基于FPGA的数字电子时钟设计说明
用fpga简易数字钟电路设计实验报告 概述及解释说明
用fpga简易数字钟电路设计实验报告概述及解释说明1. 引言1.1 概述本实验报告旨在介绍使用FPGA(可编程门阵列)设计的简易数字钟电路。
数字钟是一种可以显示时间的时钟装置,广泛应用于日常生活和工业领域。
本文将详细讲解数字钟的设计原理、硬件要求、设计步骤以及实验的实现过程。
1.2 文章结构本文共分为五个部分,即引言、FPGA简易数字钟电路设计、实验实现过程、实验结果分析和结论与总结。
下面将对每个部分进行具体说明。
1.3 目的该实验旨在通过学习和操作FPGA,深入理解数字电路设计的基本原理和方法,并通过设计一个简易的数字钟电路来巩固所学知识。
通过本实验,我们还将探索数字钟电路的性能评估和可能的改进方向,并对未来发展方向进行展望。
同时,通过参与这个项目,我们也将获得一定的实践经验和技能提升。
2. FPGA简易数字钟电路设计:2.1 设计原理:在本次实验中,我们使用FPGA(现场可编程逻辑门阵列)来设计一个简易的数字钟电路。
FPGA是一种集成电路芯片,可依据用户需要重新配置其内部互连,从而实现不同的逻辑功能。
我们将利用FPGA的可编程性和强大的计算能力来实现数字钟的功能。
该数字钟电路主要由时钟模块、倒计时模块和显示模块组成。
时钟模块负责产生稳定而精确的脉冲信号作为系统的时基;倒计时模块通过对输入时间进行倒计时操作,并发出相应信号提示时间变化;显示模块用于将倒计时结果以数码管显示出来。
2.2 硬件要求:为了完成该设计,我们需要准备以下硬件设备:- FPGA开发板:提供了外部接口和资源,用于连接其他硬件设备并加载程序。
- 数码管:用于显示时间信息。
- 时钟源:提供稳定而精确的脉冲信号作为系统的时基。
2.3 设计步骤:以下是设计步骤的详细说明:1. 确定所需功能:首先明确数字钟需要具备哪些功能,例如12小时制还是24小时制、倒计时功能等。
2. 确定FPGA型号:根据设计需求和资源限制,选择适合的FPGA型号。
基于FPGA的数字时钟课程设计
西安郵電學院基于FPGA的数字时钟成员:技术规范一、功能定义1、分频:在电子钟的设计中,涉及到的频率有三个:(1):1Hz的秒计时频率,用来进行秒计时;(2):4Hz的按键防抖频率;(3):1000Hz的循环扫描频率;因此在分频模块应实现将芯片中的高频率时钟分频得到上面的三个所需频2、控制:进行正常计时,时间调整,时间复位模式的选择:(1)时间初始复位;(2)选择秒时间调整的模式;(3)选择分时间调整的模式;3、计时:进行调整时间,正常计时;(1)正常计时;(2)调整秒计时;(3)调整分计时;4、选择输出:进行时间高低位的变换及循环扫描输出:(1)进行时间高低位的变换;设计思路:一、总体设计思路图:二、功能引脚定义1、总体引脚(1)K[1]:输入,控制是否进入调整模式,调时模式或调分模式。
(2)K[2]:输入,根据K1的选择进行加1调时。
(3)CLK:输入,1赫兹,控制秒钟的频率。
(4)CLK1K:输入,1K赫兹,控制时间的连续扫描输出。
(5)[7:0]LED:输出,七段显示译码管的输入。
(6)[5:0]SEG:输出,控制六个数码管的是否接通。
(7) SC:输入,时间复位。
2、(1)控制模块:输出控制信号和时分秒计时。
控制信号控制时分秒是否正常计时。
K[1]:输入,控制是否进入调整模式,调时模式或调分模式。
K[2]:输入,根据K1的选择进行加1调时。
SC:输入,时间复位。
[5:0]SEC:复位秒计时。
[5:0]MIN:复位、调时分计时。
[5:0]HOUR:复位、调时时计时。
KEN:控制是否进行正常及时、进入调时复位状态。
(2)计时模块秒计时:输出正常的秒计时或复位计时。
分计时:输出正常的分计时或复位计时或调时计时。
时计时:输出正常的时计时或复位计时或调时计时。
(3)时间扫描模块:利用高频率的时钟不断地循环扫描是分秒计时,以便循环译码;输出控制信号,控制数码管是否有效;此模块同时进行时间的高地位的计算与输出。
基于FPGA的电子钟设计报告
基于FPGA的电子钟设计报告一、FPGA的基本知识1、可编程逻辑器件的概况可编程逻辑器件主要分为FPGA和CPLD 两种,两者的功能基本相同。
FPGA--现场可编程门阵列的简称CPLD--复杂可编程逻辑器件的简称2、FPGA芯片及其最小系统(1)FPGA芯片它的外形与普通嵌入式处理器芯片相同采用PGA(Organic pin grid Array,有机管脚阵列)的封装形式,但可以通过烧写特殊程序改变其内部结构,实现专门的电路功能。
基于FPGA的数字时钟2019-11-23 21:36·电力源动一、FPGA的基本知识1、可编程逻辑器件的概况可编程逻辑器件主要分为FPGA和CPLD 两种,两者的功能基本相同。
FPGA--现场可编程门阵列的简称CPLD--复杂可编程逻辑器件的简称它的外形与普通嵌入式处理器芯片相同采用PGA(Organic pin grid Array,有机管脚阵列)的封装形式,但可以通过烧写特殊程序改变其内部结构,实现专门的电路功能。
二、FPGA的设计方法1、编程语言FPGA的主流程序设计语言主要有VHDL语言与Verilog语言两种。
本课题采用VHDL语言进行编写。
VHDL--用简洁明确的源代码来描述复杂的逻辑控制。
它具有多层次的设计描述功能,层层细化,最后可直接生成电路级描述。
Verilog--一种基本语法与C语言相近,相比较于C语言更容易理解,2、图形化程序设计(设计效率低)三、软件开发环境QuartusII是Altera提供的FPGA开发集成环境,它提供了一种与结构无关的设计环境,使设计者能方便地进行设计输入、快速处理和器件编程。
它完全支持VHDL设计流程,其内部嵌有VHDL逻辑综合器。
四、数字钟功能模块认识数字时钟的设计采用了自顶向下分模块的设计。
底层是实现各功能的模块,各模块由VHDL语言编程实现顶层采用原理图形式调用。
具体的设计框图:各模块原理剖析:(1)在七段数码管上具有时--分--秒的依次显示;(2)时、分、秒的个位记满十向高位进一,分、秒的十位记满五向高位进一,小时按24进制计数,分、秒按60进制计数;(3)整点报时,当计数到整点时扬声器发出响声;(4)时间设置:可以通过按键手动调节秒和分的数值。
基于FPGA的电子时钟设计说明
基于FPGA的电⼦时钟设计说明电⼦设计⾃动化基于FPGA的电⼦时钟设计电⼦设计⾃动化技术与应⽤设计报告设计题⽬:基于FPGA的电⼦时钟设计⽬录1需求分析 (2)1.1 基本功能 (2)1.2 功能要求说明 (2)2计时器总体结构设计 (2)3系统模块化设计 (3)3.1 分频模块 (3)3.2模式选择模块 (4)3.3 计时模块 (4)3.4 秒表功能模块 (5)3.5显⽰模块 (6)3.6顶层模块 (7)4电路图综合结果及仿真结果 (7)4.1电路图综合结果 (7)4.2仿真图 (9)4系统的实现与验证 (9)4.1管脚分配情况 (9)4.2实现与验证 (10)5设计体会 (11)基于FPGA的电⼦时钟设计1需求分析1.1 基本功能1、能够在LED显⽰器上清晰的显⽰⼩时,分钟和秒;2、能够通过按键准确调整⼩时,分钟和秒;3、能够实现秒表计时的功能,秒表的精度是0.01s。
