超静定结构的概念和超静定结构次数的确定.pdf
9-1超静定结构的概念及超静定次数的确定

缺点
要求熟练掌握静定结构的构 造特点,否则易错。 基本结构与超静定次数判别 完全脱离,需另外选择。
最适用范围
构造相对简单 的结构 构造相对复杂 的结构
具体应用中建议先采用物理方法判别超静定次数,然后采用数学方法校 核。
注意的问题
超静定结构解除多余约束的方法有多种,对应的静定结构有多种形式,
但作为力法基本结构的静定结构必须几何不变。
§9-1 超静定次数和力法基本结构
超静定次数的判别
切断一个单刚结点(相当于去掉两个线位移约束和一个角位移约束)
X1 切断一个单刚 X2
X3
原结构
基本结构
数学方法:计算结构体系的自由度,如果自由度小于零,说明体系是
超静定结构,超静定次数为自由度的绝对值。 按平面链杆体系计算自由度: 结点数量8;链杆数量16;支杆数量3。 自由度W=2× (结点数)-(链杆数+支杆数) =2×8-(16+3)=-3 三次超静定。
Strucural Analysis School of Civil Engineering, Tongji Univ.
§9-1 超静定次数和力法基本结构
超静定次数
力法基本未知量和基本结构是相互对应的。
若选择静定结构作为基本结构,那么基本未知量就是多余约束力,故, 基本未知量的数量就是多余约束的数量。 多余约束的个数称为超静定次数。若一个结构有n个多余约束,则称其 为n次超静定结构。 几次超静定?
§9-1超静定结构的概念、超静定次数的确定
§9-1 超静定结构的概念
• 超静定结构的几何特征和静力特征
几何特征:有多余约束的几何不变体系。 静力特征:仅由静力平衡方程不能求出所有内力和反力。 与静定结构相比的优点:内力分布均匀;能够内力重分布,抵抗破坏的能
超静定结构的计算

第二节力法
这样,原结构的内力计算问题就转变为基本结构在多余未知 力多的X余基1未本及知未荷力知载量Xq共1就,同是其作多余用余的下未计的知算内力就力。迎计刃算而问解题了了。。因只此要,设力法法求计出算
(二)力法方程 基本结构在月端不再受约束限制,因此在荷载y作用下月点
竖1小因5向-不此10位同基(d移而本)]向异结。下 , 构显由 的[然图于 变在15形X二-11位是者0(c移取共)]状代,同态了在作应被X用1与拆下作原去B用点结约下竖构束月向完对点位全原竖移一结向将致构位随,的移X即作向1的B用上点大,[图 的余方竖未向向知产位力生移X的1位△共移1同必应作须与用为原下零结,,构在也在拆就X除是1方约说向束基的处本位沿结移多构相余在等未已。知知即力荷X:载1作与用多 △1=0 这就是基本结构应满足的变形谐调条件,又称位移条件。
用结所构示11、上。产则12生△、的11、1沿3 △表X11示2方、单向△位的13可力相以X应1表=位1示移, X为,2=如1,X图3=151-分12别(c作),(用d)于, (基c),本(d) 11 11X1、12 12 X 2、13 13 X 3,上面儿何条件(15-2)
中的第一式可以写为:
下一页 返回
第一节超静定结构基本知识
(1)去掉支座处的一根链杆或者切断一根链杆,相当于去掉一 个约束,如图15-3 (a),(b)所示的两个结构都多出来一个约束, 都是一次超静定结构。
(2)去掉一个铰支座或内部的一个单铰,相当于去掉两个约束。 图15-4 (a), (b)所示的两个刚架都多出来两个约束,都是二次 超静定结构。
上一页 下一页 返回
第二节力法
用力法计算超静定结构在支座移动所引起的内力时,其基本 原理和解题步骤与荷载作用的情况相同,只是力法方程中自 由项的计算有所不同,它表示基本结构由于支座移动在多余 约第束五处节沿“多支余 座未 移知 动力 时方 静向 定所 结引 构起 的的 位位 移移 计算△”iC,所可述用方第法十求四得帝。 此外,还应注意力法方程等号右侧为基本结构在拆除约束处 沿多余未知力方向的位移条件,也就是原结构在多余未知力 方正向值的,已否知则实 取际 负位 值移 。值△i,当△i与多余未知力方向一致时取
第五章力法超静定结构概述(PDF)

