有杆抽油系统(综合)

合集下载

有杆抽油系统——第2章 抽油杆

有杆抽油系统——第2章 抽油杆

第2章 抽油杆
2.1 抽油杆结构及制造工艺 2.2 特种抽油杆 2.3 抽油杆失效分析 2.4 抽油杆柱附属器具
2.2 特种抽油杆
普通抽油杆的缺点:(发展特种抽油杆的原因) 适应不了深井采油、大泵强采需要 适应不了斜井开采的需要 适应不了高粘油井开采需要 适应不了高腐蚀性油井开采需要 适应不了严重结蜡油井的开采需要
第2章 抽油杆
China University of Petroleum
第2章 抽油杆
抽油杆是抽油设备的重要部件,它将抽油机的运动和 能量传递给井下抽油泵。抽油杆的疲劳强度和使用寿命决 定和影响了整套抽油设备的最大下泵深度和排量。
在抽油过程中,抽油杆柱承受的是不对称循环载荷的 作用,其工作介质为原油、地层水和天然气。抽油杆主要 失效形式为疲劳断裂或腐蚀疲劳断裂。抽油杆的断脱事故 会严重影响原油的生产,增加修井作业费用,提高了原油 的成本。为了提高抽油杆工作的可靠性和使用寿命,国内 外在抽油杆的材料、制造、使用、管理及维护等方面开展 了大量的研究工作,取得了可喜的成果。
70年代初期,美国和加拿大使用的EL I型和EL II型超 高强度抽油杆,已超过60.96万米,失效一直很少。
2.2 特种抽油杆
二、玻璃钢抽油杆
与金属材料相比,玻璃钢制品具有重量轻、抗腐蚀、 疲劳性能好等独特优点,近十几年的开发研究,已成功 地用玻璃钢材料试制成抽油杆,现场使用证明,玻璃钢 杆有很大发展潜力。
的弹性模量为4.96×104MPa,因此玻璃钢抽油杆具有更 好的弹性。
玻璃钢杆比普通杆具有更低的固有频率。普通抽油 杆的工作频率与固有频率之比N/N0<0.5,而玻璃钢杆在 0.50.8之间,玻璃钢杆可以在更接近于系统的固有频率 附近工作,其柱塞冲程将被放大12倍左右,只要合理设 计杆柱能实现超冲程,即Sp/S>1。

有杆抽油系统——第3章 抽油泵讲解

有杆抽油系统——第3章 抽油泵讲解
固定阀打捞装置由打捞体12、导向套13、弹簧14、销子 15、丝锥式打捞头16组成。
3.2 抽油泵的类型与结构
泵筒总成
泵筒是管式泵最主要的零件,其两端带有螺纹,内 表面经热处理,具有良好的耐磨、耐腐蚀性能,并能保 证与柱塞的高精度配合;泵筒接箍一端与泵筒连接并以 额定的上扣扭矩来保证其内孔端面与泵筒端面的密封, 另一端由管螺纹与加长短节连接并密封。
油管接箍直接连接在井下油管下端,起到把管式抽油 泵固定在油管上的作用。
3.2 抽油泵的类型与结构
柱塞总成
柱塞总成由柱塞上部出油阀罩,上下出油阀球与阀座, 柱塞,柱塞下部出油阀罩组成。
按柱塞两端的螺纹形式分为外螺纹柱塞和内螺纹柱塞。 按表面强化工艺分为镀铬柱塞和喷焊柱塞。喷焊柱塞与 镀铬柱塞相比具有表面孔隙率低,耐腐蚀性能好,更耐磨损, 与各种内壁硬化和电镀的泵筒均能匹配使用等优点。
(1) 抽油杆柱和油管柱的弹性伸缩
(2) 气体和充不满的影响 (3) 漏失影响 l
V液
V活


Sp S
(4)Bl
3.1 抽油泵的工作原理及工作特点
(四)提高泵效的措施
(1)选择合理的工作方式 ①选用长冲程、低冲次,减小气体影响,降低悬点载荷,特别 是稠油井。 ②连喷带抽井选用大冲数快速抽汲,以增强诱喷作用。 ③深井抽汲时,S和N的选择一定要避开不利配合区。 (2)确定合理沉没度。 (3)改善泵的结构,提高泵的抗磨、抗腐蚀性能。
3.2 抽油泵的类型与结构
2.杆式抽油泵的结构及特点 杆式泵在下泵时是将整个泵随抽油杆柱下入油管内
的预定位置并固定,所以又称之为“插入式泵”。 按固定装置在泵上的位置和在抽油时泵筒上下移动
还是柱塞移动,可将杆式泵分成定筒式顶部固定杆式泵 图1;定筒式底部固定杆式泵图2;动筒式底部固定杆式 泵图3。

有杆抽油系统的设计

有杆抽油系统的设计

188.5380.61860620.851.0290.9436400.1β=0.6580P s = 2.537400.1019.8ρl =0.95249801.15L p =11787850钢材的密度7850kg/m 3标准状况下压力:P sc =0.101MPa频率系数F c =1.15声波在抽油杆中的速度a=4980m/s泵挂深度的公式为书中(重力加速度:g=9.8计算沉没压力公式如公式以上公式计算沉没压力,β为可自己设定一个β值,则0<Q t <Q b ,此时产量与流压Q omax =Q b +Q c =Q b +JP b /1.8=而Q t =36m 3/d.一:油井产能预测或流1、确定井底流压(9Mpa)Q b =J(P r -P b )=3、确定下泵深度(1178m)ρl =ρw f w +(1-f w )ρo 设计产量(配产):Q x =40m 3/d井口套管压力:P c =0.1Mpa则Q t 下的井底流压可通过下式P wf =P r -Q t /J=2、确定沉没压力(2.537Mpa 泵入口温度:80℃GOR(气油比):40m 3/m 3油管内径:D ti =62mm(2.44Lin)产液指数:J=4.0m 3/(d*Mpa)试井产量:Q t =36m 3/d原油相对密度:0.85地层水相对密度:1.02杆柱的使用系数:SF=0.9有杆抽油系统的设计地层平均压力:P r =18MPa原油饱和压力:P b =8.5MPa含水率:f w =60%油层中部深度:H=1860m56.89ηp =0.750.75Q t =53.3952①D p =38.1s*n=32.5②D p =44.5s*n=24则:1、2符合要求选用D p =38.1mm和D p =44.45mm的泵径(2):柱塞长度选用1.2m,防冲距0.8m。