1.2 功能要求说明1、电⼦时钟采⽤24⼩时的显⽰格式,上电或按键复位后能够从0时0分0秒开始运⾏,进⼊时钟运⾏状态。
2、当按下电⼦时钟启动调整键,则电⼦时钟进⼊调整时钟模式,此时可利⽤各调整键调整时间,调整结束后按启动调整键,则电⼦时钟再次进⼊到时钟运⾏状态。
3、当按下秒表启⽤键时,秒表开始计时,再次按下秒表启⽤键时停⽌计时,当读取到计时时间时,按下时钟启⽤键,则进⼊时钟运⾏状态。
2计时器总体结构设计在应⽤Verilog硬件描述语⾔进⾏数字电路设计的时候,通常可以采⽤⾃顶向下或者⾃底向上两种设计流程。
根据需求分析所要实现功能的具体要求,采⽤⾃顶向下的⽅法将电路系统逐层分解细化,设计其总体结构。
计时器应该包含计时和显⽰两⼤部分。
经过分析,计时部分应该采⽤60进制计数器各两个(分,秒计时),24进制计数器⼀个(⼩时计时)秒表部分需要采⽤100进制的计数器⼀个。
显⽰部分采⽤动态扫描,可以有效地节约硬件资源。
显⽰部分应该包括动态扫描和译码显⽰两部分。
基于FPGA的数字钟设计
数字钟的设计一、 设计要求设计一个数字钟,要求用数码管分别显示时、分、秒的计数,同时可以进行时间设置,并且要求在整点的时候能够实现报时功能。
二、 设计原理计数器在正常工作下是对1Hz的频率计数,在调整时间状态下是对调整的时间模块进行计数;控制按键来选择是正常计数还是调整时间,并决定是调整时还是分;时间显示的LED数码管采用动态扫描实现;在整点到达时,还具有整点报时功能。
三、 电路符号数字钟电路符号如下图所示。
CLK2为分频之前的信号,CLR为清零端,CCK 为校时允许端。
MC为分信号调整端,HC为时信号调整端。
HH[3..0]为时高位,HL[3..0]为时低位,MH[3..0]为分高位,ML[3..0]为分低位,SH[3..0]为秒高位,SL[3..0]为秒低位。
DOUT[6..0]是数码管驱动,SEG[5..0]是位选择信号,RING是整点报时信号。
四、 设计方法本设计的电子时钟包括:分频模块、计时模块、校时模块、动态扫描译码显示模块和整点报时模块。
下面通过各个模块的设计来了解电子时钟的构成:一、 分频模块程序附录:module clk2clk1s(clk,clk1s); input clk;output clk1s;reg clk1s;reg [3:0] cnt;always@(posedge clk)if(cnt==4'b1111)beginclk1s<=~clk1s;cnt<=0;endelsecnt<=cnt+1; endmodule波形仿真:二、 计时模块六十进制计数器六十进制计数器程序附录:六十进制计数器模块:module m60(clk,clr,qh,ql,cao);input clk,clr;output cao;output[3:0] qh,ql;reg [3:0] qh,ql;reg cao;always @(posedge clk or negedge clr) beginif(clr==0)beginqh<=4'h0;ql<=4'h0;cao<=0;endelse if(ql==9)beginql<=0;if(qh==5)beginqh<=0;cao<=1;endelse qh=qh+1;endelsebeginql<=ql+1;cao<=0;endendendmodule二十四进制计数器模块:module m24(clk,clr,qh,ql);input clk,clr;output[3:0] qh,ql;reg [3:0] qh,ql;always @(posedge clk or negedge clr) beginif(clr==0)beginqh<=4'h0;ql<=4'h0;endelse if(qh==2)beginql<=ql+1;if(ql==3)beginqh<=0;ql<=0;endendelse if(ql==9)beginqh<=qh+1;ql<=0;endelseql<=ql+1; end endmodule波形仿真:清零清零正常计时三、 校时模块四、 动态译码显示模块CCK 为0不支持校时,有进位信号时产生分(时)脉冲程序附录:1、位扫描信号(HH,HL,MH,ML,SH,SL逐位扫描,并输出)module sel(clk,hh,hl,mh,ml,sh,sl,out);input clk;input [3:0] hh,hl,mh,ml,sh,sl;output [3:0] out;reg [3:0] out;reg [3:0] ss=0;always @(posedge clk)beginif(ss<4'b0101)ss<=ss+1;elsess<=0;endalways @(posedge clk)begincase(ss)4'd0:out<=sl;4'd1:out<=sh;4'd2:out<=ml;4'd3:out<=mh;4'd4:out<=hl;4'd5:out<=hh;endendmodule仿真图:2、段扫描信号(选择数码管点亮哪一位)module seg(clk,seg);input clk;output [5:0] seg;reg [5:0] seg;reg [3:0] ss=0;always @(posedge clk)beginif(ss<4'b0101)ss<=ss+1;elsess<=0;endalways @(posedge clk)begincase(ss)4'd0:seg<=6'b111110;4'd1:seg<=6'b111101;4'd2:seg<=6'b111011;4'd3:seg<=6'b110111;4'd4:seg<=6'b101111;4'd5:seg<=6'b011111;default:seg<=6'b111111;endcaseend3、4—7译码module decode4_7(decodeout,indec); output[6:0] decodeout;input[3:0] indec;reg[6:0] decodeout;always @(indec)begincase(indec)4'd0:decodeout=7'b1111110;4'd1:decodeout=7'b0110000;4'd2:decodeout=7'b1101101;4'd3:decodeout=7'b1111001;4'd4:decodeout=7'b0110011;4'd5:decodeout=7'b1011011;4'd6:decodeout=7'b1011111;4'd7:decodeout=7'b1110000;4'd8:decodeout=7'b1111111;4'd9:decodeout=7'b1111011;default: decodeout=7'b0000000;endcaseendendmodule五、 整点报时模块六、 数字钟仿真图数字钟的设计注:动态扫描的时钟频率尽量要快。
基于XilinxFPGA的数字钟设计