第五章 力 法§5—1 超静定结构概述超静定结构是工程实际中常用的一类结构,前已述及,超静定结构的反力和内力只凭静力平衡条件是无法确定的,或者是不能全部确定的。
例如图5—1a所示的连续梁,它的水平反虽可由静力平衡条件求出,但其竖向反力只凭静力平衡条件就无法确定,因此也就不能进一步求出其全部内力。
又如图5—1b所示的加劲梁,虽然它的反力可由静力平衡条件求得,但却不能确定杆件的内力。
因此,这两个结构都是超静定结构。
分析以上两个结构的几何组成,可知它们都具有多余约束。
多余约束上所发生的内力称为多余未知力。
如图5—1a所示的连续梁中,可认为B支座链杆是多余约束,其多余未知力(图5—1c)。
又如图5—1b所示的加劲梁,可认为其中的BD杆是多余约束,其多余为FBy未知力为该杆的轴力F(图5—d)。
超静定结构在去掉多余约束后,就变成为静定结构。
N常见的超静定结构类型有:超静定梁(图5—2),超静定刚架(图5—3),超静定桁架(图5—4),超静定拱(图5—5),超静定组合结构(图5—6)和铰接排架(图5—7)等。
超静定结构最基本的计算方法有两种,即力法和位移法,此外还有各种派生出来的方法,如力矩分配法就是由位移法派生出来的一种方法。
这些计算方法将在本章和以下两章中分别介绍。
§5—2 力法的基本概念在掌握静定结构内力和位移计算的基础上,下面来寻求分析超静定结构的方法。
先举一个简单的例子加以阐明。
设有图5—8a 所示一端固定另一端铰支的梁,它是具有一个多余约束的超静定结构。
如果以右支座链杆作为多余约束,则去掉该约束后,得到一个静定结构,该静定结构称为力法的基本结构。
在基本结构上,若以多余未知力代替所去约束的作用,并将原有荷载q 作用上去,则得到如图5—8b 所示的同时受荷载和多余未知力作用的体系。
该体系称为力法的基本体系。
在基本体系上的原有荷载是已知的,而多余力是未知的。
因此,只要能设法先求出多余未知力,则原结构的计算问题即可在静定的基本体系上来解决。
材料力学 第14章 超静定结构

39
目录
例题 14-4
M1 图
M F图
1 a 2 2a a3 ⋅ = δ11 = EI 2 3 3EI ∆1F 1 a 2 qa 2 qa 4 ⋅ =− 2 8 = − 16EI EI
40
目录
例题 14-4
由力法正则方程δ11 X1 + ∆1F = 0得: 3qa X1 = 16 3qa ∴X C = ,YC = 0,M C = 0 16 qa 3qa X A (→) = X B (←) = ,YA = YB = (↑) 16 2 qa 2 M A (顺时针) = M B (逆时针) = 16
25
目录
对 称 结 构
对称结构的对称变形
26
目录
对 称 结 构
对称结构的对称变形
27
目录
对 称 结 构 对称结构的对称变形
28
目录
对 称 结 构
对称结构的对称变形
29
目录
对称结构,反对称载荷 对称结构,
判断载荷反对称的方法: 判断载荷反对称的方法:
将对称面(轴)一侧的载荷反向,若变为 将对称面( 一侧的载荷反向, 对称的,则原来的载荷便是反对称的。 对称的,则原来的载荷便是反对称的。
24
目录
对 称 结 构
对称结构的对称变形- 对称结构的对称变形-对称结构在对称载 荷作用下: 荷作用下:
约束力、内力分量以及变形和位移都是对称的; 约束力、内力分量以及变形和位移都是对称的; 反对称的内力分量必为零; 反对称的内力分量必为零; 某些对称分量也可等于零或变为已知。 某些对称分量也可等于零或变为已知
34
目录
对称结构,反对称载荷 对称结构,
结构的超静定次数.