(3):根据不同的泵径,选择不同的s、n组合应大于油管内径,则可供选择的泵径为38.1mm,44.45mm,57.15mm则有:1、D p =38.1mm时,s*n=32.52、D p =44.45mm时,s*n=243、D p =57.15mm时,s*n=14.4(舍去)原则上:s*n=20-50m/min由于油管内径D ti =62mm,因而泵径D p 不书中(7-24)s*n=Q t /(1.131*10-3D p 2)s*n=53.3/(1.131*10-3D p 2)如公式(7-23)压力,β为未知数,由于s、n、D p 都是未知的,应采用不同的泵径D p 来确定S、N的组合二、初选抽汲参数1、泵效泵效ηp 采用如下公式计算:ηp =1-0.4(L p /(L p +300))2,此时产量与流压呈线性关系Q t (PD,泵的理论排量)=Q x /ηp b +JP b /1.8=测或流压的确定(9Mpa)(1178m)-f w )ρo 流压可通过下式计算:(2.537Mpa)则有:F o=1252312.523F o=1704563.40.2、n组合。

中国石油大学《有杆抽油系统》在线考试模拟题-9

中国石油大学《有杆抽油系统》在线考试模拟题-9

春季学期《有杆抽油系统》在线考试(适用于6月份考试)试分析改善油管工作状况的措施。

参考选项:改善措施:1)下油管锚2)在抽油泵下悬挂尾管在泵下悬挂足够重量的尾管,使抽油泵以上的油管在抽油过程中始终承受尾管的拉力,以平衡上行程时油管的弯曲力。

悬挂尾管的优点是工艺简单,能消除或减轻油管的弯曲效应,但不能克服油管的弹性变形,还会增大油流入泵的阻力,所以,更好的办法是下油管锚。

试说明弹性滑动和打滑的区别。

参考选项:弹性滑动是由于皮带各部分弹性应变不相等所引起的,只发生在皮带离开皮带轮以前的那一段弧上,是不可避免的物理现象。

打滑是由于外力超过皮带传动所能承受的能力引起的,是皮带在皮带轮上的整体相对滑动,通过增大包角或皮带的预紧力就可防止打滑现象发生。

简述抽油井工作制度与含水的关系。

参考选项:(1)当油层和水层压力相同(或油水同层)时,油井含水不随工作制度而改变;(2)当油层压力高于水层压力时,增大总采液量(降流压),将引起油井含水量的上升;(3)当水层压力高于油层压力时,加大总采液量,将使油井含水量下降。

试说明稠油井、大沉没度井以及低沉没度井何种载荷可能占主导?参考选项:抽油杆柱载荷、液柱载荷及惯性载荷是构成悬点载荷的三项基本载荷。

稠油井内摩擦载荷及大沉没度井的沉没压力产生的载荷突出;在低沉没度井内,由于泵的充满程度差,会发生柱塞与泵内液面的撞击,将产生较大冲击载荷,从而影响悬点载荷。

简述空心抽油杆泵上掺稀油(化学剂)与泵下掺稀油(化学剂)对稠油举升过程影响的区别。

参考选项:(1)空心杆泵上或泵下掺稀油都能降低井筒流体粘度,可以有效地改善抽油杆柱受力状况。

(2)空心杆泵上掺稀油的举升效率高于空心杆泵下掺稀油。

(3)空心杆泵上掺稀油工艺没有解决原油进泵阻力大的问题,因此在泵吸入口处原油应具有较好的流动性,设计过程中应尽可能增加下泵深度。

(4)空心杆泵下掺稀油可以改善泵吸入口处原油的流动性,解决稠油进泵难的问题,但却影响泵的排量且影响生产压差,不利于大排量生产。

有杆抽油系统的数学建模及诊断

有杆抽油系统的数学建模及诊断

有杆抽油系统的数学建模及诊断目前,开采原油广泛使用的是有杆抽油系统(垂直井,如图1)。

电机旋转运动转化为抽油杆上下往返周期运动,带动设置在杆下端的泵的两个阀的相继开闭,从而将地下上千米深处蕴藏的原油抽到地面上来。

钢制抽油杆由很多节连接而成,具有相同直径的归为同一级,级数从上到下按1,2…进行编号,可多达5级,从上端点到下端点可能长达上千米。

描述抽油杆中任意一水平截面(为表述方便,下面把杆水平截面抽象称为“点”)处基本信息的通用方法是示功图:它是该点随时间t而变化的荷载(合力,向下为正)数据作为纵坐标,以该点垂直方向上随时间t而变化的位置相对于t=0时刻该点位置的位移数据作为横坐标构成的图形。