基于FPGA的多功能数字钟一、设计题目基于Xilinx FPGA的多功能数字钟设计二、设计目的1.掌握可编程逻辑器件的应用开发技术——设计输入、编译、仿真和器件编程;2.熟悉一种EDA软件使用;3.掌握Verilog设计方法;4.掌握分模块分层次的设计方法;5.用Verilog完成一个多功能数字钟设计;6.学会FPGA的仿真。
三、设计内容设计实验项目九多功能电子钟✧功能要求:利用实验板设计实现一个能显示时分秒的多功能电子钟,具体要求为:基本功能:1)准确计时,以数字形式显示时、分、秒,可通过按键选择指示当前显示时间范围模式;2)计时时间范围 00:00:00-23:59:593)可实现校正时间功能;4)可通过实现时钟复位功能:00:00:00扩展功能:1)定时报:时间自定(不要求改变),闹1分钟(1kHz)---利用实验板LED或外接电路实现。
2)仿广播电台正点报时:XX:59:[51,53,55,57(500Hz);59(1kHz)] ---利用实验板LED或外接电路实现。
3)报整点时数:XX:00:[00.5-XX.5](1kHz),自动、手动---利用实验板LED或外接电路实现。
4)手动输入校时;5)手动输入定时闹钟;6)万年历;7)其他扩展功能;✧设计步骤与要求:1)计算并说明采用Basys2实验板时钟50MHz实现系统功能的基本原理。
2)在Xilinx ISE13.1 软件中,利用层次化方法,设计实现模一百计数及显示的电路系统,设计模块间的连接调用关系,编写并输入所设计的源程序文件。
3)对源程序进行编译及仿真分析(注意合理设置,以便能够在验证逻辑的基础上尽快得出仿真结果)。
4)输入管脚约束文件,对设计项目进行编译与逻辑综合,生成下载所需.bit类型文件。
5)在Basys2实验板上下载所生成的.bit文件,观察验证所设计的电路功能。
四、总体设计思路主体分为分频模块,正常时间模块(包含两个模60计数器和一个模24计数器子模块),闹钟模块(分为一个模60计数器模块,一个模24计数器模块,四个比较器模块),电台报时模块,数码管显示模块(分为模式选择模块,片选信号及扫描程序模块,和译码模块)。
基于FPGA数字时钟
基于FPGA的数字时钟设计一、课程设计目的1、进一步熟悉QuartusⅡ的软件使用方法;2、熟悉可编程逻辑器件的开发流程及硬件测试方法;3、熟悉基于FPGA的综合数字系统设计方法;二、设计任务设计一台可以显示时、分、秒的数字钟。
如图1所示为基于FPGA的数字钟设计的系统框图。
图1 数字钟系统三、设计要求1、能直接显示小时、分、秒,其中小时为以二十四为计数周期;2、能够显示日期(即年、月、日),且要求在显示时钟的数码管上显示日期,即时钟数码管与日期数码管复用;3、年、月、日要严格按照实际日期,例如1月31天,4月30天,2月闰年29天等;4、当数字钟发生走时错误时,要求电路有校时功能,可以对时、分单独校正,且校正时间时系统时钟不工作;5、当日期发生错误时,要求有校正日期功能,可以对年、月、日单独校正,且矫正日期时时钟系统仍然工作;6、具有闹钟功能,即输入想要定时的时间,当时钟到达该时间时报警,系统可由灯亮代表报警信号。
四、设计内容1、时间计数模块本次是将秒分时各个模块分开进行设计,用秒的进位作为分模块的脉冲,用分的进位作为是模块的脉冲。
秒进位的仿真波形程序:秒的程序module miao(clk,gdata,ddata,en,cl,clr);input clk;input en;input clr;output [3:0] ddata;output [3:0] gdata;output cl;reg [7:0] q;reg cl;assign ddata=q%10;assign gdata=q/10;always @(negedge clk or posedge clr)beginif(clr==1)q=0;elsebeginif(en==1)beginif(q<59)beginq=q+1;cl=0;endelsebeginq=0;cl=1;endendendendendmodule分模块和时模块的程序一秒程序类似,只是进位计数不一样。
基于FPGA的数字钟课程设计
集成电路设计课程设计报告专业班级学号姓名基于FPGA的数字钟课程设计1.任务和设计要求设计具有时、分、秒计数显示,以24小时循环计时的时钟电路,带有清零和校准功能;2.设计原理采用硬件描述语言Verilog 进行编程,实现20MHZ晶振到1HZ的分频;采用verilog 语言实现数字表功能实现的各个模块;通过各个模块的代码生成相应的模块原理图;再将各个模块生成的原理图进行叠加组成一个数字表系统;3.系统设计设计的数字表有6个输入,16个输出;6个输入中,有一个是时钟信号,开发板上的28号引脚输入的50MHZ的时钟信号;一个清零端,当数字表正常显示时,按下清零端可以实现数字钟整体电路图:4.各个模块设计基于EP1C6Q240C8的数字钟设计,有6个模块组成:Fdiv 分频模块Control 模式选择模块Tune 校正模块Zoushi 时间正常运行模块Saomiao 数码管动态扫描模块;Decoder BCD译码模块;Fdiv 模块:功能:实现20MHZ的时钟信号分成10KHZ的信号和1HZ的信号;输入:clk 为20MHZ的时钟信号;输出:f10000HZ 为10KH的时钟信号;F1HZ 为1HZ的时钟信号;Fdiv 模块代码:module fdiv(clk,f10000Hz,f1Hz);output f10000Hz,f1Hz;input clk;reg f10000Hz,f1Hz;integer CNT1=0,CNT2=0;always@(posedge clk)beginif(CNT1<1999)beginCNT1=CNT1+1;f10000Hz<=1'b0;endelsebeginCNT1=0;f10000Hz<=1'b1;endendalways@(posedge f10000Hz)beginif(CNT2<9999)beginCNT2=CNT2+1;f1Hz<=1'b0;endelsebeginCNT2=0;f1Hz<=1'b1;endendendmodulefdiv 模块波形仿真:由于实际的分频波形仿真中,由于要将20MHZ的分成1HZ的,需要将信号缩小20 000 000倍,因此,此处采用将20HZ的先分成10HZ,然后再将10HZ的分成1HZ的时钟信号;在仿真中这样整,在实际演示中再改下代码,实现真正的20MHZ到1HZ的分频;它们只是一个倍数关系而已;Control 模块:功能:实现电子表的正常显示及时间校正模式的转换;输入:key 模式修改键,每来一个高电平,mode加一次。
基于FPGA的数字时钟设计
基于FPGA的数字时钟设计一、实验设计目的:1、进一步熟悉QuartusⅡ的软件使用方法;2、熟悉可编程逻辑器件的开发流程及硬件测试方法;3、熟悉基于FPGA的综合数字系统设计方法;二、设计任务及要求:设计一台可以显示时、分、秒的数字钟。
如图:图1 数字钟系统要求:1、能直接显示小时、分、秒,其中小时为以二十四为计数周期;2、当电路发生走时错误时,要求电路有校时功能,可以对时、分单独校正;3、具有闹钟功能,即输入想要定时的时间,当时钟到达该时间时报警,系统可由灯亮代表报警信号。
