基于ANSYS WORKBENCH的装配体有限元分析
利用ANSYS进行装配体分析
![利用ANSYS进行装配体分析](https://img.taocdn.com/s3/m/d2a0036cb207e87101f69e3143323968011cf4fa.png)
利用ANSYS进行装配体分析装配体分析一般的不发生相对运动的用boolean里的glue就可以,发生相对运动的一般就要用到接触了。
有兴趣的可以交流一下,我现在做的所有的分析基本上都是装配体的,毕竟实际应用中很少有单个零件的。
具体问题具体分析并不是所有的装配体分析都要用接触分析,有的可以视为整体的,看你关心的是什么,所以把实际模型合理转化成有限元模型是关键!试一试用ANSYS workbench软件最好的办法是在PROE里面建模装配好以后,建立PROE和ANSYS联结,直接导入ANSYS,然后对装配体进行非线性的接触分析,非线性分析要定义接触面,有时还要定义耦合面,建议你看一下清华大学出版社出版的《精通ANSYS7.0有限元分析》,作者宋勇等,里面有个实例是介绍非线性接触分析的,很实用做装配体的有限元分析,需要利用ansys提供的各种连接单元或者耦合等工具对其装配关系进行模拟。
ADD和CLUE等命令处理,不是什么装配关系,而是把分开的零件固结在一起了,实际上和装配关系有很大的出入。
用MPC技术实际上使用多点接触单元进行零件连接关系进行模拟,就是利用mpc184单元进行模拟。
可以看看mpc184单元的帮助,它可以模拟多种装配关系。
传统的,也是最直接的装配方法是先简单的导入装配体的各个零部件,确定它们的空间相对位置,然后人为地确定各零部件在整个装配体中的接触关系,建立接触单元。
此过程在其他CAE软件中须采用手工方式完成,不仅需要漫长的虚拟整机建立过程,同时,还需要工程师对结构的各项指标、限制、风险全面的了解。
每一个有经验的有限元分析工程师都知道,没有任何两个接触问题是完全一样的,装配问题的复杂性在某种程度上肯定了ANSYS在这个领域的成就——ANSYS可以对各种不同的接触问题进行非常好,而且简便的模拟。
一个装配体的ANSYS有限元分析过程可以简单的归建立模型并划分网格识别零部件相互关系施加边界条件以及环境参量求解并复查结果事实上在ANSYS默认的设定中,当一个装配体的CAD模型被倒入的时候,接触关系已经被自动的探测了,而接触区域被指定为面/面关系。
workbench大型机械装配体有限元计算(工作经验总结)
![workbench大型机械装配体有限元计算(工作经验总结)](https://img.taocdn.com/s3/m/d7d56215f78a6529647d5349.png)
大型机械装配体的有限元分析步骤1.模型简化:由于模型较大,建议将模型分成几个模块去简化,简化后的模型试画网格,能完成则初步证明模型合格。
(1)其中对于不重要的小孔,小倒角能去就去,螺纹孔必须去掉,否则严重影响网格划分;(2)复杂的标准件,螺栓可简化为去螺纹的螺柱,或直接去掉;(3)焊缝处理,除非专门校核焊缝强度,一般将焊缝等同于母体材料;(4)焊缝坡口,间隙必须填满,这才符合实际。
2.模型的检查:简化模型后需要检查干涉,检查模型有无间隙,有无干涉,有无多余的线、面。
(1)干涉处理:重新修改模型,如果通过布尔求和,干涉部位消失可不处理;(2)间隙处理:通过三维软件进行剖视图检查,或者通过布尔求和,有间隙部件则不能求和。
3.模型的快速网格划分:在此推荐先采用默认网格进行划分。
采用默认网格划分的优点是速度特别快,这样非常有利于发现问题,便于进一步修改模型。
但是也有特例:如果模型比较大,且有很多小特征,比如倒角、倒圆,则不容易划分成功,需要设置小的sizing进行处理。
4.网格划分失败针对策略:网格划分失败的千差万别,必须仔细分析,这也是有限元分析的乐趣之一。
原因主要如下;(1)模型不准确。
模型存在干涉、间隙、多余的线、面等。
(2)划分网格方法不当,重新设置sizing,设置新的网格划分方法等。
5.网格数量与内存匹配网格比较耗内存,一般100万网格,需要10G内存。
普通的笔记本4G-8G,能计算的网格也就在40万-80万左右,超过此数值则计算非常耗时,有时甚至不能计算。
对此可采用如下策略:(1)对称模型:进行二分之一,或者四分之一的计算;(2)不对称模型:建议粗化网格,或者采用局部模型分析;6.网格质量分析:(1)skewness越小越好,一般<0.7可以接受;(2)element quality 越大越好,最好为1;(3)雅克比比率:Jacobian Ratio,越小越好,最好为1;(4) aspect ratio。