函数关系表现为位移-荷载关于时间t的参数方程。

一个冲程(冲程的说明见附录)中示功图是一条封闭的曲线。

构成示功图的数据称为示功数据。

抽油杆上端点称为悬点,图4示意了悬点E的运动过程。

在一个冲程期间,仪器以一系列固定的时间间隔测得悬点E处的一系列位移数据和荷载数据,据此建立悬点E的示功图称为悬点示功图。

附件1、2中的位移-荷载数据是某油田某井采油工作时采集的悬点处原始示功数据。

“泵”是由柱塞、游动阀、固定阀、部分油管等几个部件构成的抽象概念(见图2),泵中柱塞处的示功图称为泵功图。

因为受到诸多因素的影响,在同一时刻t,悬点处的受力(荷载)与柱塞的受力是不相同的;同样,在同一时刻t,悬点处的相对位移与柱塞的相对位移也不相同。

因此悬点示功图与泵功图是不同的。

图5给出了理论悬点示功图和理论泵功图。

示功图包含了很多信息,其中就有有效冲程,泵的有效冲程是指泵中柱塞在一个运动周期内真正实现从出油口排油的那段冲程。

工程上一般根据示功图形状与理论示功图进行对比来判断抽油机工作状态。

通过悬点示功图可以初步诊断该井的工作状况,如产量、气体影响、阀门漏液、沙堵等等。

要精确诊断油井的工作状况,最好采用泵功图。

然而,泵在地下深处,使用仪器测试其示功数据实现困难大、成本高。

有杆泵采油有杆泵采油系统选择设计

有杆泵采油有杆泵采油系统选择设计

有杆泵采油有杆泵采油系统选择设计有杆泵采油系统选择设计新投产或转抽的油井,需要合理地选择抽油设备;油井投产后,还必须检验设计效果。

当设备的⼯作状况和油层⼯作状况发⽣变化时,还需要对原有的设计进⾏调整。

进⾏有杆泵采油井的系统选择设计应遵循的原则是:符合油井及油层的⼯作条件、充分发挥油层的⽣产能⼒、设备利⽤率较⾼且有较长的免修期,以及有较⾼的系统效率和经济效益。

这些设备相互之间不是孤⽴的,⽽是作为整个有杆泵抽油系统相互联系和制约的。

因此,应将有杆泵系统从油层到地⾯,作为统⼀的系统来进⾏合理地选择设计,其步骤为:1) 根据油井产能和设计排量确定井底流压;2) 根据油井条件确定沉没度和沉没压⼒;3) 应⽤多相垂直管流理论或相关式确定下泵深度;4) 根据油井条件和设备性能确定冲程和冲次;5) 根据设计排量、冲程和冲次,以及油井条件选择抽油泵;6) 选择抽油杆,确定抽油杆柱的组合;7) 选择抽油机、减速箱、电动机及其它附属设备。

⼀、井底流压的确定井底流压是根据油井产能和设计排量来确定的。

当设计排量⼀定时,根据油井产能便可确定相应排量下的井底流压。

设计排量⼀般是由配产⽅案给出的。

⼆、沉没度和沉没压⼒的确定沉没度是根据油井的产量、⽓油⽐、原油粘度、含⽔率以及泵的进⼝设备等条件来确定。

确定沉没度的⼀般原则是:1) ⽣产⽓油⽐较低的稀油井,定时或连续放套管⽓⽣产时,沉没度应⼤于50 ;2) ⽣产⽓油⽐较⾼,并且控制套管压⼒⽣产时,沉没度应保持在150 以上;3) 当产液量⾼、液体粘度⼤(如稠油或油⽔乳化液时),沉没度还应更⾼⼀些。

由于稠油不仅进泵阻⼒⼤,⽽且脱出的溶解⽓不易与油分离,往往被液流带⼊泵内⽽降低泵的充满程度,因此,稠油井需要有较⾼的沉没度。

这样,既有利于克服进泵阻⼒,⼜可减少脱⽓,以便保持较⾼的充满程度。

⼀般情况下,稠油井的沉没度应在200 以上。

当沉没度确定后,便可利⽤有关⽅法计算或根据静液柱估算泵吸⼊⼝压⼒。

有杆泵抽油原理

有杆泵抽油原理

一、绪论(3)
(二)、有杆泵采油法的分类
• 有杆泵采油法分为:杆驱往复泵抽油系统及杆驱 螺杆泵抽油系统等。
典型杆驱往复泵抽油系统 典型杆驱螺杆泵抽油系统
地面驱动采油螺 杆泵,主要由地 面驱动装置和井 下螺杆泵两部分 组成。地面驱动 装置将井口动力 通过抽油杆的旋 转运动传递到井 下,驱动井下泵 工作,它依靠转 子在定子中旋转, 形成一系列空穴, 从吸入端向排出 端渐进,连续完 成从井底吸油和 向井口排油。
二、杆驱往复泵抽油原理 (一)、基本原理(2)
• 示功图: • 对于悬点载荷的测试及分析现场使用 的是示功图的方法。 • 示功图是悬点载荷与悬点距上冲程起 点(下止点)的位置关系。
• 现场测试,利用示功仪----诊断仪----自 动化监测仪。
二、杆驱往复泵抽油原理 (一)、基本原理(3)
• 动力平衡: • 由于抽油机悬点功为周期性的正负功,并且 正功大负功小。这样对抽油机系统及电网的 不平衡冲击较大,一方面对设备的抗负荷能 力要求高----额定负荷高----造价高;另一方 面,机械及电路的能量损耗大。 • 对于电网来说,最节能的方式是:追求均匀 的电功率负荷。 • 因此,在抽油系统的设计上,一是机械的方 法,包括抽油机的力的平衡、时间的变化, 电路的无功补偿,井下泵力的平衡等。以尽 可能在不增加总功的情况下实现电功的相对 均匀。 • 抽油机的设计、现场测试都集中在:抽油机 输出的扭矩上----扭矩分析。
• 解决思路是自动监测-----间隙生产。普遍采用的是抽油杆载荷监测。
三、杆驱往复泵抽油研究方向 (三)、抽油泵及配套装置(2)
• 气体进泵: • 气体影响,气锁降低泵效。一直以来以井下油气分离 为目的-----追求的是气锚(井下油气分离器)的高效。 • 但实际上,油管内液柱中如果混气,则可减轻液柱压 力,起到气举的作用。 • 两工帽空心凡尔杆抽油泵泵; • 附加凡尔垫抽油泵。 • (防砂、防气锁)

有杆泵抽油系统设计PPT.