4、能显示年月日,使其具有日历功能,并能完成对三种日期状态的校正。
三、设计思路:在24进制程序的基础上设计时钟功能,并加入校正模块以实现对时钟的校正。
在实现时钟功能后添加闹钟模块,并用高位信号表示报时信号。
根据时钟设计方法设计日历功能,同样也加入校正模块。
并且根据日期的进位特点(3月31日,4月30日)完善对日历功能的设计。
四、设计原理:1、根据24进制与60进制的进位信号,完成分钟位,小时位的显示,使其构成基本时钟功能。
2、根据24小时的进位信号count,进行年月日功能的实现。
设置K2与K1为日历与时钟的切换键。
3、在时钟电平作用下,设计两个高低电位JZ1与JZ2电平与K2与K1信号同时控制小时位、分钟的校正。
4、用时钟电平clk2作为闹钟的进位信号,设置K2与K1为闹钟和时钟的切换键。
设置MZ1与MZ2控制闹钟的分钟位与小时位,进行闹钟的设定。
5、在K2、K1与使能信号控制下,设置JZ1与JZ2进行对日历的日与月的校正;JZ1与JZ2进行对年份的个位与十位的校正。
6、最终用K1、K2的四种模式控制显示闹钟、时钟与日历的切换显示模块。
五、设计过程:当时间为23:59:59则进位端count为1,此时判别月份与日期,进行相应的日进位与月进位。
模块2:校准与闹钟设置该程序段为分与时校正,当K1=K2=0时,JZ1为1时,进行分校准;JZ2为1时,进行时校准。
基于FPGA的数字时钟设计
FPGA大作业报告定时闹钟(已在DE2板上测试)分析与设计分析题目要求设计一个具有系统时间设置和带闹钟功能的24小时计时器中的应用,大致应该实现计时功能、设置并显示新的闹钟时间、设置新的计时器时间、闹钟功能这四个基础功能。
我们的思路是先设计一个基础计时器开始,再添加各种需要的功能。
即为下图所示:而设计一个基础计时器,则可以考虑用很基础的三个模块完成:分频模块、计时模块、显示模块。
计时模块也是核心的一个部分,我们所需要添加的各种功能模块也可以完全融合在该模块中,当然也可以独立出来。
由题目要求,该系统需要一个系统50MHz时钟,当然也应该给定一个系统复位(或者是模块复位,这里选用仅在时钟模块复位)。
另外需要3个按键,分别是设置按键“set”、设置系统时间按键“tim”、设置闹钟时间按键“alarm”,以及四组时间输入。
我们将四个数码管显示分为shi1、shi0、fen1、fen0,每一个由4位拨动开关控制设定时间,因为每一个最大值最多为“9”(1001),所以用4位足够。
因为要驱动7位数码管,所以输出量的位宽设为7位[6:0]。
最终选定由三个部分组成所有功能。
下图为系统的整个内部关联:设计分频模块功能:将系统时钟50MHz分频为低频秒计数时钟(1Hz)和显示刷新时钟(1KHz)。
端口定义:input clk;output clk1hz , clk1khz ;代码:module fp1hz(clk,clk1hz,clk1khz);input clk; //50MHzoutput clk1hz,clk1khz; //1Hz、1KHzreg[24:0] cnt1;reg clk1hz;always@(posedge clk) //分频1Hzbeginif(cnt1==25'd2*******)begincnt1<=0;clk1hz<=~clk1hz;endelsecnt1<=cnt1+1'b1;endreg[14:0] cnt2;reg clk1khz;always@(posedge clk) //分频1KHzbeginif(cnt2==15'd24999)begincnt2<=0;clk1khz<=~clk1khz;endelsecnt2<=cnt2+1'b1;endendmodule时钟处理模块功能:在秒时钟下计数,实现基本计时器功能,并且添加设置系统时间和闹钟时间以及闹铃功能(用LED取代)。
基于FPGA的数字电子钟的设计与实现
基于FPGA的数字电⼦钟的设计与实现背景:本实验所有结果基于Quartus II 13.1 (64-bit)实现,实验过程采⽤⾃下⽽上⽬录⼀、基本功能设计与思路基本功能:能实现秒、分钟、⼩时的计数,计数结果清晰稳定的显⽰在 6 位数码管上。
1、动态显⽰模块该模块主要功能是通过数码管的动态扫描实现 6 位数码管显⽰计数结果,本模块由扫描模块scan_cnt6,位选控制模块 dig_select,数据选择控制模块 seg_select 以及译码模块 decoder 构成扫描模块 scan_cnt6模块功能:产⽣ 位选控制端dig_select 和数据选择端 code_select 模块所需要的地址信息,扫描时钟决定位选信号和数据切换的速度。
设计思路:利⽤74390芯⽚(P160 TTL 双⼗进制异步计数器)构建⼀个模六计数器,就是6进制计数器,利⽤计数到6(110)时,“q2”和“q1”为⾼电平,产⽣ ⼀个复位信号,加到74390的⾼电平有效的异步清0端“1CLR”上,使计数器回0,从⽽实现模六计数。
设计结果:cnt6模块设计图波形仿真:(默认为时序仿真)cnt6模块波形仿真图位选模块 dig_select模块功能:在地址端的控制下,产⽣位选信号。
设计思路:利⽤74138芯⽚(3线-8线译码器),当选通端输⼊端G1为⾼电平,选通端输⼊端G2AN和G2BN为低电平时,将扫描信号cnt6的输出作为输⼊信号,dig[5..0]是译码输出,输出低电平有效。
设计结果:dig_select模块设计图波形仿真:dig_select模块波形仿真图数据选择模块 seg_select模块功能:输⼊ 6 组数据,每组数据 4bit,本模块完成在地址端的控制下从6 组数据当中选择 1 组输出。
设计思路:利⽤74151芯⽚(P91 8选1数据选择器),在控制输⼊端GN为低电平时,将扫描信号的选择下,分别选中D[5..0]对应的输⼊信号输出为Y。
基于FPGA的数字钟设计
江苏科技大学实验报告实验名称:基于FPGA的数字钟设计学院:电子信息工程学院专业:电子与通信工程学号:149******姓名:***指导老师:**日期:2014.11.18一. 数字钟总体设计方案:1.1设计目的①正确显示时、分、秒;②可手动校时,能分别进行时、分的校正;③清零功能;1.2设计思路数字钟的设计模块包括:分频器模块、“时、分、秒”计数器模块、和译码显示模块。
每一个功能模块作为一个实体单独进行设计,最后再用VHDL的例化语句将各个模块进行整合,生成顶层实体top。
该数字钟可以实现3个功能:计时功能、设置时间功能和清零功能。
二.数字钟各具体模块2.1 分频器(fengp)模块本系统共需3种频率时钟信号(10MHz、1Hz、1KHz)。
为减少输入引脚,本系统采用分频模块,只需由外部提供10MHz基准时钟信号,其余两种频率时钟信号由分频模块得到。