学会使用AnsysWorkbench进行有限元分析和结构优化
![学会使用AnsysWorkbench进行有限元分析和结构优化](https://img.taocdn.com/s3/m/5d2ea9152f3f5727a5e9856a561252d380eb2023.png)
学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。
它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。
本章节将介绍Ansys Workbench的基本概念和工作流程。
1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。
它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。
1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。
(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。
(3)网格生成:网格生成是有限元分析的一个关键步骤。
在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。
(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。
此外,用户还可以选择适合的分析模型,如静力学、动力学等。
(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。
(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。
Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。
我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。
基于ANSYS Workbench的V8发动机曲轴有限元模态分析
![基于ANSYS Workbench的V8发动机曲轴有限元模态分析](https://img.taocdn.com/s3/m/832256c7050876323112129b.png)
【 摘
要】 曲轴是发动机最重要的部件之一 , 其强度 、 刚度 可以决定发动机的性能, 只有强度、 刚度
合格 的曲轴才 能保 障发 动机 的正常运行 。 利用 Sl Wok 建 立 了一 个高速 赛车 V 发 动机 的曲轴模型 , oi rs d 8 并将 曲轴模 型保存 为 I E G S格 式导入 到有 限元 分析软 件 A S SWokec N Y rbnh中, 最后 对 曲轴模 型进行 了 有 限元模 态分析 , 获取 了曲轴 的前 1 固有频 率和相 应振型 。模 态分析a kh. sa l t aodtersnn e q e c g n w i i e oip oete z i h r s be o v i eo a c u nyr i h hw l hl t m r h ao f n a l  ̄i h eo, c l p v
L u nZ N o gj n Y i - a gZ A G L n - ig V D a ,E G D n-i , U Xa yn ,H N o g pn a o ( c ol f rnp r t na dA t t eE gn eig Xh aU iesy C eg u6 0 3 , hn ) S h o o a sot i n uo i n ie r , iu nvri , h n d 10 9 C ia T ao mo v n t
d . dar eec aao ep r na m d ayi i o ti d w ih rv e ert a bs r e An frn ed x ei t a a l s s ban . hc o i sat oe c aif e t f e m lo ln s e p d h il so
r i it ad i - a t akh . ea ly n esn o h c sa lbi Z p f e r f n t f
基于AnsysWorkbench筒体吊装工具有限元分析
