最优化方法练习题答案修改建议版本删减版
最优化方法练习题答案修改建议版本--删减版
最优化⽅法练习题答案修改建议版本--删减版练习题⼀1、建⽴优化模型应考虑哪些要素 ?答:决策变量、⽬标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停⽌准则。
min f (x)答:针对⼀般优化模型 s.t. g i x 0,i 1,2,L m ,讨论解的可⾏域 D ,若存在⼀点 X * D ,对 h j x0, j 1,L , p于 X D 均有 f(X *) f(X)则称 X *为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列 X (1),X (2),L ,X (K)L ,满⾜ f(X (K 1)) f (X (K)),则迭代法收敛;收敛的停⽌准则有等。
练习题⼆1、某公司看中了例 2.1中⼚家所拥有的 3种资源 R 1、R2、和R 3,欲出价收购(可能⽤于⽣产附加值更⾼的产品) 的对偶问题)。
如果你是该公司的决策者,对这 3 种资源的收购报价是多少? (该问题称为例 2.1解:确定决策变量对 3种资源报价 y 1,y 2, y 3作为本问题的决策变量。
确定⽬标函数问题的⽬标很清楚——“收购价最⼩” 。
确定约束条件资源的报价⾄少应该⾼于原⽣产产品的利润,这样原⼚家才可能卖。
因此有如下线性规划问题: min w 170y 1 100y 2 150y 35y 1 2y 2 y 3 10 s.t. 2y 1 3y 2 5y 3 18y 1, y 2,y 3 02、研究线性规划的对偶理论和⽅法(包括对偶规划模型形式、对偶理论和对偶单纯形法) 答:略。
3、⽤单纯形法求解下列线性规划问题:x (k 1) x (k)x (k 1)x (k)x (k) min zx1x2x3minz4x2x3x1 x22x 32x12x2 x32(1) s.t. 2x1x2 x3 3x22x 3x 42 x1x34x2x3x 5 5x 1,x 2,x 3 0x i 0(i 1,2, ,5)解:(1)引⼊松弛变量 x 4, x 5,x 6min z x 1 x 2x30*x 40* x 5 0* x 6x 1 x 22x 3 x4=22x 1 x 2 x 3x5=3x6=4x1, x2, x3, x4, x5, x6 0因检验数σ2<0,故确定 x 2 为换⼊⾮基变量,以 x 2的系数列的正分量对应去除常数列,最⼩⽐值所在⾏对应的基变量 x 4 作为换出的基变量因检验数σ3<0,故确定 x 3 为换⼊⾮基变量,以 x 3的系数列的正分量对应去除常数列,最⼩⽐值所在⾏对应的基变量 x 5作为换出的基变量。
最优化方法及其应用课后答案
1 2( ( ⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5 ) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x −x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2 ⎨2 求解得到: ⎨ 45即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 −x 2 + 5 = 015 , 5 ) :最优值为: f(x * ) = 65 ⎪x =⎪⎩ 2 44 48(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
最优化方法习题答案
习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。
(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。
1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。
(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。
①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。
最优化方法练习题答案
练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。
答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。
练习题二1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。
如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。
解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。
确定目标函数 问题的目标很清楚——“收购价最小”。
确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132 i x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
最优化方法(试题+答案)
一、 填空题1.若()()⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=212121312112)(x x x x x x x f ,则=∇)(x f ,=∇)(2x f .2.设f 连续可微且0)(≠∇x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。
3.向量T)3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: .6.以下约束优化问题:)(01)(..)(min 212121≥-==+-==x x x g x x x h t s x x f的K-K-T 条件为:. 7.以下约束优化问题:1..)(min 212221=++=x x t s x x x f的外点罚函数为(取罚参数为μ) .二、证明题(7分+8分)1.设1,2,1,:m i R R g n i =→和m m i R R h ni ,1,:1+=→都是线性函数,证明下面的约束问题:},,1{,0)(},1{,0)(..)(min 1112m m E j x h m I i x g t s x x f j i nk k+=∈==∈≥=∑=是凸规划问题。