有杆泵抽油系统设计PPT.
S12倒置防砂泵 S13可挂防砂泵 S14等径防砂泵
柱塞长度(米) 泵筒长度(米)
泵筒型式—厚壁筒(无衬套) 管式泵 公称直径(mm) 抽油泵代号
注解:公称直径38mm,泵筒长度为6.6m,金属柱塞长度为 1.2m的防腐耐磨管式泵表示为CYB38TH6.6-1.2F。
抽油泵规格及标注
序号
1
2 3 4 5 6 7 8
≥412 ≥620 ≥620
许用应力 MPa 71
71 92 92
抽油杆标准系列为16、19、22、25、29mm。每米质 量1.67、2.35、3.14、4.09、5.15。
由于勘探发现的油田越来越深和注水开发的油田油 井见水后使用大泵提高排液量,要求抽油杆具有更高的 承载能力,国外研制成功EL、97、HS等超高强度抽油杆, 其性能如表所示。
Y:游梁平衡 B:曲柄平衡
Q:气动平衡 有的客户会这样想,他用尽了浑身的解数把价格降到一个程度之后,那个专营店可能也搞活动,又送给他一些超值的东西,从价格的
角度一计算,降了几千块钱。他回去以后跟他太太说,“这个车我虽然是花了21万买的,可实际上把这些超值的东西折价一算,我就
减 速 箱 齿 轮 形 代 号 , H 为 点 啮 合 双 花了19.5万元,省了那么多钱。”太太很开心,在她的圈子里面就开始讲,“我老公买这辆车只花了19.5万元。”当然19.5万元肯定
游梁式抽油机系列如表所示
驴头悬点额定载荷 kN 50、60、80、100、120、140、160
光杆最大冲程
m 1.8、2.1、2.5、3.0、3.6、4.2、4.8、5.4、6.0
减速箱额定扭矩 kN·m 18、26、37、53、73、105
4、 封隔器类常用井下工具

有杆抽油系统的数学建模及诊断

有杆抽油系统的数学建模及诊断
在 △0 D B中, 0 B=0 C+ B C=r ・ c o s 西+ l ・ c o s a / t 。 ( 1 )

2 泵功 图计算
悬点 示 功 图 与 泵 功 图 的 转 化 是 用 波 动 方 程
G i b b s 模 型来 实现 的 , G i b b s 模型 l 3 如下 :


在 △0 D B 中运 用 正 弦 定 理 得 到 与 的 关
系, 具体如下 s i n = 丁 r s 1 n 。 ( 2 )

a ‘



( 8 )
其中, U ( , t ) 为 抽 油 杆 柱 断 面 在 不 同 时 间 t
的位移 ; a为声波在抽油杆柱中的传播速度 ; c 为粘 滞阻尼系数。模型中两个参数的计算公式为 :
目前 , 有杆 抽 油 系 统 ( 如图 1 ) 广 泛 应 用 于原 油 的开 采 中 。开 采 原油 的过 程为 电机 旋转 运动 使抽 油 杆上 下往 返周 期运 动 , 带 动 设 置在 杆 下 端 泵 的两 个 阀相 继开 闭 , 从 而将 地 下蕴 藏 的原 油抽 到地 面上来 。

圈 3 晌 柄 滑 块 L 构 荷 图
( s i n + 2 ) ,
华 ( c 。 s + A c 。 s 2 ) 。

当 =0 。 时, 游 梁 与 连 杆 的 连 接 点 B在 B 点 处, 为距 曲柄 轴 心 最 远 的位 置 , 对 应 于 悬 点 的下 死 点 。当 =1 8 0 。 时, B在 B 点处 , 为距 曲柄 轴心 最 近 的位置 , 对应 于悬 点 E的上 死点 。

要: 基 于 第九届 “ 华 为杯 ” 全 国研 究 生数 学 建模 竞 赛 C题 , 本 文 建 立 了有 杆 抽 油 系统 的 模 型 。

2022全国石油工程设计大赛之六采油工程设计报告范文

2022全国石油工程设计大赛之六采油工程设计报告范文

2022全国石油工程设计大赛之六采油工程设计报告范文全国石油工程设计大赛材料之六采油工程设计本次采油工程设计的主要内容是进行有杆抽油生产系统设计,通过设计计算,让学生了解有杆抽油生产系统的组成、设计原理及设计思路。

1.有杆泵抽油生产系统设计1.1有杆抽油生产系统设计原理有杆抽油系统包括油层,井筒流体、泵、油管、抽油杆、抽油机、电动机、地面出油管线直到油气分离器。

有杆抽油系统设计就是选择合理的机,杆,泵,管以及相应的抽汲参数,目的是挖掘油井潜力,使生产压差合理,抽油设备工作安全、高效及达到较好的经济效益。

在生产过程中,井口回压ph基本保持不变,可取为常数。

它与出油管线的长度、分离器的入口压力有关,此处取ph1.0MPa。

抽油井井底流压为pwf向上为多相管流,至泵下压力降至泵的沉没压力(或吸入口压力)pn,抽油泵为增压设备,故泵出口压力增至pz,称为泵的排出口压力.在向上,为抽油杆油管间的环空流动.至井口,压力降至井口回压ph。