![基于AnsysWorkbench筒体吊装工具有限元分析](https://img.taocdn.com/s3/m/97a4b32a001ca300a6c30c22590102020740f288.png)
基于AnsysWorkbench筒体吊装工具有限元分析摘要:采用AnsysWorkbench软件对筒体吊装工具进行有限元分析,通过建模仿真的方式了解筒体吊装工具的强度及变形情况,依托计算结果提出筒体吊装工具优化设计的方案。
关键词:筒体吊装工具;AnsysWorkbench;有限元分析随着现代科技的不断发展,工业制造和建筑施工等领域对于设备和材料的提出了更高的要求。
在筒体、压力容器等重型设备的制造和运输过程中,吊装工具是一种必不可少的装备。
利用吊装工具可以将筒体等重量物品从一个位置转移到另一个位置,并保证吊装过程的安全和稳定。
因此,对于吊装工具的设计和分析是非常重要的。
AnsysWorkbench作为一款常见的有限元分析软件,在应用于筒体吊装工具的分析中有着广泛的应用价值。
本研究对基于Ansys Workbench筒体吊装工具有限元分析的相关问题进行深入研究,为方案设计及失效分析提供理论支持。
1AnsysWorkbench的主要功能及应用流程1.1 AnsysWorkbench的主要功能Ansys Workbench是一款广泛应用于工业制造、建筑施工、航空航天等领域的有限元分析软件,其主要功能包括:(1)CAD建模。
Ansys Workbench具有强大的CAD建模功能,可以创建2D和3D的几何对象和组件,并快速导入各种文件格式的CAD数据文件。
(2)丰富的材料库。
针对各种不同的实际应用场合,AnsysWorkbench内置了广泛的材料数据库,包括金属、塑料、陶瓷、涂层、复合材料等多种材料,用户还可以在其基础上拓展和编辑自己的材料数据。
(3)划分单元.通过AnsysWorkbench中的划分单元工具可以给几何模型划分单元,包括四面体、六面体、棱柱体等单元类型,满足复杂结构的有限元分析需求。
(4)自由设定边界条件。
使用者可以在AnsysWorkbench中设定各种边界条件(BC),如固定、载荷或约束边界等,从而得到完整的有限元边界值问题。
Ansys Workbench有限元分析
![Ansys Workbench有限元分析](https://img.taocdn.com/s3/m/3147a5a9dd3383c4bb4cd228.png)
Ansys Workbench培训大纲 Ansys有限元分析Ansys Workbench的基础知识,包括基本操作、几何建模方法、网格划分方法、mechanical基础等内容;Ansys Workbench的工程应用,包括线性静态结构分析、模态分析、谐响应分析、随机振动分析、瞬态动力学、显示动力学分析、热分析、线性屈曲分析和结构非线性分析、接触分析及流体动力学分析等相关知识1. Workbench技术Workbench技术特点CAD-CAE协同仿真概述DesignModeler建模功能综述实体模型的建立,板壳、梁模型的建立DM几何修补工具,创建参数化模型,DM与DS的双向整合针对有限元分析的几何建模技巧与特殊要求从CAD导入几何模型2.DesignModeler建模DM 用户界面DM 草图模式DM 3D几何体DM高级3D几何体DM 概念建模DM 参数化模型3.DesignSimulation基本架构和分析流程DS基础DS通用前处理: 几何模型导入, 接触,网格划分,命名选择,坐标系DS高质量的有限元网格划分技术和使用技巧DS结构静力线性分析的基本流程和使用技巧DS各种工程载荷和边界条件的处理方法DesignSimulation的非线性概述材料、几何、接触非线性的基本过程与应用技巧4.DesignSimulation基本架构和分析流程DS结果后处理:查看,显示,输入结果,结果组合DS如何提高有限元分析的精度DS与CAD软件的交互性及参数传递DS通过参数管理器和多工况多方案的优化方法快速完成分析5.DesignSimulation的工程分析类型疲劳分析动力学分析:瞬态等分析基本过程与技巧DesignSimulation稳态热分析:热分析基础,基本的热传递分析,热分析模式,实例分析:建模,求解及后处理DesignSimulation瞬态热分析:时间与载荷步,子步及平衡迭代,收敛准则,初始温度,阶跃及渐变载荷输出控制,查看瞬态分析结果,耦合场分析:热应力分析有限元基本概念把一个原来是连续的物体划分为有限个单元,这些单元通过有限个节点相互连接,承受与实际载荷等效的节点载荷,并根据力的平衡条件进行分析,然后根据变形协调条件把这些单元重新组合成能够整体进行综合求解。