2.设R R f →2:连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题:},1{,0}2,1{,0..)(min 11m m E i b x a m I i b x a t s x f i T i i Ti +=∈=-=∈≥-设d 是问题1||||,0,0..)(min ≤∈=∈≥∇d E i d a Ii d a t s d x f Ti Ti T的解,求证:d 是f 在x 处的一个可行方向。
三、计算题(每小题12分)1.取初始点T x )1,1()0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题(迭代2步):22212)(m in x x x f +=2.采用精确搜索的BFGS 算法求解下面的无约束问题:21222121)(min x x x x x f -+=3.用有效集法求解下面的二次规划问题:.0,001..42)(min 2121212221≥≥≥+----+=x x x x t s x x x x x f4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0()0(=x,计算到)2(x 即可):.0,033..221)(min 21211222121≥≥≤+-+-=x x x x t s x x x x x x f参考答案一、填空题 1. ⎪⎪⎭⎫⎝⎛++++3421242121x x x x ⎪⎪⎭⎫⎝⎛4224 2. 0)(<∇d x f T3. T)0,1,2(-,T)1,0,3(-(答案不唯一)。
最优化计算方法课后习题答案----高等教育出社。施光燕
习题二包括题目: P36页 5(1)(4)5(4)习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+- 其中,111011126.3096,247.3380T T TH δγγγγγ===111.1621 1.39451.3945 1.6734Tδδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776dH f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535xx d⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T TH H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α=所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。
最优化方法试题及答案
最优化方法试题及答案一、选择题1. 下列哪项不是最优化方法的特点?A. 目标性B. 可行性C. 多样性D. 随机性答案:D2. 在最优化问题中,约束条件的作用是什么?A. 限制解的可行性B. 增加问题的复杂性C. 提供额外的信息D. 以上都是答案:A3. 线性规划问题中,目标函数与约束条件之间的关系是什么?A. 无关B. 相等C. 线性D. 非线性答案:C二、简答题1. 简述最优化问题的基本构成要素。
答案:最优化问题的基本构成要素包括目标函数、决策变量、约束条件和解的可行性。
目标函数是衡量最优化问题解的质量的函数,决策变量是问题中需要确定的参数,约束条件是对决策变量的限制,解的可行性是指解必须满足所有约束条件。
2. 什么是局部最优解和全局最优解?请举例说明。
答案:局部最优解是指在问题的邻域内没有其他解比当前解更优的解,而全局最优解是指在整个解空间中最优的解。
例如,在山峰攀登问题中,局部最优解可能是到达了一个小山丘的顶部,而全局最优解是到达了最高峰的顶部。
三、计算题1. 假设一个农民有一块矩形土地,长为100米,宽为80米,他想在这块土地上建一个矩形的养鸡场,但只能沿着土地的长边布置。
如果养鸡场的一边必须靠在土地的长边上,另一边与土地的宽边平行,求养鸡场的最大面积。
答案:为了使养鸡场的面积最大,养鸡场的一边应该靠在土地的宽边上,另一边与土地的长边平行。
这样,养鸡场的长将是80米,宽将是100米,所以最大面积为80米 * 100米 = 8000平方米。
2. 一个工厂需要生产三种产品A、B和C,每种产品都需要使用机器X 和机器Y。
生产一个单位的产品A需要机器X工作2小时和机器Y工作1小时;产品B需要机器X工作3小时和机器Y工作2小时;产品C需要机器X工作1小时和机器Y工作3小时。
工厂每天有机器X总共300小时和机器Y总共200小时的使用时间。
如果工厂每天需要生产至少100单位的产品A,50单位的产品B和20单位的产品C,请问工厂应该如何安排生产以最大化产品的总产量?答案:设生产产品A的单位数为x,产品B的单位数为y,产品C的单位数为z。
最优化计算方法课后习题答案解析
习题二包括题目: P36页 5〔1〕〔4〕 5〔4〕习题三包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下 5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解: (1)(4,6)T x=-,由题意得∴(1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴(1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭∴(1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15〔1〕解如下15. 用DFP 方法求以下问题的极小点〔1〕22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法一样2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x x δ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭其中,111011126.3096,247.3380T T TH δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以 令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599x x δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=所以 令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停顿 (3)(1,1)T x =-即为最优解。