(1)设计内容对刚转为有杆泵抽油的井和少量需调整抽油机机型的有杆抽油井可初选抽油机机型。

对大部分有杆抽油油井。

抽油机不变,为己知。

对于某一抽油机型号,设计内容有:泵径、冲程、冲次、泵深及相应的泵径、杆长,并求载荷、应力、扭矩、功率、产量等技术指标。

(2)需要数据井:井深,套管直径,油层静压,油层温度混合物:油、气、水比重,饱和压力生产数据:含水率,套压,油压,生产气油比,原产量,原流压(或原动液面)。

(3)设计方法这里介绍给定配产时有杆抽油系统的设计方法。

首先需要获得油层的IPR曲线。

若没有井底流压的测试值,可根据测试液面和套压计算得井底流压,从而计算出采液指数及IPR曲线。

1)根据测试液面计算测试点流压从井口到井底可分为三段。

从井口到动液面为气柱段,若忽略气柱压力,则动液面顶端压力仍为套压。

从动液面到吸入口为纯油柱段,可以将这一段分为许多小段,采用迭代压力方法可求出每小段油的密度,最后求出吸口处的压力。

《有杆泵采油》课件

《有杆泵采油》课件

适用性
适应性强
有杆泵采油系统适用于各种类型的油田,尤其在斜井和水平井中表现出较好的 适应性。
可靠性高
经过多年的实践检验,有杆泵采油系统表现出较高的可靠性和稳定性,能够保 证长期的稳定生产。
04
有杆泵采油操作流程
BIG DATA EMPOWERS TO CREATE A NEW
ERA
开井采油
启动抽油机
停井操作
按照停井方案进行操作,关闭 相关阀门和设备,确保油井安 全关闭。
修井作业
针对需要修井的油井,进行相 应的修井作业,恢复油井产能 。
开井复产
修井作业完成后,按照操作规 程重新开井采油,确保油井恢
复正常生产。
05
有杆泵采油优缺点分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
有杆泵采油的定义
01
有杆泵采油是一种利用地面抽油 机作为动力源,通过抽油杆将动 力传递给井下抽油泵,从而将井 下原油举升到地面的采油方式。
02
它是一种广泛应用于油田开采的 技术,具有开采效率高、成本低 等优点。
有杆泵采油的原理
当抽油机带动抽油杆柱旋转时,井下抽油泵的游动阀和固定阀受到离心力、惯性 力和重力的作用,产生交替的开启和关闭运动,从而实现原油的举升。
02
有杆泵采油系统组成
BIG DATA EMPOWERS TO CREATE A NEW
ERA
抽油机
01
02
03
种类
游梁式抽油机、无游梁式 抽油机(链条式、滚筒式 等)
作用
提供动力,将井下的原油 提升到地面
特点
可靠性高、适应性强、寿 命长
抽油杆

我国油田常用的机械采油方式

我国油田常用的机械采油方式
(3) 加强抽油机的科学管理。在现场管理中,经常采取的方法有定期检查传动装置,定期更换减速箱内机油,提高地面传动部分效率;使用窄V联组带;对于油气比高的油井应采取适当加大泵的沉没度,加装油气分离器和定期放套管气等措施,以提高泵的充满系数;加强特殊井的分类维护;保持抽油机的较高的平衡度等。
(4) 认真解决抽油机电动机的欠载问题。电动机运行的效率取决于负载率β,轻载时电动机的效率很低,而当负载增加到一定值时变化则很小。当β<0.4,效率的变化不大,在负载率β=0.75左右时,效率达到最高值。经现场测定发现,当前每台抽油机电动机的平均负载大约只有它额定功率的1/3左右,同时工作在负载率小于25%的时间占整个工作时间的50%以上,造成电动机有效功率过低,也就是说电动机大量时间在低效区工作,直接导致系统效率普遍偏低。
3.好节能宣传教育工作
要利用多种形式大力宣传节能技改工作的重要性和必要性,形成领导重视,职工积极参与的良好氛围,主动管理好实施节能措施的设备,使职工意识到节能技改事关企业的经济效益,与自身利益息息相关。油田是国家能源基地,也是耗能大户,因此做好节能工作刻不容缓
1.稀土永磁同步电动机
纯梁采油厂根据稀土永磁电机的实际特点,针对采油厂55kW电机普遍存在的“大马拉小车”现象,重点采用永磁电机替换,提高功率因数,降低装机容量。安装前后分别测试了15口油井,发现功率因数平均提高到了0.85以上,负载率平均提高近一倍,系统效率也由原来的18.5%提高到了25.7%。
电动机应处于允许运行状态,即综合效率小于额定综合效率,但大于或等于额定负载时的允许综合效率的运行状态。此时电动机效率为86.7%左右,而额定综合效率为88.7%左右。1998年有关部门统计了胜利油田438口油井电动机,约有67.6%的抽油机电动机处于非允许运行状态,充分说明“大马拉小车”现象相当普遍。

有杆抽油系统设计方法

有杆抽油系统设计方法
例题1:见书P98
4
3、选择在一定抽汲条件下的抽油杆直径及组合。 叙:对于深井,为了节约钢材,减少悬点载荷,或增 加抽油杆的下入深度,从等强度原则出发,通常都采 用上部直径大,下部直径小的多级组合抽油杆柱。 (如采用直径7/8英寸和3/4英寸的两级组合或三级组 合杆柱等) (1)多级抽油杆组合的选择原则:
(二)有杆抽油系统设计内容 1、油井流入动态计算; 2、采油设备(机、杆、泵等)选择;(地层情况和设备
功能两个方面都应兼顾) 3、抽汲参数(冲程、冲次、泵径和下泵深度等)确定; 4、工况指标预测;(全面情况)
13
设计目标:经济、高效地举升原油。
设计理论基础:节点系统分析方法。 设计基础数据:
1、油井和油层数据; 2、流体物性参数; 3、油井生产数据。 设计思路:(见P148设计方法一)
14
式中: max1 a1 为第一级抽油杆柱上端面的折算应力;
max2 a2 第二级抽油杆柱上端面的折算应力。
6
下部采用加重杆:活塞下行时,会发生纵向弯曲,因 而产生弯曲应力。
下部采用加重杆,一方面可提高杆柱刚度;另外, 这部分杆柱总量能够克服一部分活塞下行阻力,减少 弯曲。
7
2.修正古得曼图法 修正古得曼图法是美国石油学会(API)推荐方法。
2
原因:如果在最大拉应力下发生破坏,那么抽油杆柱的断 裂事故,主要应该发生在拉应力最大的上部,但是矿场使用 抽油杆的实践表明,在上中下部都有断裂。因此抽油杆必须 根据式) 在非对称循环应力下抽油杆的强度条件为:
[ -1 ] ≥ c
[
-1
]
=
-1
11
小结:(1)中深井:一般采用多级杆柱组合; (2)杆柱下部采用加重杆。