ANSYS经典界面的有限元模型导入Workbench,并进行其他分析
![ANSYS经典界面的有限元模型导入Workbench,并进行其他分析](https://img.taocdn.com/s3/m/e116cc3559fb770bf78a6529647d27284b733738.png)
ANSYS经典界⾯的有限元模型导⼊Workbench,并进⾏其他分
析
将Ansys经典模式中的模型导⼊到Ansys Workbench | 坐倚北风
1.ANSYS画好⽹格
Main Menu - Preprocessor - Archive Model - Write,输出cdb⽂件
2. Woerbench
1. 进⼊Ansys Workbench,在ToolBox中双击Finite Element Modeler将其加⼊到⼯程
2. 在Model上右击,选择Add Input Mesh,将⽣成的.CDB⽂件导⼊
3. 双击Model进⼊Ansys Workbench⼏何模型编辑界⾯,可以在左侧看到所导⼊的有限元模型的详细信息
4. 在Geometry Synthesis下的Skin Detection Tool上右击,选择Create skin components。
5. 当⽣成完模型的表⾯曲⾯后,在Geometry Synthesis上右击,选择Insert - Initial Geometry,即可⽣成有限元模型
6. 在Model上右击,选择Updata,更新⼏何模型(有对号则更新成功)
3.模态分析
1.在Analysis Systems中将modal加⼊到⼯程
2.左键按住Finite Element Modeler的Model,拖到Modal模块的Model
3.双击Modal模块的model,进⼊分析。
基于ANSYSWorkbench机床主轴有限元分析
![基于ANSYSWorkbench机床主轴有限元分析](https://img.taocdn.com/s3/m/f8730238eefdc8d376ee3266.png)
基于 A N S Y S Wo r k b e n c h机床主轴有 限元分析
方 鹏, 李 健, 韦 辽
( 广西工学 院机械工程系 , 广西 柳州 5 4 5 0 0 6 )
研究进展[ J ] . 机械设计与制造 , 2 0 0 9( 1 0 ) : 2 5 9 — 2 6 0 .
分析 , 得 到应 力 和应 变 分布情 况 。通过 对 主轴进 行设
京: 河海大学 , 2 0 0 7 .
计, 得 出优化后的主轴 比优化前 的主轴体积更小 、 性 能更好 ,提高了机床 的工作性能 ,减轻 了主轴的 自
[ 4 ] 周 大帅 , 伍 良生 , 李 俊. 机床 主轴 系统化热 态及 变形特 性
限元计算结果的分析 , 得到应力和应 变分布情 况。通过设计 , 提 高了机床 的工作性 能 , 减轻 了主轴的 自重 , 节省 了材料 ,
降低 了成 本 。
关键词 : 机床 ; 主轴 ; A NS YS Wo r k b e n c h ; 有限元分析 中图分 类号 : T P 3 9 1 . 7 文献标识码 : A 文章编号 : 1 6 7 2 — 5 4 5 X ( 2 0 1 3) 0 4 — 0 0 2 8 — 0 3
收稿 日期 : 2 0 1 3 — 0 1 — 1 1 作者简介 : 方 鹏( 1 9 8 6 _ , 男, 硕士研究生 , 研究方 向: 机械设计 及理论 ; 李 健( 1 9 6 5 一) , 男, 教授, 主要 从事数字化 设计与制造方 面的研 究 ; 韦 i  ̄ . ( 1 9 8 6 一 ) , 男, 硕士研究生 , 研究方 向: 机械设计及理论。 2 8
基于AnsysWorkbench的立式加工中心床身有限元分析和优化设计
![基于AnsysWorkbench的立式加工中心床身有限元分析和优化设计](https://img.taocdn.com/s3/m/4c5ad3d280eb6294dd886c4c.png)
[1] 李德雨.基于 ANSYSWorkbench 的多层波纹管自振频率 计算[J].矿山机械,2005,(6):P83-84.
[2] 王艳辉.精密机床床身的模态分析与结构优选[J].机械设 计与制造,2005,(3):P76-77.