最优化计算方法课后习题答案----高等教育出版社。施光燕
习题二包括题目:P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1)1(1)(2)的解如下3题的解如下5,6题14题解如下14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T-处的牛顿方向。
解:已知 (1)(4,6)T x=-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min 353x x x x x x ++++解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x xδ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+-其中,111011126.3096,247.3380T T TH δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用 (1)(1)()0df x d d αα+=,求得 10.5727α=-所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ=220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11x x d ⎛⎫=+=⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止 (3)(1,1)T x =-即为最优解。
最优化理论试题及答案
最优化理论试题及答案一、单项选择题1. 以下哪个函数是凸函数?A. f(x) = x^2B. f(x) = -x^2C. f(x) = x^3D. f(x) = e^x答案:A2. 线性规划问题的基本解是:A. 基本可行解B. 可行解C. 基本解D. 基本最优解答案:A3. 单纯形法中,如果目标函数的最优值是无界的,则对应的解是:A. 无解B. 可行解C. 基本可行解D. 基本最优解答案:A4. 在拉格朗日乘数法中,拉格朗日函数是:A. 目标函数和约束条件的乘积B. 目标函数和约束条件的和C. 目标函数和约束条件的差D. 目标函数和约束条件的商答案:B5. 以下哪个算法用于解决非线性规划问题?A. 单纯形法B. 内点法C. 匈牙利法D. 动态规划答案:B二、多项选择题1. 以下哪些条件是凸优化问题的必要条件?A. 目标函数是凸函数B. 所有约束条件是凸集C. 目标函数是凹函数D. 所有约束条件是凹集答案:A, B2. 在线性规划中,以下哪些是可行域的性质?A. 非空B. 凸集C. 闭集D. 有界答案:A, B, C3. 以下哪些方法可以用于解决整数规划问题?A. 分支定界法B. 割平面法C. 单纯形法D. 动态规划答案:A, B, D4. 以下哪些是拉格朗日乘数法的用途?A. 寻找局部最优解B. 寻找全局最优解C. 确定约束条件的活跃性D. 确定目标函数的梯度答案:A, C5. 以下哪些是动态规划的基本要素?A. 状态B. 决策C. 阶段D. 策略答案:A, B, C三、填空题1. 一个函数f(x)是凸函数,当且仅当对于任意的x1, x2和任意的λ∈[0,1],有f(λx1 + (1-λ)x2) ≤ λf(x1) + (1-λ)f(x2)。
2. 线性规划问题的标准形式是:最大化或最小化目标函数z = c^T x,满足约束条件Ax ≤ b和x ≥ 0。
3. 单纯形法的基本思想是通过不断地从一个基本可行解移动到另一个基本可行解,直到找到最优解。
最优化方法试卷及答案5套.docx
最优化⽅法试卷及答案5套.docx《最优化⽅法》1⼀、填空题:1. _______________________________________________________ 最优化问题的数学模型⼀般为:_____________________________________________ ,其中___________ 称为⽬标函数,___________ 称为约束函数,可⾏域D可以表⽰为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。
2.设f(x)= 2⽄+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿⽅向d的⼀阶⽅向导数为___________ ,⼏何意义为_____________________________________ ,⼆阶⽅向导数为____________________ ,⼏何意义为_____________________________3.设严格凸⼆次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中⼦(兀)为严格凸函数,D 是凸集)的最优解是唯⼀的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可⾏点,若在元处 d 满⾜巧(计<0,VC,(元)(可则d 是元处的可⾏下降⽅向。
最优化方法 第二版 孙文瑜 部分课后答案
0 的边界点;
2. 考虑下述约束最优化问题
min x1
s.t.
x21 + (x2 − 2)2 x21 1,
3,
画出问题的可行域和目标函数的等位线,并由此确定问题的所有局部最优解和全局最优解.