分频器管脚分频器代码:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity fengp isport(clk0:in std_logic;clk_1Hz,clk_1kHz:out std_logic);end entity;architecture one of fengp issignal q1Hz:integer range 0 to 9999999 ;signal q1kHz:integer range 0 to 9999 ;beginprocess(clk0)beginif clk0'event and clk0='1'thenif q1Hz<5000000-1 then clk_1Hz<='0';q1Hz<=q1Hz+1;elsif q1Hz=10000000-1 then q1Hz<=0;else clk_1Hz<='1';q1Hz<=q1Hz+1;end if;if q1kHz<5000-1 then clk_1kHz<='0';q1kHz<=q1kHz+1;elsif q1kHz=10000-1 then q1kHz<=0;else clk_1kHz<='1';q1kHz<=q1kHz+1;end if;end if;end process;end;2.2 60(count60)进制计数校时模块本模块要实现的功能是:正常计时、校时、校分在每个状态下都会产生不同控制信号实现相应的功能。
基于FPGA:电子钟的设计报告
电子钟的设计报告姓名:< >组别:< >专业班级:< >目录目录 (1)一、数字钟的设计要求 (2)二、顶层设计 (2)三、模块 (3)1.顶层模块 (3)2.分频器模块 (4)3.按键消抖模块 (4)4.计时模块 (5)5.显示模块 (6)6.报时和闹钟模块 (6)四、系统调试及运行结果分析 (7)1、硬件调试 (7)2、软件调试 (8)3、调试过程及结果 (8)(1)显示模块调试 (8)(2)时间系统模块调试 (9)五、总结 (9)一、数字钟的设计要求设计一个具有时、分、秒计时第二电子钟电路,按24小时制记时。
要求:1、准确计时,以数字形式显示时、分、秒的时间;2、具有分、时校正功能,校正输入脉冲频率为1Hz;3、具有仿广播电台整点报时的功能,即每逢59分51秒、53秒、55秒及57秒时,发出4声500Hz低音,在59分59秒时发出一声1kHz高音,它们的持续时间均为1秒。
最后一声高音结束的时刻恰好为正点时刻。
4、具有定时闹钟功能,且最长闹铃时间为一分钟。
要求可以任意设置闹钟的时、分;闹铃信号为500Hz和1kHz的方波信号,两种频率的信号交替输出,且均持续1S。
设置一个停止闹铃控制键,可以停止输出闹铃信号。
二、顶层设计采用自顶向下的设计方法,首先根据数字时钟的功能要求进行顶层设计和分析,用FPGA实现系统的计时、显示驱动、按键输入处理、仿广播电台整点报时的功能。
根据实训平台的硬件资源情况,输入信号包括时钟输入和按键输入,其中系统时钟由实训平台核心板50MHz晶振提供,拨码开关作为校时、闹钟时间设置和复位的信号输入,输出信号包括峰鸣器控制输出、8位动态数码管位选和段选控制输出。
数字电字时钟系统主要有分频器模块、按键消抖模块、计时模块、整点报时和闹铃模块和显示驱动模块构成。
三、模块1.顶层模块如下图所示。
2.分频器模块分频器模块的主要功能是为其他模块提供时钟信号。
基于FPGA的数字时钟设计
基于FPGA的数字时钟设计数字时钟是现代生活中必不可少的时间展示设备,广泛应用于各种场所,如家庭、办公室、学校等。
随着科技的不断发展,数字时钟的功能也得到不断升级,为人们日常生活提供了更多的便利和体验。
本文将介绍基于FPGA的数字时钟设计方案。
FPGA(Field Programmable Gate Array)是可编程门阵列的缩写,是一种现场可编程逻辑器件。
FPGA具有可编程性强、功能强大、极低的延迟等特点,被广泛应用于数字系统设计中。
本文中使用FPGA来实现数字时钟设计方案。
数字时钟的核心是计时电路,计时电路可以通过FPGA实现,使用FPGA来实现数字时钟的主要优点是可编程性强,能够满足不同需求的设计。
一、数字时钟的设计思路1、时钟信号的产生数字时钟的起点是时钟信号的产生,时钟信号的产生一般需要使用晶振。
晶振可以在一定频率范围内提供稳定的时钟信号。
FPGA可以通过将晶振与逻辑电路相连接,从而得到稳定的时钟信号。
2、计时电路的设计在数字时钟中,需要实现时、分、秒的计时功能。
这可以采用三个计时器来实现。
计时器可以使用FPGA内置的计数器实现,也可以通过逻辑电路实现。
计时器根据时钟信号的变化而变化,通过累计时钟信号的脉冲数计算出时、分、秒。
3、数码管的控制数字时钟的时间要通过数码管进行显示,数码管需要接受来自FPGA的控制信号才能正常显示数字。
通常采用多路复用器的方式来控制数码管的显示。
这里可以使用FPGA内置的多路复用器实现,FPGA输出控制信号,控制多路复用器选择哪个数码管进行显示。
数字时钟的硬件设计主要包括以下部分:时钟信号发生电路包含晶振以及晶振产生的时钟信号经过变压器传送到电路板上。
在电路板上,时钟信号经过电路处理,产生一定的电平和频率,供后续计时模块使用。
2、计时模块计时模块包括三个计时器,分别用于计算时、分、秒。
计时器通过累加时钟信号的脉冲数计算时间。
计时模块的输出需要送到数码管的控制模块进行显示。
基于FPGA电子钟设计
重庆邮电大学电子设计自动化技术与应用设计报告设计题目:基于FPGA语言的数字钟设计学院:通信学院*名:***学号: S*********一、需求分析本设计是基于利用FPGA设计具有时、分、秒显示功能的简易时钟电路,数字电路的基本结构由两个60进制计数器和一个24进制计数器组成,分别显示小时,分钟,秒的基本功能。
计数器有可以随意调整时间的功能,当显示器显示为23时59分59秒时,秒再进一位则时计数器清零。
二、总体设计1 、设计思路:利用FPGA实现电子时钟的功能,显示电路利用七段数码管进行显示。
它的计时周期是24小时,满刻度为23时59分59秒。
对于FPGA来说可以使用任何的I/O口来实现数据的传输,其I/O口的数量远多于单片机。
整个电路以FPGA芯片作为总体控制核心,对整个电路的正常运行进行控制,对于1秒时间产生可以利用开发板上可调频率来实现每1秒。
系统完成时间的实时计算以后,将计算数据通过I/O口传给数码管进行显示,通过段选和位选判断以后,将时间实时显示出来。
对于调整时间来可以利用简单的独立按键来实现调整复位及小时/分钟/秒的加一操作,并用数码管实时的显示调整后的时间。
当数字钟处于计时状态时,秒计数器的进位输出信号作为分钟计数器的计数信号,分钟计数器的进位输出信号又作为小时计数器信号,时、分、秒的计时结果通过6个数码管来动态显示,加上分隔符一共需要8个数码管显示。
2 、器件选型8位7段数码管、FPGA芯片。
三、硬件设计硬件电路总体的设计:硬件电路设计,要结合开发板上的硬件连接,从而对应连接才可以设计电路。
首先确定使用FPGA的哪个I/O口,对于按键使用哪个I/O口资源,按键SW0-SW3作为独立按键使用。
