AⅠB
有: xⅠ xⅡ xⅢ xB xA
xA Ⅲ xB
dx 0
AB A
微小变化
若如x,理y想,气z皆体为:状V态函nR数T,且即z:=Vf(x,fy)(,p,T则) :
p
15
16字口诀: 异途同归,值变相等;周而复始,数值还原。
☻单值、连续、可微的函数――具全微分性质
z z( x, y )
1.2 热和功
热(heat)
体系与环境之间因温差而传递的能量称为热, 用符号Q 表示。
功(work)
体系与环境之间传递的除热以外的其它能量都 称为功,用符号W表示。功可分为体积功W和 非体积功W’两大类。
符号规定: 系统吸热,Q>0;系统放热,Q<0 。 系统得功,W>0;系统做功,W<0。
23
热和功的特点:

物理化学幻灯片PPT课件

物理化学幻灯片PPT课件
大体而言,物理化学为化学诸分支中,最讲求数值精确和 理论解释的学科。
.
2
物理化学的形成
物质的化学运动形式和物理运动形式是相互联系的。早期的物理学家和化学家并没有 十分明确的分工。化学家波义耳在物理学上曾做出十分重要的贡献;而物理学家牛顿 在化学上虽然没有取得什么成就,但却全盘接受了波义耳的化学思想,他用在炼金术 和化学上的时间比用在物理学上的时间还多。既是物理学家又是化学家的罗蒙诺索夫 就曾使用过“物理化学”这一术语,还提出了这门学科的性质和研究范围。
1887年,阿累尼乌斯提出电解质稀溶液的电离理论
.
24
关于电化学
一个伽凡尼电池, 两个电极用盐桥连 接以传递离子。外 电路中产生电流。
.
25
科学家的故事
1800年,伏打用锌片与铜片夹以盐水浸湿的纸 片叠成电堆产生了电流,这个装置后来称为伏打电堆 ,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放 多这样的小杯子中联起来,组成电池。他指出这种电 池“具有取之不尽,用之不完的电”,“不预先充电 也能给出电击”。
物理化学
PHYSICAL CHEMISTRY
胡泽伟 杨 靓
.1Leabharlann 物理化学是什么?物理化学是一门从物理学角度分析物质体系化学行为的原 理、规律和方法的学科,是近代化学的原理根基。
物理化学家关注于分子如何形成结构、动态变化、分子光 谱原理、平衡态等根本问题,涉及的物理学有静力学、动 力学、量子力学、统计力学等。
初步发现
1748年法国人诺勒发现渗透现象 1827年法国人杜特罗夏定量测定了渗透压
1877年德国浦菲弗发现 PV = KT(K 为常数)
进一步发展
1886年范霍夫建立起稀溶液理论
揭示出拉乌尔公式中常数的热力学意义

(推荐)《物理化学课件》PPT课件

(推荐)《物理化学课件》PPT课件
23
p 1 C1 p
V p*p VmC VmC p*
V—T、p下质量为m的吸附剂吸附达平衡时吸附气体的体积; Vm—T、p下质量为m的吸附剂盖满一层时吸附气体的体积; p*—被吸附气体在温度T时成为液体的饱和蒸气压; C—与吸附第一层气体的吸附热及该气体的液化热有关的常数。
BET公式的重要应用是测定和计算固体吸附剂的比表面积。
lnn1 n2
L RV T(0)(h2h1)g
式中,n1和n2分别是高度为h1和h2处粒子的浓度,ρ和ρ0 分别是分散相和分散介质的密度,V是单个粒子的体积, g是重力加速度。
41
如果分散粒子比较大,布朗运动不足以克服沉降作用时, 粒子就会以一定速度沉降到容器的底部。
f1 43r3(0)g
半径为r,速率为u的球体在粘度系数为η的介质中运动时所 受阻力为
(1)电动现象
在外电场作用下,分散相与分散介质发生相对移动的现象, 称为溶胶的电动现象。
电泳:在电场作用下,固体的分散相粒子在液体介质中作 定向移动。
电渗:在电场作用下,固体的分散相粒子不动,而液体介
质发生定向移动。
43
44
(2)溶胶粒子带电的原因 1.吸附 如果溶液中有少量电解质,那么溶胶粒子就会吸附离子。
K b*
RT
此式表明,吸附量为一恒定值,不再随浓度而变化,吸附 已经达到饱和状态。
1 A
L
31
(4)表面膜 溶液表面正吸附现象不只可以在气-液界面上发生,它可以 在任意两相界面,如气-固、液-液、液-固界面上均可以发 生上述表面活性剂分子的相对浓集和定向排列,其亲水的 极性基朝向极性较大的一相,而憎水的非极性基朝向极性 较小的一相。利用这一特性,可以制备各种具有特殊功用 的表面膜。