第 31 卷 第 9 期 2009-09 【131】
由于机床机构过于复杂,采用 WORKBENCH
自动划分网格,在 Workbench 中一般不需要选取单
元类型,划分方法是Hex Dominant 运用的是四面体 与六面体结合的划分方式,由于在导轨处有许多无
图 3 机床床身 1 阶模态云图
法简化的小的阶梯,在这些地方采用局部的细化网
格的方法来划分,得到 44483 个单元 135144 个节点。
度,应该使有限元模型尽量简化。同时建立有限元 模型时,应合理选择单元类型,并在编排节点时, 尽量减少相关单元的节点号差、带宽,以减少资料 存储量。ANSYSWorkbench 和 PROE 具有直接的 双向接口,可以在 P R O E 中建模然后再导入 ANSYSWorkbench 进行计算。 1.1 建立物理模型
件。通过机床主电动机功
率和机床加工工件的最 大尺寸,以及主轴转速,计算机床的额定扭矩和额 定力,由 Fx:Fy:Fz=0.3:0.5:1.0 得到 3 个切削分力,计 算立柱,床鞍,主轴箱等构件的重量并将上述重量 均作为作用在床身上的附加质量处理,即在相应坐
快,但要求比 Subspace 法内存多大概 50%。Block Lanczos 法采用稀疏矩阵方程求解器[2]。
床身的实际结构很复杂,有繁多的筋板、曲面、 窗孔,各处厚度不相同,几何形状也多变。为了适 应有限元计算,必须将其简化处理,略去许多不影 响床身刚度的细微结构(如小倒角、小圆弧、小凸 台等)。简化后的床身模型如图 1 所示。
ansys workbench 2022有限元分析入门与提高
![ansys workbench 2022有限元分析入门与提高](https://img.taocdn.com/s3/m/28ed3caf82d049649b6648d7c1c708a1294a0a76.png)
ansys workbench 2022有限元分析入门与提高ANSYSWorkbench2022是一款很受欢迎的有限元分析软件,它能够帮助工程师快速解决各种类型的结构力学问题和复杂材料性质的分析问题。
本文将针对有限元分析的基础知识介绍ANSYS Workbench 2022,并以实际的例子探讨ANSYS Workbench 2022如何帮助工程师解决结构有限元分析中的问题。
1. ANSYS Workbench 2022有限元分析:软件简介ANSYS Workbench 2022是一款建立在ANSYS有限元解决器之上的强大的软件工具,可以帮助工程师解决许多结构力学问题和复杂材料性质的问题,比如振动和强度分析。
有限元分析是一种分析技术,它可以帮助研究工程师计算并分析各种不同类型的材料在不同环境下的行为。
ANSYS Workbench 2022包含了大量的有限元分析功能,使工程师能够对实际的物理系统进行有效的分析。
2. ANSYS Workbench 2022有限元分析:功能概述ANSYS Workbench 2022能够结合了有限元分析的众多功能,此外还提供了高度的可扩展性和易用性,使用户能够快速解决各种复杂的结构力学问题,具体功能如下:(1)多种结构力学分析:ANSYS Workbench 2022提供了多种不同类型的结构力学分析,比如强度分析、温度分析、振动分析、时域分析等,可以帮助研究工程师精确的计算物体的特性。
(2)网格划分:ANSYS Workbench 2022可以帮助研究者快速地对实际物体进行网格划分,并以其为基础进行数值模拟计算。
(3)对结果进行可视化:ANSYS Workbench 2022可以帮助研究者清楚地看到模拟结果,以便客观地理解结果。
3. ANSYS Workbench 2022有限元分析:实际案例下面以空气盒子为实际例子,介绍如何利用ANSYS Workbench 2022使用有限元分析来解决实际模型的问题。
基于ANSYS workbench的汽车传动轴有限元分析和优化设计
![基于ANSYS workbench的汽车传动轴有限元分析和优化设计](https://img.taocdn.com/s3/m/30e151c103d276a20029bd64783e0912a3167c43.png)
基于ANSYS workbench的汽车传动轴有限元分析和优化设计使用ANSYS Workbench进行汽车传动轴的有限元分析和优化设计是一种常见的方法。
以下是基于ANSYS Workbench的汽车传动轴有限元分析和优化设计的一般步骤:1.创建几何模型:使用CAD软件创建传动轴的几何模型,并将其导入到ANSYS Workbench中。
确保几何模型准确、完整,并符合设计要求。
2.网格划分:对传动轴几何模型进行网格划分,将其划分为离散的单元。
选择合适的网格划分方法和单元类型,以确保模型的准确性和计算效率。
3.材料属性定义:定义传动轴所使用的材料的力学性质,如弹性模量、泊松比、密度等。
确保选择适当的材料模型,以准确模拟材料的行为。
4.载荷和约束定义:定义施加在传动轴上的载荷,如扭矩、轴向力等。
同时,定义约束条件,如固定轴承端点、自由转动等。
5.设置分析类型和求解器:根据实际情况选择适当的分析类型,如静态、动态、模态等。
配置求解器设置,选择合适的求解器类型和参数。
6.进行有限元分析:运行有限元分析,计算传动轴的应力、变形和振动等。
根据分析结果,评估传动轴的性能和强度。
7.优化设计:根据有限元分析的结果,对传动轴的结构进行优化设计。