系统框图如下:Clk 0Clk1八个数码管组成的显示电路位选电路时计数器分计数器秒计数器译码显示电路按键调整电路秒、分、时计数器管脚分配表如下:四 、软件设计1、 总体软件流程图由于在Verilog语言中各个模块电路同时工作采用并行执行的,时序逻辑由时钟驱动,因此在程序中一定要注意时序的设计及时钟的设计,在各个不同的时钟驱动下电路响应的方式。
基于FPGA的数字钟设计-华中科技大学电子线路实验报告
基于FPGA的数字钟设计Your Name一、实验目的1.了解数字钟的功能要求及设计方法;2.了解CPLD/FPGA的一般结构及开发步骤;3.熟悉用FPGA器件取代传统的中规模集成器件实现数字电路与系统的方法。
二、实验要求1.以数字形式显示时、分、秒的时间;2.小时计数器为同步24进制;3.要求手动校时、校分;4.任意闹钟;5.小时为12/24进制可切换;6.报正点数(几点响几声)。
三、实验内容1.系统模块框图2.时间校准模块时间校准模块可由两位控制信号控制当前校准状态。
3.时分秒计数模块时分秒计数模块由60进制秒计数器、60进制分计数器和24进制时计数器组成。
时分秒的计数器具有复位和计数功能。
其中CR为复位信号,当CR为0时,时分秒的计数器清0,EN为使能信号,EN为1时开始计时,EN为0则暂停计时。
分秒时的进位通过外部组合逻辑实现。
4.显示模块计时模块产生的BCD码通过编写的CD4511功能模块转换为数码管的显示信号。
5.分频模块开发板的系统时钟为50MHz,产生1Hz的CP信号需要一个模为25M的计数器分频得到1Hz的CP信号。
四、具体代码1.顶层模块(clock.v)module SHOW_CTRL(MODE,SHOW_MODE,CP,Hour,Minute,Second,SHOW1,SHOW2);input CP,MODE,SHOW_MODE;input[7:0]Hour,Minute,Second;output[7:0]SHOW1,SHOW2;reg[7:0]SHOW1,SHOW2;always@(MODE,SHOW_MODE) beginif((MODE==0)&&(SHOW_MODE==0))begin SHOW2<=Minute[7:0];SHOW1<=Hour[7:0]; endelse if((MODE==0)&&(SHOW_MODE==1))begin SHOW2<=Second[7:0];SHOW1<=Minute[7:0]; endelse if((MODE==1)&&(SHOW_MODE==0))begin SHOW2<=Minute[7:0];SHOW1<=Hour[7:0]; endelse if((MODE==1)&&(SHOW_MODE==1))begin SHOW2<=Second[7:0];SHOW1<=Minute[7:0]; endendendmodule2.分频模块(clk_div.v)module clk_div(clk_50M,clk_1);input clk_50M;output reg clk_1;reg [8:0]count;always @(posedge clk_50M)beginif(count>8'd25)beginclk_1=~clk_1;count=0;endelsecount<=count+1;endendmodule3.模60计数器模块(counter60.v)module counter60(EN,CP,nCR,QoH,QoL);input EN,CP,nCR;output [3:0]QoH,QoL;reg [3:0]QoH,QoL;always@(posedge CP) beginif(~nCR) beginQoH<=4'b0000;QoL<=4'b0000; endelse if(~EN) beginQoH<=QoH;QoL<=QoL; endelseif(QoH==4'b0101&&QoL==4'b1001)beginQoH<=4'b0000;QoL<=4'b0000;endendelse if(QoH<4'b0110&&QoL<4'b1001){QoH,QoL}<={QoH,QoL+4'b0001};else if(QoH<4'b0110&&QoL==4'b1001){QoH,QoL}<={QoH+4'b0001,4'b0000};endendmodule4.模24计数器模块(counter24.v)module counter24(nCR,EN,CP,CntH,CntL);input CP,nCR,EN;output[3:0] CntH,CntL;reg [3:0]CntH,CntL;reg CO;always@(posedge CP or negedge nCR) beginif(~nCR) {CntH,CntL}<=8'h00;else if(~EN) {CntH,CntL}<={CntH,CntL};else if((CntH>2)||(CntL>9)||((CntH==2)&&(CntL>=3))){CntH,CntL}<=8'h00;else if((CntH==2)&&(CntL<3))begin CntH<=CntH; CntL<=CntL+1'b1; end else if(CntL==9) begin CntH<=CntH+1'b1; CntL<=4'b0000; endelse begin CntH<=CntH; CntL<=CntL+1'b1; endendendmodule5.显示模块(HEX2LED.v)module HEX2LED(HEX,SEG);input[3:0] HEX;output[7:0] SEG;wire[3:0] HEX;reg[6:0] SEG;always@(HEX)begincase(HEX)4'h0: SEG = 7'b0000001;4'h1: SEG = 7'b1001111;4'h2: SEG = 7'b0010010;4'h3: SEG = 7'b0000110;4'h4: SEG = 7'b1001100;4'h5: SEG = 7'b0100100;4'h6: SEG = 7'b0100000;4'h7: SEG = 7'b0001111;4'h8: SEG = 7'b0000000;4'h9: SEG = 7'b0000100;default: SEG = 7'b0000001;endcaseendendmodule五、仿真截图(仿真秒时分计时及其数码管显示,仿真环境为vivado 2018.3)秒计时仿真分计时仿真时计时仿真如下图所示为分校准仿真,当Amin分校准位为1时分开始随着CP信号的频率以1秒加1的步进变动。
基于FPGA的电子钟设计
基于FPGA的电子钟设计基于FPGA的电子钟设计随着物联网技术的发展,我们对于时间的要求也越来越精细。
电子钟作为一个基本的时间计量工具,其精度和稳定性至关重要。
而FPGA作为一种强大的可编程逻辑器件,具有高速、高效、灵活等优势,成为电子钟设计的重要基础。
一、电子钟的基本原理电子钟是指采用电路元器件、微处理器等电子器件构成的时钟。
其基本原理可以概括为:利用更精确的时间计量器件替代机械时钟中的发条和摆轮,同时采用数字处理器等电子元器件代替机械表盘展示时间。
电子钟的核心是时基电路,其作用是产生高精度的时间信号,为其它电路提供时间标准。