解: 可行域和等位线如下
1
x2
(1,2 2)
( 3,2)
(0,2)
3 1
(1,2 2)
1 3 x1
全等局位最线优:解f (x:1)x1==k;−√局3部, x最2 =优2解. :x1
T = {x|f (x) α}
为函数 f (x) 关于实数 α 的水平集. 证明对任意实数 α,集合 T 是凸集. 证: 对于 ∀x1, x2 ∈ T ,根据 T 的定义则有 f (x1) α, f (x2) α. 由于 D 是凸集,则对于 ∀λ ∈ [0, 1],必 有
λx1 + (1 − λ)x2 ∈ D 又由于 f (x) 是 D 上的凸函数,则有
f (λx∗ + (1 − λ)y) λf (x∗) + (1 − λ)f (y) λf (x∗) + (1 − λ)f (x∗) = f (x∗)
5
这表明在 x∗ 的任意小的邻域内都存在函数值小于 f (x∗) 的可行点,这与 x∗ 是局部最优解相矛盾,则 x∗ 是一个全局最优解. 再证 x∗ 是唯一的:由于目标函数是严格凸的,设 x∗ ̸= y∗ 都是全局最优解,则 f (x∗) = f (y∗). 由严格凸 函数的定义,而 ∀λ ∈ (0, 1),有
λx1 + (1 − λ)y1 + λx2 + (1 − λ)y2 = λ(x1 + x2) + (1 − λ)(y1 + y2) λ+1−λ=1
最优化计算方法课后习题集答案解析
解:取 , 时,DFP法的第一步与最速下降法相同
, ,
,
以下作第二次迭代
,
其中,
,
所以
令 , 利用 ,求得
所以 ,
以下作第三次迭代
,
,
所以
令 , 利用 ,求得
所以 , 因为 ,于是停止
即为最优解。
习题四
包括题目: P95页 3;4;8;9(1);12选做;13选做
3题解如下
3.考虑问题 ,其中
X1,x2,x3≥0 (3)
求出点(1,1,0)处的一个下降可行方向.
解:首先检查在点(1,1,0)处哪些约束为有效约束。检查易知(1),X3≥0为有效约束。设所求可行方向d=(d1,d2,d3)T。根据可行方向d的定义,应存在a>0,使对∀t∈(0,a)能有
X+td=(1+td1,1+td2,0+td3)T
(1)
s.t.
(2)
s.t.
(1)解:非线性规划的K-T条件如下:
(1)
(2)
(3)
再加上约束条件 (4)
为求出满足(1)~(4)式的解,分情况考虑:
①若(4)式等号不成立,即 ,那么由(2)式得 ,将 代入(1)式解得 , ,所得值不满足 的条件,故舍去。
②若(4)式等号成立,由(1)式可以解得 , ,代入(4)式有:
JBi
1
2
3
4
5
6
7
8
9
di0
1
1
0
-5/6
-1/6
1
10/6
4
0
0
38/6
2
0
1
-9/6
最优化方法试卷及答案5套【整理版】
《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中___________称为目标函数,___________称为约束函数,可行域D 可以表示为_____________________________,若______________________________,称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。
2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶方向导数为___________________,几何意义为____________________________________________________________。
3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。
4.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。
最优化考试题及答案
最优化考试题及答案一、单项选择题(每题2分,共10题,满分20分)1. 最优化问题中,目标函数表示的是:A. 需要最小化或最大化的量B. 约束条件C. 决策变量D. 算法步骤答案:A2. 在线性规划问题中,以下哪项不是基本解?A. 基本可行解B. 非基本可行解C. 基本解D. 退化解答案:B3. 单纯形法中,如果目标函数的某一项系数为负,则该项对应的变量:A. 必须取非负值B. 必须取正值C. 可以取任意值D. 必须取零答案:D4. 以下哪个算法不是用于解决整数规划问题?A. 分支定界法B. 动态规划C. 单纯形法D. 割平面法答案:C5. 在非线性规划中,以下哪个条件是局部最优解的必要条件?A. 目标函数的梯度为零B. 目标函数的Hessian矩阵正定C. 目标函数的Hessian矩阵负定D. 目标函数的Hessian矩阵半正定答案:A6. 以下哪个算法是用于解决动态规划问题的?A. 梯度下降法B. 牛顿法C. 贝尔曼方程D. 遗传算法答案:C7. 在多目标优化问题中,以下哪个概念用于描述解的优劣?A. 可行解B. 帕累托最优解C. 基本解D. 退化解答案:B8. 以下哪个算法是用于解决大规模最优化问题的?A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 内点法答案:D9. 在约束优化问题中,拉格朗日乘数法用于:A. 寻找最优解B. 寻找可行解C. 寻找鞍点D. 