通过调整传动轴的几何形状、材料或其他参数,以提高其性能。
8.重新进行有限元分析:对优化后的设计进行再次有限元分析,以验证优化结果。
如果需要,可以多次进行重复优化和分析的步骤。
9.结果评估和优化验证:评估优化结果的有效性,并验证传动轴在实际工况下的性能。
根据需求进行修正和改进。
请注意,基于ANSYS Workbench的有限元分析和优化设计需要一定的专业知识和技能。
有限元分析workbench
![有限元分析workbench](https://img.taocdn.com/s3/m/66c57b320912a216147929a8.png)
添加约束2
在四个孔圆柱面(按住ctrl键选择四个圆柱表面) 上添加圆柱面约束,设置“Axial”方向为 “Free”,“Radial”和“Tangential”都为 “Fixed”。
添加载荷1
在端面上添加推力“Pressure”,力的大小为 “6.895MPa”。
添加载荷2
在圆柱面上添加轴承力“Bearing Load”,力的大 小为“5.1758e7N”,方向如图,可以点击红黑箭 头换向。
单击每个求解参数; 分别设置“mode”项内容为1至6。
单击“求解”命令图标
生成报告文件
保存分析结果
保存文件类型为“.dsdb”
有限元分析 ANSYS Workbench
TSINGHUA CADTC 2011-10-17
ANSYS Workbench
ANSYS Workbench是ANSYS开发的新一代 的CAE应用和开发平台,简称“AWE”。 与经典的ANSYS环境相比,具有友好的 WINDOWS风格界面,操作更加简单,易 学易用。
2
仿真的一般步骤:
1. 打开ANSYS Workbench软件或在其它CAD软件中打开内嵌的ANSYS Workbench软件。
2. 选择新建仿真(new Simulation)进入仿真环境。 3. 如果是直接打开的ANSYS Workbench软件,则导入CAD软件创建的几
何模型; 4. 添加材料信息; 5. 设定接触选项(对于装配件); 6. 设定网格划分参数并进行网格划分; 7. 选择分析类型,例如静态分析、模态等; 8. 施加载荷和约束; 9. 设定求解(结果)参数; 10. 进行求解; 11. 观察求解结果。
采用自动网格划分,单元尺寸为“10mm”
ansys workbench 2022有限元分析入门与提高
![ansys workbench 2022有限元分析入门与提高](https://img.taocdn.com/s3/m/9de87234640e52ea551810a6f524ccbff121ca82.png)
ansys workbench 2022有限元分
析入门与提高
ANSYS Workbench 2022有限元分析入门与提高包括以下内容:
1、建立工作空间:在Workbench中建立工作空间,定义坐标系,添加模型文件和数据,进行设置和定义。
2、建立有限元模型:使用ANSYS Parametric Design Language (APDL) 在Workbench环境中建立有限元模型,并设置材料属性,计算参数,设置单元类型,建立网格,建立边界条件和载荷,进行算例验证等。
3、计算和结果处理:运行分析计算,对计算结果进行处理,生成图像,绘制应力-应变曲线,优化设计参数,分析接触应力,确定材料属性等。
4、应用:应用有限元分析的知识和技巧,求解各类有限元分析问题,如梁柱系统,结构强度,静力学,热传导,流体力学,等等。
基于ANSYSWORKBENCH的装配体有限元分析
![基于ANSYSWORKBENCH的装配体有限元分析](https://img.taocdn.com/s3/m/affb845fa9956bec0975f46527d3240c8447a171.png)
基于ANSYSWORKBENCH的装配体有限元分析基于ANSYS WORKBENCH的装配体有限元分析模拟装配体的本质就是设置零件与零件之间的接触问题。
装配体的仿真所面临的问题包括:(1)模型的简化。
这一步包含的问题最多。
实际的装配体少的有十几个零件,多的有上百个零件。
这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。
在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。
(2)零件之间的联接。
装配体的一个主要特征,就是零件多,而在零件之间发生了关系。
我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。
如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。
如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢?(3)材料属性的考虑。
在一个复杂的装配体中所有的零件,其材料属性多种多样。
我们在初次分析的时候,可以只考虑其线弹性属性。
但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。
此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。
基于ANSYS_WorkBench大型整体舱段结构有限元分析.