通常采用晶振、TCXO、OCXO等时基器件。
为了保证时间精度,还要从外部时钟或天线接收校正信号。
二、FPGA的优势FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,可以灵活地对电路进行编程和调整,从而实现不同的功能。
FPGA相对于ASIC(Application Specific Integrated Circuit),具有以下优点:1. 灵活性:FPGA可以通过重新编程来实现不同的逻辑功能,而ASIC则需要重新设计电路,成本和时间都比较高。
2. 高速:FPGA以可编程方式实现电路逻辑,减少了多级缓存的开销,因此运行速度更快。
3. 低功耗:FPGA可以在逻辑上进行优化,以达到低功耗效果,同时利用现代的制造技术,还可以采用低功耗工艺。
4. 可重用性:FPGA的电路设计可以在不同的项目中重复使用,从而提高了效率和经济性。
三、基于FPGA的电子钟设计基于FPGA的电子钟设计方案主要包括两部分,分别是时基电路和数码显示电路。
1. 时基电路设计时基电路是电子钟的核心部分,可以采用晶振、TCXO、OCXO等器件来产生高精度的时间信号。
在电子钟的设计中,一般还需要接收外部同步校时信号,用于校正时钟误差。
基于FPGA的时基电路设计主要包括以下几个部分:(1)时钟输入电路:接收来自外部同步信号的时钟脉冲,用于校准电子钟的误差。
基于FPGA的数字时钟设计
基于FPGA的数字时钟设计一、数字时钟的设计方案及框图1.1 设计方案(1)数字时钟按24 h 制设计,由6 只数码管显示小时、分钟、秒;(2)小时单元和分钟单元具有复位功能,当按下对应按键时,小时单元和分钟单元复位为00;(3)动态扫描功能,扫描输出轮流点亮各个数码管,可用来检测数码管的好坏;由功能要求可将系统分模块实现。
将系统分为7 个模块来实现。
这7 个模块分别为:①24 进制计数器;②60 进制计数器;③分频器;④选择显示数据模块:其功能为将输入的六路信号(时十位﹑时个位﹑分十位﹑分个位﹑秒十位﹑秒个位)轮流选中送给七段显示译码器,即在一个时间单元内只显示一路信号的值;⑤动态扫描控制模块:其功能为控制数码管电路的亮灭,即完成对6 个数码管的扫描控制功能;⑥七段显示译码器:完成BCD 码向7 段显示码的转换;⑦模六计数器:用来控制数码管的片选信号,同时作为选择显示数据模块的地址产生器。
1.2 系统的模块框图如图1 所示,采用自顶向下的设计方法,通过对功能框图的分析,将系统分模块来进行设计,然后再通过例化语句完成各模块间的衔接,最终实现了顶层描述,完成系统预定功能。
1.3 系统的工作流程描述如图1,时钟系统具有一个使能端en、一个异步清零端clr 以及时钟脉冲输入端clk。
由6 个计数器分别完成小时、分钟、秒的计时,并分别通过数据选择器的6 个输入端送入选择器,数据选择器的使能端由一个模为六的计数器控制,轮流选中数据选择器的6 个输入端,这样,6 个输入端口的数据在数据选择器的输出端口就得到了串行轮流的输出。
此输出作为七段显示译码器的字符输入端,经译码后在数码管显示电路上显示出对应字形。
数码管显示电路上的6 个数码管同样采用轮流点亮的方式。
由于循环的速度非常快,所以肉眼看起来仍然是同时显示的感觉。
二、各模块的设计实现2.1 24 进制计数器和60 进制计数器的实现24 进制计数器的功能为完成计时电路中小时单元的计时功能,并且具有异步清零端clr(低电平有效)﹑使能端en(高电平有效);当数字钟处于正常计时状态时,完成小时计时,并且受分计时模块(60 进制)进位输出信号的控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本设计为一个多功能的数字钟,具有年、月、日、时、分、秒计数显示功能,以24小时循环计数;具有校对功能以及整点报时功能。
本设计采用EDA技术,以硬件描述语言VHDL为系统逻辑描述手段设计文件,采用自顶向下的设计方法,由各个基本模块共同构建了一个基于FPGA的数字钟。
系统主芯片采用EP1K100QC208-3,由时钟模块、控制模块、计时模块、数据译码模块、显示以及报时模块组成。
经编译和仿真所设计的程序,在可编程逻辑器件上下载验证,本系统能够完成年、月、日和时、分、秒的分别显示,由按键输入进行数字钟的校时、清零、启停功能。
目录1 绪论 (1)1.1 选题背景 (1)1.1.1 课题相关技术的发展 (2)1.1.2 课题研究的必要性 (2)1.2 课题研究的容 (3)2 FPGA简介 (4)2.1 FPGA概述 (4)2.2 FPGA基本结构 (4)2.3 FPGA系统设计流程 (7)2.4 FPGA开发编程原理 (8)3 数字钟总体设计方案 (10)3.1 数字钟的构成 (10)3.2 数字钟的工作原理 (11)4 单元电路设计 (13)4.1 分频模块电路设计与实现 (13)4.2 校时控制模块电路设计与实现 (14)4.2.1 键盘接口电路原理 (14)4.2.2 键盘接口的VHDL描述 (15)4.3 计数模块设计与实现 (23)4.3.1 秒计数模块 (23)4.3.2 日计数模块 (25)4.3.3 月计数和年计数模块 (28)4.4 动态扫描及显示电路设计与实现 (30)4.4.1 动态扫描模块 (30)4.4.2 显示模块 (31)5 实验结论与研究展望 (32)5.1 实验结论 (32)5.2 研究展望 (33)致 (34)1 绪论现代社会的标志之一就是信息产品的广泛使用,而且是产品的性能越来越强,复杂程度越来越高,更新步伐越来越快。
支撑信息电子产品高速发展的基础就是微电子制造工艺水平的提高和电子产品设计开发技术的发展。
前者以微细加工技术为代表,而后者的代表就是电子设计自动化(electronic design automatic,EDA)技术。
本设计采用的VHDL是一种全方位的硬件描述语言,具有极强的描述能力,能支持系统行为级、寄存器传输级和逻辑门级三个不同层次的设计;支持结构、数据流、行为三种描述形式的混合描述、覆盖面广、抽象能力强,因此在实际应用中越来越广泛。
ASIC是专用的系统集成电路,是一种带有逻辑处理的加速处理器。
而FPGA是特殊的ASIC芯片,与其他的ASIC芯片相比,它具有设计开发周期短、设计制造成本低、开发工具先进、标准产品无需测试、质量稳定以及可实时在线检测等优点。
在控制系统中,键盘是常用的人机交换接口,当所设置的功能键或数字键按下的时候,系统应该完成该键所设置的功能。
因此,键信息输入是与软件结构密切相关的过程。
根据键盘的结构不同,采用不同的编码方法。
但无论有无编码以及采用什么样的编码,最后都要转换成为相应的键值,以实现按键功能程序的转移。
钟表的数字化给人们生产生活带来了极大的方便,而且大扩展了钟表原先的报时功能。
诸如定时自动报警、定时启闭电路、定时开关烘箱、通断动力设备,甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
因此,研究数字钟及扩大其应用,有着非常现实的意义。