中科大物理化学优质ppt课件下载

中科大物理化学优质ppt课件下载

五、涉及相关研究领域的一些较有影响的机构 理论化学(量子化学):吉林大学(唐敖
庆);北京大学(徐光宪);北师大、上 海冶金所、复旦大学等。
反应动力学:中科院化学所(朱起鹤)、 大连化物所(何国钟)等。
电化学:武汉大学(查全性),厦门大学 (田昭武),南京大学(高鸿),北京大 学(高小霞)等。
本课程主要应用了热力学方法和统计力 学方法,至于量子力学方法,主要在物 质结构部分(本课程不包括)涉及。
八、课程的基本内容
物理化学的内容非常广泛,有些分支实际上已 发展成为独立的学科。例如:化学热力学、 反应动力学、胶体化学、表面化学、电化学 等等。本课程只把它们作为某些章节进行初 步介绍。
• 当新的事实与原先旧有的理论发生矛盾, 即不能为旧理论所解释时,就必须修正 旧理论,甚至抛弃旧理论而重新建立新 理论。如此,人们对客观世界的认识又 深了一步。
• 例如:从牛顿力学 量子力学,即宏 观到微观的发展。
3. 充分重视实验事实
在物理化学研究中,由于其研究 对象的特殊性(化学现象),所 以应当充分重视实验事实的重要 性。
这就需要人们根据物质结构的知识,在 合成所需性能的新材料方面提供方向和 线索;
要了解化学热力学和动力学的本质问题, 必须了解物质的内部结构,这些问题的 研究是物理化学的另一分支— 物质结构。
• 以上这些问题的研究和解决,是实现化学、 化工新工艺的理论基础;物理化学的研究 成果,对现代基本化学工业的整个生产过 程的建立,起到重要的作用。
理论化学、结构化学实验室(量子化学) 低维化学物理(表面与催化实验室) 胶体电化学实验室
七、物理化学的研究方法
1.一般实验科学研究的方法 首先观察现象,或在一定条件下重现
自然现象 — 实验,从大量的实际、 实验事实,总结出它的规律性,再以 一定的形式表达出来 — 定律。

工业废水处理知识PPT演示课件

工业废水处理知识PPT演示课件

航天推进剂使用《航天推进剂水污染物排放标准》 GB14374-93
磷肥工业《磷肥工业水污染物排放标准》GB15580-95
烧碱、聚氯乙烯工业《烧碱、聚氯乙烯工业水污染物排放标 准》GB15581-95
2024/3/9
18
污染物其性质与控制方式分为:
第一类污染物:指总汞、烷基汞、总镉、总铬、六 价铬、总砷、总铅、总镍、苯并()芘、总铍、总银、 总 放射性和放射性等毒性大、影响长远的有毒物质。
1073 (61.1%)684 (38.9%) 806 (53.8%)693 (46.2%)
1999 1389 692 (49.8%)697 (50.2%)
2000 1445 704.5 (48.8%)740.5(51.2%)
工业3/9
11
我国在60年代开始污染治理,到90年代已经修 建了3万多套工业废水处理设施。但未能充分发 挥效益。原因:
(1)技术:由于设计和技术原因,导致处理效 率低下,也缺少工业废水处理设计规范、严格的 设计审核制度和资格审查制度,运行和维修存在 困难。
(2)管理:主管部门对工业废水处理设施缺乏 了解:企业废水处理设施未纳入企业管理计划; 基层环保人员业务能力和管理水平上层次低。
2024/3/9
12
(3)设备方面:环保设备厂技术 弱,材料质量不过关,售后服务 差,一旦设备损坏就放置。
2024/3/9
4
另外还可以根据处理难易 程度和危害性分:
(1)易处理危害性小的废水 (2)易生物降解无明显毒性的废
水 (3)难生物降解又有毒性的废水。
2024/3/9
5
(二)工业废水造成环境污染的种类: 含无毒物质的有机废水和无机废水的污染; 含有毒物质的有机废水和无机废水的污染; 含有大量不溶性悬浮物废水的污染; 含油废水产生的污染; 含高浊度和高色度废水产生的污染; 酸性和碱性废水产生的污染; 含有多种污染物质废水产生的污染; 含有氮、磷等工业废水产生的污染。

