基于-Fisher准则线性分类器设计

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Fisher准则线性分类器设计

专业:电子信息工程

学生:子龙

学号:201316040117

一、实验类型

设计型:线性分类器设计(Fisher 准则)

二、实验目的

本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher 准则方法确定最佳线性分界面方法的原理,以及Lagrande 乘子求解的原理。

三、实验条件

matlab 软件

四、实验原理

线性判别函数的一般形式可表示成 0)(w X W X g T

+= 其中

⎪⎪⎪⎭⎫

⎝⎛=d x x X Λ1⎪⎪⎪⎪⎪⎭

⎝⎛=d w w w W Λ21

根据Fisher 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类样本投影尽可能密集的要求,用以评价投影方向W 的函数为:

2

2

2122

1~~)~~()(S S m m W J F +-= )(211

*m m S W W -=-

上面的公式是使用Fisher 准则求最佳法线向量的解,该式比较重要。另外,该式这种

形式的运算,我们称为线性变换,其中21m m -式一个向量,1

-W S 是W S 的逆矩阵,如21m m -是d 维,W S 和1-W S 都是d ×d 维,得到的*

W 也是一个d 维的向量。

向量*

W 就是使Fisher 准则函数)(W J F 达极大值的解,也就是按Fisher 准则将d 维X 空间投影到一维Y 空间的最佳投影方向,该向量*

W 的各分量值是对原d 维特征向量求加权和的权值。

以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fisher 准则函数极大的d 维向量*

W 的计算方法,但是判别函数中的另一项0W 尚未确定,一般可采用以下几种方法确定0W 如

2

~~2

10m m W +-= 或者 m N N m N m N W ~~~2

12

2110=++-

= 或当1)(ωp 与2)(ωp 已知时可用

[]⎥⎦⎤⎢⎣⎡-+-+=2)(/)(ln 2

~~212

1210N N p p m m W ωω

……

当W 0确定之后,则可按以下规则分类,

2

010ωω∈→->∈→->X w X W X w X W T

T

使用Fisher 准则方法确定最佳线性分界面的方法是一个著名的方法,尽管提出该方法的时间比较早,仍见有人使用。

五、实验容

已知有两类数据1ω和2ω二者的概率已知1)(ωp =0.6,2)(ωp =0.4。

1ω中数据点的坐标对应一一如下:

数据:

x1 =

0.2331 1.5207 0.6499 0.7757 1.0524 1.1974 0.2908 0.2518 0.6682 0.5622 0.9023 0.1333 -0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315 0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099 x2 =

2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.8340

1.8704

2.2948 1.7714 2.3939 1.5648 1.9329

2.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.2604 x3 =

0.5338 0.8514 1.0831 0.4164 1.1176 0.5536

0.6071 0.4439 0.4928 0.5901 1.0927 1.0756

1.0072 0.4272 0.4353 0.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.8784 0.9751 0.7840 0.4158 1.0315 0.7533 0.9548 数据点的对应的三维坐标为

2

x1 =

1.4010 1.2301

2.0814 1.1655 1.3740 1.1829

1.7632 1.9739

2.4152 2.5890 2.8472 1.9539 1.2500 1.2864 1.2614 2.0071 2.1831 1.7909

1.3322 1.1466 1.7087 1.5920

2.9353 1.4664

2.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414

x2 =

1.0298 0.9611 0.9154 1.4901 0.8200 0.9399 1.1405 1.0678 0.8050 1.2889 1.4601 1.4334 0.7091 1.2942 1.3744 0.9387 1.2266 1.1833

0.8798 0.5592 0.5150 0.9983 0.9120 0.7126

1.2833 1.1029 1.2680 0.7140 1.2446 1.3392 1.1808 0.5503 1.4708 1.1435 0.7679 1.1288 x3 =

0.6210 1.3656 0.5498 0.6708 0.8932 1.4342

0.9508 0.7324 0.5784 1.4943 1.0915 0.7644

1.2159 1.3049 1.1408 0.9398 0.6197 0.6603 1.3928 1.4084 0.6909 0.8400 0.5381 1.3729 0.7731 0.7319 1.3439 0.8142 0.9586 0.7379 0.7548 0.7393 0.6739 0.8651 1.3699 1.1458

数据的样本点分布如下图:

相关文档
最新文档