有杆与无杆采油设备概述及对比

有杆与无杆采油设备概述及对比

有杆采油装备与无杆采油装备概述及对比人类有着1600年左右的石油开采历史,直到1848年俄国工程师F.N. Semyenov在巴库东北方的Aspheron半岛开采了第一口现代油井后,人类才步入了现代化的石油开采时代。

其中机械采油装备经过了一百多年的发展,逐渐形成了当今有杆采油装备和无杆采油装备两大体系。

据统计,全世界约有100万口左右的在产油井,其中使用有杆采油装备的约占到90%以上,这些有杆采油装备的驱动装置采用游梁式抽油机的约占到80%以上。

(兰石以往出口抽油机型全部为游梁式抽油机。

)一. 机械采油装备概述机械采油装备基本可归纳为两大类,有杆采油装备和无杆采油装备。

1.有杆采油设备:位于地面的动力设备通过一系列的机械传动带动抽油杆柱,再由抽油杆柱带动井下抽油泵活塞上、下往复运动或旋转运动,将井内原油抽至地面的采油设备。

可分为:1) 杆式抽油泵:检泵方便,但结构复杂,制造成本较高,在相同的油管直径下允许下入的泵径较管式泵要小,适用于下泵深度较大,产量较小的油井。

该泵地面驱动装置为游梁式或非游梁式抽油机。

2)管式抽油泵:结构简单,成本低,在相同油管直径下允许下入的泵径比杆式泵大,因而排量大。

但检泵时必须拆卸油管,修井工作量大,故适用于下泵深度不大,产量较高的井。

该泵地面驱动装置为游梁式或非游梁式抽油机。

3)地面驱动螺杆泵:能够输送高粘度、高含砂量的原油,适应高气油比、中等深度低产井原油的需要,工艺简单、管理方便、低生产成本、具有高举升性能。

但螺杆泵缺点为油井抽油杆易断脱、油管漏失、结蜡严重、螺杆泵定子脱落、磨损严重等故障频繁。

该泵的驱动装置为螺杆泵电机,安置在地面采油树上。

2.无杆采油设备:不用抽油杆柱传递能量,而是用电缆或高压液体传递能量的采油设备统称为无杆采油设备。

其中可细分为:1)电泵类:a.电动潜油离心泵:是一种井下工作的多级离心泵,排量大、操作简单、管理方便、在防蜡方面有一定作用。

在有些高凝油、稠油情况下还需要加装一套原油稀释系统,由稀释管线向井下油层注入稀释液。

2021年采油工程题库

2021年采油工程题库

一、填空题1、国内生产抽油杆从级别上分有(C、D、K)三种级别。

2、抽油杆柱和油管柱在工作过程中因承受着(交变载荷)而发生弹性伸缩,使柱塞冲程不大于光杆冲程,因此减小了柱塞让出体积。

3、由于油管丝扣、泵连接某些(密封不严),都会因漏失而减少泵效。

4、有杆抽油系统涉及油层、(井筒)、机—杆—泵。

5、有杆抽油系统设计重要是选取机、杆、泵、管以及(抽汲参数),并预测其工况指标,使整个系统高效而安全地工作。

6、动液面是油井生产时(油套环形空间)液面。

7、系统效率与产液量、举升高度之积成正比,与(电机功率)成反比。

8、热洗质量规定热洗出口回油温度(不得低于60),并稳定60分钟以上。

9、热洗质量规定电机电流恢复到(上次正常生产)时工作电流;10、热洗质量规定产量恢复到原生产水平,波动不超过(+-10);11、示功图记录本上不能持续(2)个月浮现蜡影响井;杜绝蜡卡井发生。

12、单井热洗后,每年至少有(一次)含水恢复跟踪化验资料,(9月)底前完毕。

13、对于专用热洗炉,计量间来水温度必要在(78)上。

14、高压蒸汽热洗车必要洗(2)罐水。

15、防冲距是抽油泵活塞运营到(最低点)时活塞最下端和固定凡尔之间距离。

16、示功图不闭合时,应(必须复测)功图。

17、作业施工一体化规定检泵方案设计前由(采油队)建立异常井申请单。

18、外加厚油管办法是针对(偏心井)第一根油管断漏问题。

19、防偏磨配套技术由全井扶正、(统一杆径)、大流道泵、定期旋转抽油杆四项办法构成。

20、∮25mm抽油杆上提负荷不不大于(26吨)时须全井更换抽油杆。

21、当前我厂抽油机井换泵重要有纯换大、检换大、(检换小)3种类型。

22、我厂对∮(95)mm泵井所有采用油管锚定办法。

23、检泵率为检泵井数与(油井开井数)之比。

24、返工率为返工井数与(检泵井数)之比。

25、综合返工率为抽油机井返工井数与(油井施工总井数)之比。

26、扶正环应安装在抽油杆接箍如下(20-25)cm范畴内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《有杆抽油系统》综合复习资料一、填空题1、抽油设备由(1) 、(2) 、(3) 及井下采油附件组成。

2、对于常规型游梁式抽油机,当驴头处于上、下死点位置时,连杆中心线间的夹角基本为零,这个角被称为抽油机的(4) 。

3、当抽油机悬点开始上行时,游动阀(5) ,液柱重量由(6)转移(7) 上,从而使抽油杆(8) ,油管(9) 。

4、在抽油机井生产过程中,如果上冲程快,下冲程慢,则说明平衡(10) ,应(11) 平衡重或平衡半径。

5、测量抽油机井液面使用的仪器是(12) ;测量抽油机井示功图使用的仪器是(13) 。

6、游梁式抽油机的平衡方式主要有机械平衡和气平衡两种。

其中,机械平衡方式包括(14) 、(15) 和(16) 三种。

7、电压—转速特性曲线平缓而有向水平趋势的电机称为(17) 电机,具有较高的转差率,在一个冲次内电机转速变化范围大,同时具有较高的过载系数。

8、弹性滑动使带速(18) (超前或滞后)于主动轮表面速度而又(19)(超前或滞后)于从动轮表面速度,从动轮的圆周速度总是(20)(低于或高于)主动轮的圆周速度。