物理化学ppt-PowerPointPresentation

物理化学ppt-PowerPointPresentation

四. 标准平衡常数

标准平衡常数
K

r Gm exp RT

五. 标准摩尔反应吉布斯函数

由标准摩尔生成吉布斯计算标准摩尔吉布斯函 数
r G T B f Gm , B T B

由相关反应的标准摩尔吉布斯函数计算某反应 的标准摩尔吉布斯函数

一. 偏摩尔量和化学势

偏摩尔量 :
X XB dnB n B T , P ,nC , nB


化学势:偏摩尔吉布斯函数
G B n B T , P ,nC , nB
二. 化学反应方向和平衡条件

摩尔反应吉布斯函数:



热力学第一定律对相变过程的应用
化学反应热效应

一. 热力学第一定律
⊿U=Q-W
若系统发生无限小变化时,上式可写成dU=δQ-
δW
它表明系统种发生任何变化过程,系统内能变化 值等于系统吸收的热量减去它对外作的功。
二. 可逆过程与可逆体积功
1. 可逆过程 在膨胀的每一个瞬间,系统内部以及系统与环境 之间都极接近于平衡态,整个过程由一系列无限 接近于平衡的状态构成,这样的过程称为可逆过 程。 2. 可逆体积功


O点是三条线的焦点,称为三相点。在该 点,Φ=3,F=0,说明三相点的温度,压 力均不能任意改变。水的三相点与水的冰 点并不是一回事。三相点实验个的单组分 系统,而通常所说的冰点是暴露在空气中 的冰-水两相平衡系统。
第六章 电化学

电解质溶液的导电机理
摩尔电导率 离子独立运动定律 可逆电池

物理化学ppt课件

物理化学ppt课件

热力学第二定律与熵增原理
总结词
热力学第二定律是指在一个封闭系统中,熵(即系统的混乱度)永远不会减少,只能增加或保持不变 。
详细描述
热力学第二定律是热力学的另一个基本定律,它表明在一个封闭系统中,熵(即系统的混乱度)永远 不会减少,只能增加或保持不变。这意味着能量转换总是伴随着熵的增加,这也是为什么我们的宇宙 正在朝着更加混乱和无序的方向发展。
03
化学平衡与相平衡
化学平衡条件与平衡常数
化学反应的平衡条件
当化学反应达到平衡状态时,正逆反 应速率相等,各组分浓度保持不变。
平衡常数
平衡常数表示在一定条件下,可逆反 应达到平衡状态时,生成物浓度系数 次幂的乘积与反应物浓度系数次幂的 乘积的比值。
相平衡条件与相图分析
相平衡条件
相平衡是指在一定温度和压力下 ,物质以不同相态(固态、液态 、气态)存在的平衡状态。
色谱分析技术
色谱法的原理
色谱法是一种基于不同物 质在固定相和移动相之间 的分配平衡,实现分离和 分析的方法。
色谱法的分类
根据固定相的不同,色谱 法可分为液相色谱、气相 色谱、凝胶色谱等。
色谱法的应用
色谱法在物理化学实验中 广泛应用于分析混合物中 的各组分含量、分离纯物 质等。
质谱分析技术
质谱法的原理
05
物理化学在环境中的应用
大气污染与治理
1 2 3
大气污染概述
大气污染是指人类活动向大气中排放大量污染物 ,导致空气质量恶化,对人类健康和生态环境造 成危害的现象。
主要污染物
大气中的主要污染物包括颗粒物、二氧化硫、氮 氧化物等,这些污染物会对人体健康和环境产生 严重影响。
治理措施
针对大气污染,采取了多种治理措施,包括工业 污染源控制、机动车污染控制、城市绿化等。