例7-4-2
计算图示桁架的内力,各杆EA=常数。
解:1)力法基本体系,基本方程:d11x1+ D1P
x2
x3
x4
x3
x1 x2
x5
x6
x4
x5 x7
x6
§7-2
力法基本概念
一、力法基本思路 有多余约束是超静定与静定的根本区别,因此,解决多余约束中的 多余约束力是解超静定的关键。
D1=0 D11=d11x1
D11 + D1P =0 d11x1+ D1P =0
1、力法基本未知量 结构的多余约束中产生的多余未知力(简称多余力)。 2、力法基本体系 力法基本结构,是原结构拆除多余约束后得到的静定结构;力法基 本体系,是原结构拆除多余约束后得到的基本结构在荷载(原有各种 因素)和多余力共同作用的体系。 3、力法基本方程 力法基本体系在多余力位置及方向与原结构位移一致的条件。 方程中的系数和自由项均是静定结构的位移计算问题,显然,超静 定转化为静定问题。
(a)
d11x1+ d12x2+ D1P + D1D =0
d21x1+ d22x2+ D2P + D2D = - DB
有支座移动因素时,力法方程的右边项可能不为零。
(a)
该式为两次超静定结构在荷载和支座位移共同作用下的力法方程。
根据位移互等定理,有:d12=d21
二、力法典型方程 n次超静定结构的力法方程: d11x1+ d12x2+…d1ixi+ d1jxj+… d1nxn+ D1P + D1D= D1 d21x1+ d22x2+…d2ixi+ d2jxj+… d2nxn+ D2P + D2D= D2 … … di1x1+ di2x2 +…diixi + dijxj+ …dinxn + DiP + DiD = Di dj1x1+ dj2x2 +…djixi + djjxj+… djnxn + DjP + DjD = Dj … … dn1x1+dn2x2+…dnixi+ dnjxj+… dnnxn+ DnP + DnD= Dn 系数、自由项的物理意义: dii —基本结构在xi= 1作用下,沿xi 方向的位移; dij —基本结构在xj= 1作用下,沿xi 方向的位移; DiP —基本结构在荷载作用下,沿xi 方向的位移; DiD —基本结构在支座移动下,沿xi 方向的位移; Di —基本结构沿xi 方向的总位移=原结构在xi 方向上的实际位 移。
超静定

l A
1)解除B端约束,建立相当系统 解除B端约束, 2)由正则方程 d11 X 1 + D 1P = 0 3)求系数和常数项
4l 4l 3 d11 = 3EI D 1F - Fl 3 = 2 EI
F X1
F
l 1
4)带入正则方程求解 3 X1 = F 8 4)做弯矩图
M = M 1 ?X 1 MF
例1, 试求图示梁的约束反力,设EI为常数. 试求图示梁的约束反力, EI为常数 为常数.
q A l B
1)解除B端约束,建立相当系统 解除B端约束, 2)由正则方程 d11 X 1 + D 1P = 0 3)求系数和常数项
骣 1 骣 鼢2 1 l3 珑l l = d11 = 珑 l鼢 桫 桫 EI 珑 鼢3 2 3EI D 1F
二,正则方程的建立
1,一次超静定问题的正则方程 力法求解静不定问题的关键——建立正则方程. 力法求解静不定问题的关键——建立正则方程.下 建立正则方程 面通过一例说明建立正则方程的步骤. 面通过一例说明建立正则方程的步骤. 图为车削工件安有尾顶针的简化模型. 图为车削工件安有尾顶针的简化模型.
力法求解过程如下: 力法求解过程如下:
第二节
用力法解超静定结构
一,力法
力法——以多余约束力为基本未知量 力法——以多余约束力为基本未知量,将变形或位移表 为基本未知量, 示为未知力的函数,通过变形协调条件作为补充方程求 示为未知力的函数, 来解未知约束力,这种方法称为力法 又叫柔度法 力法, 柔度法. 来解未知约束力,这种方法称为力法,又叫柔度法. 力法的基本思路: 力法的基本思路: 1,结构静定化 2,在未知力处 3,变形条件 4,正则方程 解除多余约束 建立 借助莫尔积分 解线性方程 静定基与相当系统 变形协调条件 补充方程(正则方程) 补充方程(正则方程) 未知力
超静定结构总论课件

实例分析
赵州桥
中国著名的古代石拱桥,采用弹性连接 超静定结构,具有较好的抗震性能。
VS
金门大桥
美国著名的钢斜拉桥,采用平衡超静定结 构,具有较高的承载能力。
超静定结构的优缺点及应用
优点
稳定性强
超静定结构由于有多余约束,可以提 供额外的稳定性,使得结构在受到外 力作用时不易发生过大变形。
承载能力高
和计算能力,设计过程相对复杂。
维护困难 超静定结构的维护和检修需要专业的 技术和设备支持,维护成本和维护难
度相对较大。
成本高 由于超静定结构的构造复杂,需要更 多的材料和施工成本,因此其成本相 对较高。
延性较差 超静定结构的延性相对较差,在地震 等突然作用下容易发生脆性破坏。
应用领域
桥梁工程
超静定结构在桥梁工程中应用广泛,如连续梁桥、 拱桥等。
THANKS
感谢观看
各杆件间通过弹性连接传递力和变形, 具有较好的抗震性能。
按受力特性分 类
平衡超静定结构
结构在受力状态下能保持平衡状态,如斜拉桥。
稳定超静定结构
结构在受力状态下需要依靠自身稳定性保持平衡,如拱桥。
按材料特性分 类
钢超静定结构
采用钢材制作,具有较高的承载能力和塑性变形能力。
混凝土超静定结构
采用混凝土制作,具有较好的抗压能力和耐久性。
工程应用进展
大型工程应用
超静定结构在大型工程中得到了广泛应用,如大型桥梁、高层建筑 等,其优良的性能和稳定性得到了充分验证。
新型超静定结构体系
随着研究的深入,出现了多种新型超静定结构体系,如预应力超静 定结构、杂交超静定结构等,满足了多样化的工程需求。
跨学科应用
超静定结构在跨学科领域也得到了应用,如生物医学、航天航空等, 展现了广泛的应用前景和发展潜力。
超静定结构的超静定次数