寻找局部最小值答案:A10. 以下哪个算法是用于解决组合优化问题的?A. 模拟退火算法B. 遗传算法C. 粒子群优化算法D. 所有上述算法答案:D二、多项选择题(每题3分,共5题,满分15分)1. 在最优化问题中,以下哪些是常见的目标函数?A. 最小化成本B. 最大化利润C. 最小化时间D. 最大化面积答案:ABCD2. 以下哪些是线性规划问题的特点?A. 目标函数是线性的B. 约束条件是线性的C. 目标函数是二次的D. 约束条件是非线性的答案:AB3. 在非线性规划问题中,以下哪些是全局最优解的必要条件?A. 目标函数的梯度为零B. 目标函数的Hessian矩阵正定C. 目标函数的Hessian矩阵负定D. 目标函数的Hessian矩阵半正定答案:AB4. 以下哪些算法是用于解决多目标优化问题的?A. 权重法B. 帕累托前沿法C. 目标规划法D. 动态规划法答案:ABC5. 以下哪些是组合优化问题的特点?A. 决策变量是离散的B. 目标函数是线性的C. 约束条件是非线性的D. 问题规模通常很大答案:ACD三、简答题(每题5分,共2题,满分10分)1. 请简述拉格朗日乘数法在最优化问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。
答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x xε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。
练习题二1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。
如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。
解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。
确定目标函数 问题的目标很清楚——“收购价最小”。
确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min 53243232132 i x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
因检验数σ3<0,故确定x 3为换入非基变量,以x 3的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 5作为换出的基变量。
因检验数σj >0,表明已求得最优解:*(0,8/3,1/3,0,0,11/3)X =,去除添加的松弛变量,原问题的最优解为:*(0,8/3,1/3)X =。
(2)根据题意选取x 1,x 4,x 5,为基变量:⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min53243232132 i x x x x x x x x x x t s x x z i因检验数σ2<0最小,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
因检验数σ3<0最小,故确定x 3为换入非基变量,以x 1的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 5作为换出的基变量。
因检验数σj >0,表明已求得最优解:*(9,4,1,0,0)X =。
8、某地区有A 、B 、C 三个化肥厂,供应本地甲、乙、丙、丁四个产粮区。
已知各化肥厂可供应化肥的数量和各产粮区对化肥的需要量,以及各厂到各区每吨化肥的运价如表2-28所示。
试制定一个使总运费最少的化肥调拨方案。
表2- 1解:设A 、B 、C 三个化肥厂为A 1、A 2、A 3,甲、乙、丙、丁四个产粮区为B 1、B 2、B 3、B 4;c ij 为由A i 运化肥至B j 的运价,单位是元/吨;x ij 为由A i 运往B j 的化肥数量(i=1,2,3;j=1,2,3,4)单位是吨;z 表示总运费,单位为元,依题意问题的数学模型为:3411min ij ij i j z c x ===∑∑112131122232132333142434111213142122232431323334663..3787x x x x x x x x x s t x x x x x x x x x x x x x x x ++=⎧⎪++=⎪⎪++=⎪++=⎨⎪+++=⎪⎪+++=⎪+++=⎩ 该题可以用单纯形法或matlab 自带工具箱命令(linprog )求解。
*9、求解下列不平衡运输问题(各数据表中,方框内的数字为单位价格ij c ,框外右侧的一列数为各发点的供应量i a ,框底下一行数是各收点的需求量j b ):(1) 5 1 7 10 要求收点3的需求必须正好满足。
6 4 6 80 3 2 5 1575 20 50(2) 5 1 0 20 要求收点1的需求必须由发点4供应。
3 2 4 10 7 5 2 15 9 6 0 155 10 15 解答略。
练习题三1、用0.618法求解问题12)(min 30+-=≥t t t t ϕ的近似最优解,已知)(t ϕ的单谷区间为]3,0[,要求最后区间精度0.5ε=。