【3】第二章 水的物理化学处理方法(3)PPT幻灯片

【3】第二章 水的物理化学处理方法(3)PPT幻灯片
6)氧化剂
• 废水中如果含有氧化剂(如Cl2、O2、H2Cr2O7等)时, 会使树脂氧化分解。强碱性阴树脂容易被氧化剂氧化, 使交换基团变成非碱性物质,可能完全丧失交换能力。 氧化作用也会影响交换树脂的本体,使树脂加速老化, 结果使交换能力下降。
4、离子交换装置
固定床
离子交换装置
单层床 双层床 混合床
③ 离子交换
离子交换剂将水中的Ca2+、Mg2+转换成Na+。
2、水的除盐
① 蒸馏
将液体加热气化,同时使产生的蒸气冷凝液化并收集的 联合操作过程叫做简单蒸馏或普通蒸馏,也简称蒸馏。
② 电渗析
在直流电场的作用下,利用阴、阳离子交换膜对溶液中 阴、阳离子的选择透过性,使溶液中的溶质与水分离的一种 物化过程。
连续床
移动床 流动床
交换
反洗
再生
清洗
离子交换的运行操作步骤
• 交换:利用离子交换树脂的交换能力,从废水中分 离脱除需要去除的离子的操作过程
• 反洗:反冲洗的目的有二:一是松动树脂层,使再 生液能均匀渗入层中,与交换剂颗粒充分接触;二 是把过滤过程中产生的破碎粒子和截留的污物冲走。 为了达到这两个目的,树脂层在反冲洗时要膨胀 30%-40%。冲洗水可用自来水或废再生液。
• 离子交换剂分为无机和有机两大类。 • 无机的离子交换剂有天然沸石和人工合成沸石。沸
石既可作阳离子交换剂,也能用作吸附剂。 • 有机的离子交换剂有磺化煤和各种离子交换树脂。 • 离子交换树脂是一类具有离子交换特性的有机高分
子聚合电解质,离子交换树脂的合成一般是先制备 母体,然后通过化学反应引入相应的离子交换基团。 • 生成离子交换剂的树脂母体最常用苯乙烯聚合物。
③ 离子交换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


EA
图 44--22 相互作用势能与颗粒距离关系
(a)双电层重叠; (b)势能变化曲线
胶体的布朗运动能量大于排斥能峰时,胶体颗粒 能发生凝聚。
以上理论称为DLVO理论。 只适用于憎水性胶体,由德加根(Derjaguin)
兰道(Landon)(苏联,1938年独立提出〕,伏维 (Verwey)、奥贝克(Overbeek)(荷兰,1941年 独立提出)。
4、 硫酸铝的混凝机理
不同pH条件下,铝盐可能产生的混凝机理不同。何种作 用机理为主,决定于铝盐的投加量、pH、温度等。
实际上,几种可能同时存在。
pH<3 简单的水合铝离子起压缩双电层作用;
pH=4-5 多核羟基络合物起吸附电性中和;
pH=6.5-7.5 氢氧化铝起吸附架桥;
如果分子量不同的两种高分子物质同时投入水中,分子 量大者优先被胶粒吸附;如果先让分子量较低者吸附然后再 投入分子量高的物质,会发现分子量高者将慢慢置换分于量 低的物质。在给水处理中,因天然水的pH值通常总是大于3, 故压缩双电层作用甚微。
5、影响水混凝的主要因素
影响混凝效果的因素比较复杂,主要包括: ①原水性质,包括水温、水化学特性、杂质
性质和浓度等; ②投加的凝聚剂种类与数量; ③使用的絮凝设备及其相关水力参数。
(1) 水温影响
水温低时,通常絮凝体形成缓慢,絮凝颗粒细小、 松散,凝聚效果较差。其原因有: ①无机盐水解吸热; ②温度降低,粘度升高――布朗运动减弱; ③水温低时,胶体颗粒水化作用增强,妨碍凝聚; ④水温与水的pH值有关。
(一) 水中胶体的稳定性
胶体稳定性:是指胶体粒子在水中长期保持分散悬 浮状态的特性。
❖胶体稳定性分“动力学稳定性”和“聚集稳定”两 种。
❖动力学稳定性:无规则的布朗运动强,对抗重力影 响的能力强。
❖聚集稳定性包括:①胶体带电相斥(憎水性胶体); ②水化膜的阻碍(亲水性胶体)
❖ 在动力学稳定性和聚集稳定两者之中,聚集稳定 性对胶体稳定性的影响起关键作用。
(2)吸附-电性中和 Adsorption-charge neutralization 这种现象在水处理中出现的较多。指胶核表面
直接吸附带异号电荷的聚合离子、高分子物质、胶 粒等,来降低电位。其特点是:当药剂投加量过多 时,电位可反号。
2.吸附架桥 Polymer bridge formation 吸附架桥作用是指高分子物质和胶粒,以及胶粒与 胶粒之间的架桥。
(二 混凝机理
1.电性中和作用机理
(1)压缩双电层
加入电解质,形成与反离子同电荷离子, 产生压缩双电层作用,使ξ电位降低,从而胶 体颗粒失去稳定性,产生凝聚作用。
压缩双电层机理适用于叔采-哈代法则, 即:凝聚能力离子价数6。
该机理认为电位最多可降至0。因而不 能解释以下两种现象:①混凝剂投加过多, 混凝效果反而下降;②与胶粒带同样电号的 聚合物或高分子也有良好的混凝效果。
滑动面
胶 核