超静定结构的超静定次数超静定结构是指在受力平衡条件下,由于约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。
超静定结构的超静定次数是指约束条件数量与自由度数量之差。
一、超静定结构的特点超静定结构具有以下特点:1. 约束条件数量大于自由度数量:超静定结构的约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。
这导致了结构的设计和分析变得更加困难。
2. 结构具有较高的刚度:由于超静定结构的约束条件数量较多,结构具有较高的刚度。
这使得超静定结构在承受荷载时能够更好地保持形状稳定性。
3. 结构能够承受更大的荷载:超静定结构由于具有较高的刚度,能够承受更大的荷载。
这使得超静定结构在工程实践中得到广泛应用。
二、超静定结构的应用超静定结构在工程实践中有着广泛的应用,主要包括以下几个方面:1. 桥梁工程:超静定结构在桥梁工程中得到了广泛应用。
由于桥梁需要承受大量的荷载,超静定结构能够提供更高的刚度和稳定性,保证桥梁在使用过程中不发生塌陷或变形。
2. 建筑结构:超静定结构在建筑结构中也有重要的应用。
例如,高层建筑的框架结构通常采用超静定结构设计,以提高结构的稳定性和抗震性能。
3. 机械设备:超静定结构在机械设备中也有广泛的应用。
例如,汽车的悬挂系统和起重机的支撑结构都是超静定结构,能够提供更高的稳定性和承载能力。
三、超静定结构的分析方法超静定结构的分析方法主要包括以下几个步骤:1. 定义自由度和约束条件:首先确定结构的自由度和约束条件。
自由度是指结构中可以独立变形的数量,约束条件是指结构中限制自由度的条件。
2. 建立平衡方程:根据结构的受力平衡条件,建立结构的平衡方程。
平衡方程是超静定结构分析的基础,通过平衡方程可以求解结构的受力状态。
3. 引入支座反力:由于超静定结构的约束条件数量大于自由度数量,结构中存在未知的支座反力。
通过引入支座反力,可以将超静定结构转化为静定结构进行分析。
4. 求解支座反力:利用平衡方程和约束条件,求解支座反力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 8 (b)
图 8 (c)
这部分是后面力法的基础。大家要熟练掌握。如果给出一个超静定结构,要会判断结构的超 静定次数。
3
超静定结构的概念和超静定结构次数的确定
1. 超静定结构的概念 从几何组成分析的角度来看,结构可以分为 静定结构:几何不变,无多余约束。 超静定结构:几何不变,有多余约束。 例: 如图 1 所示,有一个多余约束:可去掉任一根支座链杆。
图1 支座反力和内力仅由静力平衡条件无法全部唯一确定的、几何不变但有多余约束的体系, 就是超静定结构 多余约束 多余约束的选取方案并不一定是唯一的,但是总数目是不变的。 多余未知力(多余力) 多余约束中产生的约束力是多余力,多余力的大小不能由静力平衡条件确定。 2.超静定次数的确定 多余约束的数目就是超静定次数 判断方法:去掉多余约束使原结构变成静定结构的方法。 ⚫ 去掉一根支座链杆或切断一根链杆:去掉一个约束。 ⚫ 去掉一个铰支座或联结两钢片的单铰:去掉两个约束。如图 2 所示。
图2
1
⚫ 将固定端改成铰支座或将连续杆件上的刚性联结改成单铰联结:去掉一个约束。如 图 3 中的固定端改为图 4 中的铰支座;图 5 中的刚性结点改为图 6 中的铰结点。
图3
图4
图5
图6
⚫ 去掉一个固定端或将刚性联结切断如图 7 所示:去掉三个约束。
图7
在确定超静定次数时,还应注意以下两点: (1)不要把原结构拆成一个几何可变体系。所以要特别注意非多余约束不能去掉,比如 (a)中的水平链杆支座不能去掉。 (2) 要把所有多余约束全部去掉。如 图 8(a)所示结构,如果只去掉一根水平链杆支座 得到如图 8 (b)所示结构,则其中的闭合框仍具有三个多余约束,必须把闭合框再切开一个 截面,如图 8 (c)所示才成为静定结构,所以故原结构共有四个多余约束,是四次超静定。