答:t=0.8115;最小值-0.0886.(调用golds.m 函数) 2、求无约束非线性规划问题min ),,(321x x x f =123222124x x x x -++ 的最优解解一:由极值存在的必要条件求出稳定点:1122f x x ∂=-∂,228f x x ∂=∂,332fx x ∂=∂,则由()0f x ∇=得11x =,20x =,30x = 再用充分条件进行检验:2212f x ∂=∂,2228f x ∂=∂,2232fx ∂=∂,2120f x x ∂=∂∂,2130f x x ∂=∂∂,2230f x x ∂=∂∂ 即2200080002f ⎛⎫⎪∇= ⎪ ⎪⎝⎭为正定矩阵得极小点为T *(1,0,0)x =,最优值为-1。
解二:目标函数改写成min ),,(321x x x f =222123(1)41x x x -++- 易知最优解为(1,0,0),最优值为-1。
3、用最速下降法求解无约束非线性规划问题。
2221212122)(m in x x x x x x X f +++-=其中T x x X ),(21=,给定初始点T X )0,0(0=。
解一:目标函数()f x 的梯度112122()()142()122()()f x x x x f x x x f x x ∂⎡⎤⎢⎥∂++⎡⎤⎢⎥∇==⎢⎥-++∂⎢⎥⎣⎦⎢⎥∂⎣⎦(0)1()1f X⎡⎤∇=⎢⎥-⎣⎦令搜索方向(1)(0)1()1d f X -⎡⎤=-∇=⎢⎥⎣⎦再从(0)X 出发,沿(1)d 方向作一维寻优,令步长变量为λ,最优步长为1λ,则有(0)(1)0101X d λλλλ--⎡⎤⎡⎤⎡⎤+=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦故(0)(1)2221()()()2()2()2()f x f X d λλλλλλλλλϕλ=+=--+-+-+=-=令'1()220ϕλλ=-=可得11λ= (1)(0)(1)1011011X X d λ--⎡⎤⎡⎤⎡⎤=+=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 求出(1)X 点之后,与上类似地,进行第二次迭代:(1)1()1f X -⎡⎤∇=⎢⎥-⎣⎦ 令(2)(1)1()1d f X ⎡⎤=-∇=⎢⎥⎣⎦令步长变量为λ,最优步长为2λ,则有(1)(2)111111X d λλλλ--⎡⎤⎡⎤⎡⎤+=+=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦ 故(1)(2)2222()()(1)(1)2(1)2(1)(1)(1)521()f x f X d λλλλλλλλλϕλ=+=--++-+-+++=--=令'2()1020ϕλλ=-=可得 215λ= (2)(1)(2)2110.8111 1.25X X d λ--⎡⎤⎡⎤⎡⎤=+=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ (2)0.2()0.2f X ⎡⎤∇=⎢⎥-⎣⎦ 此时所达到的精度(2)()0.2828f X ∇≈ 本题最优解11.5X *-⎡⎤=⎢⎥⎣⎦,()1,25f X *=-练习题四1、石油输送管道铺设最优方案的选择问题:考察网络图4-6,设A 为出发地,F 为目的地,B ,C ,D ,E 分别为四个必须建立油泵加压站的地区。
图中的线段表示管道可铺设的位置,线段旁的数字表示铺设这些管线所需的费用。
问如何铺设管道才能使总费用最小?图4- 1解:第五阶段:E1—F 4;E2—F 3;第四阶段:D1—E1 —F 7;D2—E2—F 5;D3—E1—F 5;第三阶段:C1—D1—E1 —F 12;C2—D2—E2—F 10;C3—D2—E2—F 8;C4—D3—E1—F 9; 第二阶段:B1—C2—D2—E2—F 13; B2—C3—D2—E2—F 15; 第一阶段:A —B1—C2—D2—E2—F 17; 最优解:A —B1—C2—D2—E2—F 最优值:172、 用动态规划方法求解非线性规划123123123max ()27,,0f x x x x x x x x x x =++=⎧⎨≥⎩解:1239,9,9x x x ===,最优值为9。
3、用动态规划方法求解非线性规划22112121212max 765..21039,0z x x x s t x x x x x x ⎧=++⎪+≤⎪⎨-≤⎪⎪≥⎩解:用顺序算法阶段:分成两个阶段,且阶段1 、2 分别对应12,x x 。
决策变量:12,x x状态变量:,i i v w 分别为第j 阶段第一、第二约束条件可供分配的右段数值。
1111*22211111111100(,)max {76}min{76,76}x v x w f v w x x v v w w ≤≤≤≤=+=++*111min{,}x v w =22*2*2222122220522222222222205(,)max{5(2,3)}max{5min{7(2)6(2),7(3)6(3)}}x x f v w x f v x w x x v x v x w x w x ≤≤≤≤=+-+=+-+-+++由于2210,9v w ==,2**222222222205(,)(10,9)max{min{33292760,68396621}x f v w f x x x x ≤≤==-+++可解的129.6,0.2x x ==,最优值为702.92。