ζ

δd
图44--1 胶体双电层结构示意
1. 胶体颗粒的双电层结构
❖ 胶核(胶体分子聚合而成的胶体微粒),表面吸附 了某种离子(电位形成离子)而带电,由于静电引 力,势必吸引溶液中异号离子到微粒周围(反离 子),这些反离子同时受到静电引力和热运动扩散 力。
❖ 吸附层Stern layer(随胶核一起运动)―― 靠近胶 核表面处,异号离子浓度大,结合紧密
(2) 水的pH和碱度影响
水的pH值对混凝效果的影响程度,与混凝剂种类 有关。混凝时最佳pH范围与原水水质、去除对象 等密切有关。 当投加金属盐(铝盐、铁盐)类混凝剂时,其水解 会生成H+,但水中碱度有缓冲作用,当碱度不够时 需要投加石灰。
石灰投量估算方法: Al2(SO4)3+3H2O+3CaO=2Al(OH)3+3CaSO4 可见,投加1mmol/LAl2(SO4)3的需石灰3mmol/L。 [CaO]=3[a] – [x] + [δ] (3-13) 式中[CaO]:纯石灰CaO投量,mmol/L; [a]:混凝剂投量,mmol/L; [x]:原水碱度,按mmol/L,CaO计; [δ]:保证反应顺利进行的剩余碱度,一般取0.250.5mmol/L(CaO)。(不可过量!) 一般石灰投量通过试验决定。
能,分别由静电斥力与范德华引力产生。
❖ 图中可看画出胶体颗粒的相互作用势能与距离之间 的关系。当胶体距离x<oa或x>oc时,吸引势能占 优势;当oa <x< oc时,排斥势能占优势;当x=ob 时,排斥势能最大,称为排斥能峰Emax。


r
r

Er

ER
E
Emax
(a)
0a
c
间距x


Ea

=0时称等电状态.此时排斥势能消失
❖ ξ电位:胶体滑动面上的电位,称作动电位。
❖ 带负(正)电荷的胶核表面与扩散于溶液中的正 (负)电荷离子正好电性中和,构成双电层结构 (The electrical double layer)。
❖ ξ越大,扩散层越厚,胶体颗粒斥力大,稳定性 强。
❖ 2. 胶体之间的相互作用

胶体颗粒之间的相互作用决定于排斥能与吸引
❖ 扩散层Diffuse layer(大部分运动时被甩掉,甩掉 后剩下的面,叫滑动面)―― 离胶核远,反离子浓 度小,结合松散。
结构式:
反离子层
胶核+吸附层 +扩散层
胶粒
胶团
滑动面上的电位,称为电位,决定了憎
水胶体的聚集稳定性。也决定亲水胶体的水 化膜的阻碍,当ξ电位降低,水化膜减薄及至 消失。
❖ ψ电位 :胶核表面上与外层溶液内部之间形成的 总电位差。
高分子絮凝剂投加后,可能出现以下两个现象:
①高分子投量过少,不足以形成吸附架桥;
②投加过多,会出现“胶体保护”现象,见下图。
胶粒 高分子 胶粒
胶粒 排斥
高分子 排斥
高分子
图 46--35 架桥模型示意
图 46--46 胶体保护示意
3.网捕或卷扫
金属氢氧化物在形成过程中对胶粒的网捕与
卷扫。所需混凝剂量与原水杂质含量成反比,即当 原水胶体含量少时,所需混凝剂多,反之亦然。
物理化学处理
v 一、 混凝机理
❖ 混凝:水中胶体粒子以及微小悬浮物的聚集过 程称为混凝,是凝聚和絮凝的总称。
❖ 凝聚coagulation :胶体失去稳定性的过程称 为凝聚。
❖ 絮凝flocculation :脱稳胶体相互聚集称为絮 凝。
❖ 混凝过程涉及:①水中胶体的性质;②混凝剂 在水中的水解;③胶体与混凝剂的相互作用。
相关文档
最新文档