9、普通抽油杆的杆头主要由外螺纹接头、卸荷槽、(21) 、(22) 、(23) 和圆弧过渡区组成。

10、抽油井工作时,作用在悬点上的摩擦载荷主要有:①抽油杆柱与油管的摩擦力,②柱塞与衬套之间的摩擦力,③液柱与抽油杆柱之间的摩擦力,④液柱与油管之间的摩擦力,⑤液体通过游动阀的摩擦力。

上冲程中作用在悬点上的摩擦载荷是受(24) 、(25) 及(26) 三项影响,其方向向下,故增加悬点载荷;下冲程中作用在悬点上的摩擦载荷是受(27) 、(28) 、(29) 及(30) 四项影响,其方向向上,故减小悬点载荷。

11、抽油设备由(1) 、(2) 、(3) 及井下采油附件组成。

12、游梁式抽油机主要由(4) 、(5) 、曲柄连杆游梁机构以及辅助部件等四大部分组成。

13、当抽油机悬点开始下行时,游动阀(6) ,液柱重量由(7)转移(8) 上,从而使抽油杆(9) ,油管(10) 。

14、在抽油机井生产过程中,如果下冲程快,上冲程慢,则说明平衡(11) ,应(12) 平衡重或平衡半径。

15、当抽油系统工作时,作用在抽油机驴头悬点上的载荷主要有三类:(13)、(14) 以及各种摩擦阻力产生的摩擦载荷。

16、对于惯性载荷,在上冲程中,前半冲程惯性力(15) 悬点载荷,后半冲程惯性力(16) 悬点载荷;在下冲程中,前半冲程惯性力(17) 悬点载荷,后半冲程惯性力(18) 悬点载荷。

17、列举游梁式抽油机除机械平衡与气动平衡外的两种主要平衡方式,如(19)、(20) 以及利用可调相位角平衡装置实现抽油机平衡。

18、弹性滑动使带速(21) (超前或滞后)于主动轮表面速度而又(超前或滞后)于从动轮表面速度,从动轮的圆周速度总是(22)(低于或高于)主动轮的圆周速度。

19、普通抽油杆的杆头主要由(23) 、(24) 、(25) 、(26) 、(27) 和圆弧过渡区组成。

20、在不同转差率范围内,游梁式抽油机的动力装置—异步电机处于不同的工作状态,主要包括(28) 、(29) 和(30) 三种。

21、当抽油机悬点开始上行时,游动阀(1) ,液柱重量由(2)转移(3) 上,从而使抽油杆(4) ,油管(5) 。

22、在抽油机井生产过程中,如果上冲程快,下冲程慢,则说明平衡(6) ,应(7) 平衡重或平衡半径。

23、测量抽油机井液面使用的仪器是(8) ;测量抽油机井示功图使用的仪器是(9) 。

24、游梁式抽油机的平衡方式主要有机械平衡和气平衡两种。

其中,机械平衡方式包括(10) 、(11) 和(12) 三种。

25、普通抽油杆的杆头主要由(13) 、(14) 、(15) 、(16) 、(17) 和圆弧过渡区组成。

26、抽油井工作时,作用在悬点上的摩擦载荷主要有:①抽油杆柱与油管的摩擦力,②柱塞与衬套之间的摩擦力,③液柱与抽油杆柱之间的摩擦力,④液柱与油管之间的摩擦力,⑤液体通过游动阀的摩擦力。

上冲程中作用在悬点上的摩擦载荷是受(18) 、(19) 及(20) 三项影响,其方向向下,故增加悬点载荷;下冲程中作用在悬点上的摩擦载荷是受(21) 、(22) 、(23) 及(24) 四项影响,其方向向上,故减小悬点载荷。

