《生物技术大实验》试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011级生物化学与分子生物学专业硕士研究生
《生物技术大实验》期末考试
1、请介绍第三代核酸测序技术。
答:
第三代核酸测序技术的基本原理:基于纳米孔的单分子读取技术,英国牛津纳米孔公司成功研发出第三代基因测序技术。该测序技术读取数据更快、有望大大降低测序成本,改变个人医疗的前景。
当前,基因测序工作费时且昂贵,测序时,分子必须进行多次复制(这一步被称为扩增),同时进行荧光示踪标记,这一过程会带来错误,因此,一个基因要被测序多次才能得到值得信赖的结果。此外,购买和操作测序仪器的费用也不菲,目前,测定一个完整的基因组需要上万美元。
在纳米孔测序技术中,DNA分子依靠被称为核酸外切酶的蛋白质以一次一个碱基的速度通过小孔。这个酶能清楚地区分出4个DNA碱基编码:A、C、G、T,也可以检测出该碱基是否被甲基化,一个单孔能在大约70天左右测定一个完整的基因序列。
第三代核酸测序技术优点:纳米孔技术不需要荧光标记物并且很可能不需要进行扩增,能直接并快速“读”出DNA,同时足够廉价,使进行大量重复实验成为可能。纳米孔公司已经研发出包含几百个纳米孔的芯片,该芯片可以用在一台机器上,快速且廉价地给大量DNA进行排序。
基因测序于上世纪70年代由弗雷德-桑格尔发明,他因此获得了诺贝尔奖,第一份人类基因草图于2001年绘制成功,花费了40亿美元。
第三代核酸测序技术展望:纳米孔公司总裁戈登-桑赫纳说,该技术预示了基因测序领域的一个跳跃变化,花费不到1000美元就可以完成一个基因测序。借助该技术,在未来5年内,测序费用将有可能降至500美元。到那时,基因测序可以成为英国国民健康保险制度的一部分,民营保险公司也支付得起。该技术也可以让医生使用DNA 来预测并且预防诸如心脏病、糖尿病等疾病,更加有效地开药。
世界著名基因测序公司Illumina的总裁杰伊-弗拉特利称,10年后,每一个新生婴儿都会被“配备”完整的基因排序,费用不超过5000美元。
2、使用蛋白纯化系统对蛋白进行纯化时,常用哪几种层析方法,请分析它们的原理,比较它们的不同;
答:在分离分析特别是蛋白质分离分析中,层析是相当重要、且相当常见的一种技术,其原理较为复杂,主要有以下几种层析方法:
一、吸附层析
1、吸附柱层析
吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。
2、薄层层析
薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。
3、聚酰胺薄膜层析
聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。
二、离子交换层析
离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离三、凝胶过滤
凝胶过滤又叫分子筛层析,其原因是凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排除在外部。当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。分子筛层析的分离精度不高,常用于分子大小相差悬殊的蛋白质的分离纯化或蛋白质溶液的脱盐。
羟基磷灰石层析基于羟基磷灰石对一些蛋白质的吸附作用进行分离。虽然羟基磷灰石层析应用有限,但其分离成本低,在对某些蛋白质如血浆铜蓝蛋白的分离有独到之处。
离子交换层析是早期蛋白质层析方法之一,目前仍被普遍使用。疏水作用层析、反相作用层析利用组份间疏水性的差异分离各组份。用于疏水作用层析、反相作用层析的固定相表明都带有疏水作用基团。不同的是,疏水作用层析固定相表明的疏水基团疏水性弱,一定盐浓度的蛋白溶液流过固定相时,蛋白质被吸附,然后以低盐水溶液作为洗脱剂进行洗脱。而反相作用层析固定相表明的基团疏水性强,蛋白质水溶液流过固定相时,
蛋白质被吸附,然后用有机溶剂洗脱。疏水作用层析多用于大分子蛋白质的分离纯化。反相作用层析分离蛋白质时,蛋白质容易变性失活。一般用于小分子蛋白质、多肽和氨基酸的分析、分离。亲和层析是一种高效、快速蛋白质分离纯化技术。通常的层析方法都是利用蛋白质理化性质的差异来进行分离的,这种差异往往并不是很大,所以,分离精度不高。亲和层析利用蛋白质分子与某一分子专一可逆结合的生物特性,来选择分离目标蛋白质。亲和层析容量大,分离效率高,且对目标产物的生物活性起到一定的保护作用。
3、大肠杆菌系统表达外源基因必须具备的条件?
答:大肠杆菌表达系统是目前应用最广泛的表达系统,由于待表达的外源基因结构具有多样性,尤其是真核生物基因的结构与大肠杆菌基因结构之间存在较大的差异,因而在构建表达系统时必须具体情况具体分析。一般来说,大肠杆菌系统表达外源基因必须具备的条件:
①优化表达载体的设计。为了提高外源基因的表达效率,在构建表达载体时对决定转录起始的启动子和决定mRNA 翻译的SD序列进行优化。具体方法包括组合强启动子和强终止子;增加SD 序列中与核糖体16S rRNA 互补配对的碱基因序列,使SD 序列中6~8 个碱基与核糖体16S rRNA 的碱基完全配对;根据待表达外源基因的不同情况调整SD 序列与起始密码子ATG 之间的距离及碱基的种类;防止核糖体结合位点附近序列转录后形成“茎环”二级结构。
②提高稀有密码子tRNA 的表达作用。多数密码子具有简并性,而不同基因使用密码子的频率不相同。大肠杆菌基因对某些密码子的使用表现了较大的偏爱性,在几个同义密码中往往只有一个或两个被频繁地使用。如编码Pro 的密码子包括CCG、CCC、CCU 和CCA 等,而其中的表达系统。第一个密码子在大肠杆菌的基因中都高频地出现,而另外三个密码子出现的频率很低。同义密码子使用的频率与细胞内相应的tRNA 的丰度呈正相关,稀有密码子的tRNA在细胞内的丰度很低。在mRNA的翻译过程中,往往会由于外源基因中含有过多的稀有密码子而使细胞内稀有密码子的tRNA供不应求,最终使翻译过程终止或发生移码突变。此时可通过点突变等方法将外源基因中的稀有密码子转换为在受体细胞中高频出现的同义密码子。
③提高外源基因mRNA 的稳定性。大肠杆菌的核酸酶系统能专一性地识别外源DNA或RNA并对其进行降解。对于mRNA 来说,为了保持其在宿主细胞内的稳定性,可采取两种措施,一是尽可能减少核酸外切酶可能对外源基因mRNA的降解,二是改变外源基因mRNA 的结构,使之不易被降解。
④提高外源基因表达产物的稳定性。大肠杆菌中含有多种蛋白水解酶,在外源基因表达产物的诱导下,蛋白水解酶的活性可能会增加。因此,须采用多种措施提高外源蛋白在大肠杆菌细胞内的稳定性。常用的方法包括:将外源基因的表达产物转运到细胞周质或培养基中;选用某些蛋白水解酶缺陷株作为受体菌;对外源蛋白中水解酶敏感的序列进行修饰或改造;在表达外源蛋白的同时,表达外源蛋白的稳定因子。
⑤优化发酵过程。由于细菌在100L 以上的发酵罐中的生长代谢活动与实验室条件