1.1 选题背景本节将从FPGA嵌入式应用开发技术与数字钟技术发展的客观实际出发,通过对该技术发展状况的了解,以及课题本身的需要,指出研究基于FPGA的芯片系统与设计——数字钟的设计与实现的必要性。
1.1.1 课题相关技术的发展当今电子产品正向功能多元化,体积最小化,功耗最低化的方向发展。
它与传统的电子产品在设计上的显著区别师大量使用大规模可编程逻辑器件,使产品的性能提高,体积缩小,功耗降低.同时广泛运用现代计算机技术,提高产品的自动化程度和竞争力,缩短研发周期。
EDA 技术正是为了适应现代电子技术的要求,吸收众多学科最新科技成果而形成的一门新技术。
EDA技术,技术以大规模可编程逻辑器件为设计载体,以硬件描述语言为系统逻辑描述主要表达方式,以计算机、大规模可编程逻辑器件的开发软件及实验开发系统为设计工具,通过有关的开发软件,自动完成用软件的方式设计的电子系统到硬件系统的逻辑编译,逻辑化简,逻辑分割,逻辑映射,编程下载等工作。
最终形成集成电子系统或专用集成芯片的一门新技术。
本设计利用VHDL硬件描述语言结合可编程逻辑器件进行的,并通过数码管动态显示计时结果。
数字钟可以由各种技术实现,如单片机等.利用可编程逻辑器件具有其他方式没有的特点,它具有易学,方便,新颖,有趣,直观,设计与实验项目成功率高,理论与实践结合紧密,体积小,容量大,I/O口丰富,易编程和加密等特点,并且它还具有开放的界面,丰富的设计库,模块化的工具以及LPM定制等优良性能,应用非常方便。
因此,本设计采用可编程逻辑器件实现。
1.1.2 课题研究的必要性现在是一个知识爆炸的新时代。
新产品、新技术层出不穷,电子技术的发展更是日新月异。
可以毫不夸的说,电子技术的应用无处不在,电子技术正在不断地改变我们的生活,改变着我们的世界。
在这快速发展的年代,时间对人们来说是越来越宝贵,在快节奏的生活时,人们往往忘记了时间,一旦遇到重要的事情而忘记了时间,这将会带来很大的损失。
因此我们需要一个定时系统来提醒这些忙碌的人。
数字化的钟表给人们带来了极大的方便。
近些年,随着科技的发展和社会的进步,人们对数字钟的要求也越来越高,传统的时钟已不能满足人们的需求。
多功能数字钟不管在性能还是在样式上都发生了质的变化,有电子闹钟、数字闹钟等等。
1.2 课题研究的容本设计主要研究基于FPGA的数字钟,要求时间以24小时为一个周期,显示年、月、日、时、分、秒。
具有校时以及报时功能,可以对年、月、日、时、分及秒进行单独校对,使其校正到标准时间。
校对时间由4×4矩形键盘进行控制,为了保证计时的稳定及准确须由晶体振荡器提供时间基准信号。
本设计小组成员共有三人:其他两人分别采用原理图设计和Verilog HDL语言设计。
2 FPGA简介2.1 FPGA概述FPGA是现场可编程门阵列(Field Programmable Gate Array)的简称,与之相应的CPLD是复杂可编程逻辑器件(Complex Programmable Logic Device)的简称,两者的功能基本相同,只是实现原理略有不同,所以有时可以忽略这两者的区别,统称为可编程逻辑器件或CPLD/PGFA。
CPLD/PGFA几乎能完成任何数字器件的功能,上至高性能CPU,下至简单的74电路。
它如同一白纸或是一堆积木,工程师可以通过传统的原理图输入或硬件描述语言自由的设计一个数字系统。
通过软件仿真可以事先验证设计的正确性,在PCB完成以后,利用CPLD/FPGA的在线修改功能,随时修改设计而不必改动硬件电路。
使用CPLA/FPGA开发数字电路,可以大大缩短设计时间,减少PCB面积,提高系统的可靠性。
这些优点使得CPLA/FPGA技术在20世纪90年代以后得到飞速的发展,同时也大大推动了EDA软件和硬件描述语言HDL的进步。
2.2 FPGA基本结构FPGA具有掩膜可编程门阵列的通用结构,它由逻辑功能块排成阵列,并由可编程的互连资源连接这些逻辑功能块来实现不同的设计。
FPGA一般由3种可编程电路和一个用于存放编程数据的静态存储器SRAM组成。
这3种可编程电路是:可编程逻辑模块(CLB--Configurable Logic Block)、输入/输出模块(IOB--I/O Block)和互连资源(IR—Interconnect Resource)。
可编程逻辑模块CLB是实现逻辑功能的基本单元,它们通常规则的排列成一个阵列,散布于整个芯片;可编程输入/输出模块(IOB)主要完成芯片上的逻辑与外部封装脚的接口,它通常排列在芯片的四周;可编程互连资源包括各种长度的连接线段和一些可编程连接开关,它们将各个CLB之间或CLB、IOB之间以及IOB之间连接起来,构成特定功能的电路。
1.CLB是FPGA的主要组成部分。
图2-1是CLB基本结构框图,它主要由逻辑函数发生器、触发器、数据选择器等电路组成。
CLB中3个逻辑函数发生器分别是G、F和H,相应的输出是G’、F’和H’。
G有4个输入变量G1、G2、G3和G4;F也有4个输入变量F1、F2、F3和F4。
这两个函数发生器是完全独立的,均可以实现4输入变量的任意组合逻辑函数。
逻辑函数发生器H有3个输入信号;前两个是函数发生器的输出G’和F’,而另一个输入信号是来自信号变换电路的输出H1。
这个函数发生器能实现3输入变量的各种组合函数。
这3个函数发生器结合起来,可实现多达9变量的逻辑函数。
CLB中有许多不同规格的数据选择器(四选一、二选一等),通过对CLB部数据选择器的编程,逻辑函数发生器G、F和H的输出可以连接到CLB输出端X或Y,并用来选择触发器的激励输入信号、时钟有效边沿、时钟使能信号以及输出信号。
这些数据选择器的地址控制信号均由编程信息提供,从而实现所需的电路结构。
CLB中的逻辑函数发生器F和G均为查找表结构,其工作原理类似于ROM。
F和G的输入等效于ROM的地址码,通过查找ROM中的地址表可以得到相应的组合逻辑函数输出。
另一方面,逻辑函数发生器F和G还可以作为器件高速RAM或小的可读写存储器使用,它由信号变换电路控制。
2.输入/输出模块IOB。
IOB提供了器件引脚和部逻辑阵列之间的连接。
它主要由输入触发器、输入缓冲器和输出触发/锁存器、输出缓冲器组成。
每个IOB控制一个引脚,它们可被配置为输入、输出或双向I/O功能。
当IOB控制的引脚被定义为输入时,通过该引脚的输入信号先送入输入缓冲器。
缓冲器的输出分成两路:一路可以直接送到MUX,另一路经延图2-1 CLB 基本结构时几纳秒(或者不延时)送到输入通路D 触发器,再送到数据选择器。
通过编程给数据选择器不同的控制信息,确定送至CLB 阵列的I1和I2是来自输入缓冲器,还是来自触发器。
当IOB 控制的引脚被定义为输出时,CLB 阵列的输出信号OUT 也可以有两条传输途径:一条是直接经MUX 送至输出缓冲器,另一条是先存入输出通路D 触发器,再送至输出缓冲器。
IOB 输出端配有两只MOS 管,它们的栅极均可编程,使MOS 管导通或截止,分别经上拉电阻接通Vcc 、地线或者不接通,用以改善输出波形和负载能力。
3.可编程互连资源IR 。
可编程互连资源IR 可以将FPGA 部的CLB 和CLB 之间、CLB 和IOB 之间连接起来,构成各种具有复杂功能的系统。