27、游梁式抽油机主要由(25) 、(26) 、曲柄连杆游梁机构以及辅助部件等四大部分组成。

28、列举游梁式抽油机除机械平衡与气动平衡外的两种主要平衡方式,如(27)、(28) 以及利用可调相位角平衡装置实现抽油机平衡。

29、在不同转差率范围内,游梁式抽油机的动力装置—异步电机处于不同的工作状态,主要包括(29) 、(30) 和电磁制动三种。

二、判断题1、前置型气平衡游梁式抽油机可以实现上下冲程中的对应载荷完全相同。

()2、旋转驴头游梁式抽油机、蛋形驴头游梁式抽油机、六连杆双游梁抽油机均具有长冲程的特点。

()3、游梁式抽油机的运动指标越接近于1,悬点的实际运动规律就越接近于真实运动规律。

()4、上冲程中井口回压减小悬点载荷。

()5、气锁会因沉没压力升高而自动解除。

()6、采用玻璃钢抽油杆可以实现小泵深抽或大排量的功能。

()7、钢丝绳抽油杆是具有代表性的柔性抽油杆。

()8、抽油杆及其接箍的主要失效类型是疲劳断裂。

()9、可打捞式管式抽油泵由于加长短节与柱塞的配合间隙大而增加了泵的余隙,故在油气比大的油井不宜采用。

()10、在抽油泵下悬挂尾管或下油管锚均可改善油管的工作状况。

()11、前置型气平衡游梁式抽油机可以实现上下冲程中的对应载荷完全相同。

()12、旋转驴头游梁式抽油机、蛋形驴头游梁式抽油机、六连杆双游梁抽油机均具有长冲程的特点。

()13、在上下冲程中,摩擦载荷始终增加抽油机的悬点载荷。

()14、游梁式抽油机主要由电动机、皮带减速箱、曲柄—连杆—游梁机构以及辅助部件等四大部分组成。

()15、电压—转速特性曲线平缓而有向水平趋势的电机称为软特性电机。

()16、API Spec 11B《抽油杆规范》和GB7229-87将抽油杆分为C级、D级、K级和KD级四个等级。

()17、接箍是抽油杆组合时的连接零件,按其结构特征可分为普通接箍、异径接箍和特种接箍。

()18、对于要求安装刮蜡器的抽油杆,需要在抽油杆上设置一定数量的限位器,限位器之间的距离为冲程的一半。

()19、可打捞式管式抽油泵由于加长短节与柱塞的配合间隙大而增加了泵的余隙,故在油气比大的油井不宜采用。

()20、拖动抽油机的电动机的输入功率即为抽油机的输入功率。

()三、单选题1、游梁式抽油机的运动指标定义为死点位置时的实际加速度与按公式计算出的加速度之比值。

A 简谐运动B 曲柄滑块机构运动C 精确计算运动D 真实运动2、抽油杆杆体断裂的原因主要有抽油杆柱设计不合理、以及腐蚀等因素。

A 预紧力过大或不足B 抽汲载荷超载C 液击、碰泵的冲击载荷的影响D 由于制造、运输、储存和使用过程引起弯曲3、在油井中使用刮蜡器以后,抽油杆在上下冲程时的阻力增加,这将使悬点最大负荷增加,使抽油杆在下冲程时产生附加的弯曲应力,为此应在抽油杆下部使用。

A 加重杆B 扶正器C 减振器D 防脱器4、下列抽油泵不适合于在含砂油井使用。

A 流线型抽油泵B 三管抽油泵C 防砂卡抽油泵D出砂井用抽油泵5、油管锚可分为机械式油管锚和两大类。

A 张力式油管锚B 旋转式油管锚C 液力式油管锚D 压差式油管锚6、对于常规型游梁式抽油机,当驴头处于上、下死点位置时,连杆中心线间的夹角基本为零,这个角被称为抽油机的。

A 平衡相位角B 极位夹角C 游梁摆角D 曲柄转角7、下冲程中,沉没压力对悬点载荷的影响是。

A 增加B 减小C 没有影响D 前半冲程增加,后半冲程减小A 平衡相位角B 极位夹角C 游梁摆角D 曲柄转角8、下列特点不是抽油杆的结构特点。

A 细长杆B 刚度高、不易变形C 变截面D 端部形状复杂、要求特殊9、油管锚可分为机械式油管锚和两大类。

A 张力式油管锚B 旋转式油管锚C 液力式油管锚D 压差式油管锚10、提升液体和克服各种阻力所消耗的功率为抽油机的。

A 输入功率B 光杆功率C 有效功率D 系统效率11、下冲程中,沉没压力对悬点载荷的影响是。

A 增加B 减小C 没有影响D 前半冲程增加,后半冲程减小12、测量抽油机井示功图使用的仪器是。

A 回声仪B 水力动力仪C 传感测试仪D 记录仪13、在典型抽油杆工艺路线的基础上,增加工序,并调整部分工序便可形成超高强度抽油杆的制造工艺路线。

A 抛丸强化B 热校直C 冷校直D 表面淬火14、在油井中使用刮蜡器以后,抽油杆在上下冲程时的阻力增加,这将使悬点最大负荷增加,使抽油杆在下冲程时产生附加的弯曲应力,为此应在抽油杆下部使用。

A 加重杆B 扶正器C 减振器D 防脱器15、提升液体和克服各种阻力所消耗的功率为抽油机的。

A 输入功率B 光杆功率C 有效功率D 系统效率四、简答题1、简述游梁式抽油机的基本结构和工作原理。

2、怎样判断游梁式抽油机的平衡状况?不平衡时怎样进行调整?3、简述空心抽油杆的作用。

4、简述加重杆的作用。

5、抽油杆可以分为几个等级?分别应用在什么状况的油井上?6、抽油井悬点所承受的载荷有哪些?分析上下冲程中存在哪些摩擦载荷?7、简述杆式泵与管式泵的特点与适用范围。

8、试举例5种特种抽油杆。

9、简述改善油管工作状况的措施及其特点。

五、论述题1、何谓示功图?画出考虑气体影响下和充不满影响下的示功图并分析示功图的特征。

2、怎样判断游梁式抽油机的平衡状况?不平衡时怎样进行调整?参考答案一、填空题1、抽油设备由(1) 抽油机、(2) 抽油杆、(3) 抽油泵及井下采油附件组成。

2、对于常规型游梁式抽油机,当驴头处于上、下死点位置时,连杆中心线间的夹角基本为零,这个角被称为抽油机的(4) 极位夹角。

3、当抽油机悬点开始上行时,游动阀(5) 关闭,液柱重量由(6) 油管转移(7) 抽油杆上,从而使抽油杆(8) 伸长,油管(9) 缩短。

4、在抽油机井生产过程中,如果上冲程快,下冲程慢,则说明平衡(10) 过量,应(11) 减小平衡重或平衡半径。

5、测量抽油机井液面使用的仪器是(12) 回声仪;测量抽油机井示功图使用的仪器是(13) 动力仪。

6、游梁式抽油机的平衡方式主要有机械平衡和气平衡两种。

其中,机械平衡方式包括(14) 曲柄平衡、(15) 游梁平衡和(16) 复合平衡三种。

7、电压—转速特性曲线平缓而有向水平趋势的电机称为(17) 软特性电机,具有较高的转差率,在一个冲次内电机转速变化范围大,同时具有较高的过载系数。

8、弹性滑动使带速(18) 滞后(超前或滞后)于主动轮表面速度而又(19) 超前(超前或滞后)于从动轮表面速度,从动轮的圆周速度总是(20) 低于(低于或高于)主动轮的圆周速度。

相关文档
最新文档