![基于ANSYS_WorkBench大型整体舱段结构有限元分析.](https://img.taocdn.com/s3/m/c534e9c67f1922791688e84a.png)
基于ANSYS WorkBench大型整体舱段结构有限元分析作者:王华侨葛光远黄天曙摘要:本文利用ANSYS WorkBench 协同优化设计分析CAE环境,对航天常用大型薄壁整体铝合金舱段壳体结构的不同结构设计状态下的静强度、屈曲稳定性和振动模态进行了比较系统的分析。
并结合实例进行了说明,该整体舱段壳体结构系统分析结果为舱段壳体系列产品的结构设计与制造工艺可提供较好的参考借鉴作用。
关键词:ANSYS、协同设计、有限元分析、屈曲稳定性、振动模态、薄壁壳体1 前言ANSYS 公司是世界上最著名的CAE 公司之一,经过三十年多的发展,已经形成融结构、热、流体、电磁、声学为一体的大型通用有限元分析软件,是航空航天领域新一代最具代表性的仿真分析工具,传统结构有限元模拟分析的基本流程如下图1 所示。
这种应用有限元分析程序进行结构的应力分析的标准过程都是根据设计条件,用解析计算方法或根据经验值确定初始结构尺寸,按照该结构尺寸,用有限元程序建模、求解,再对得出的应力、刚度分析结果进行强度评定。
如果评定不合格则根据设计者的经验对初始尺寸进行修改,然后再次建模、求解,进行强度评定,如此反复,直至结果评定合格为止。
用这种方式存在设计周期长、需要进行工程试验来弥补求解的离散性等方面的不足。
图1 结构有限元模拟分析基本流程日益激烈的市场竞争已使工业产品的设计与生产厂家越来越清楚地意识到:能比别人更快地推出优秀的新产品,就能占领更多的市场。
为此,CAE 方法作为能缩短产品开发周期的得力工具,被越来越频繁地引入了产品的设计与生产的各个环节,以提高产品的竞争力。
应用基于协同结构设计优化法进行结构强度、刚度分析设计与以往的标准方法相比,具有设计周期短,设计人员工作工作量小,结构各部分结构尺寸通过优化方法确定,有利于避免材料的浪费等优点。
一个典型的CAE 优化过程通常需要经过以下的步骤来完成:(1)参数化建模:利用CAE 软件的参数化建模功能把将要参与优化的数据(设计变量)定义为模型参数,为以后软件修正模型提供可能。
ansys workbench有限元总结
![ansys workbench有限元总结](https://img.taocdn.com/s3/m/03655b7c01f69e3143329475.png)
该零件在给定载荷谱的作用下,可以承受6. 238×l03次循环。
13.疲劳,(静载荷)静应力应力循环比r=1,(恒定振幅载荷)脉动循环变应力r=0,(恒定振幅载荷)对称循环变应力r=-1,(非恒定振幅载荷)非对称循环变应力-1<r<1.疲劳强度因子0.8,设计寿命10e6,疲劳敏感曲线最小基本载荷变化幅度为50%,最大基本载荷变化幅度为200%,寿命云图,安全系数云图,雨流分析法(雨流阵列图和损伤阵列图)是用于把不规律应力历程转化为用于疲劳计算的循环的一种技术。疲劳是由于重复加载引起的,恒定振幅载荷(Constant amplitude load)是指最大和最小的应力水平恒定,比如对称循环载荷,否则称为变化振幅或者非恒定振幅载荷(Non-constant amplitude load)需要历程数据,比如随机载荷疲劳分析,应力范围 定义为 ,平均应力 定义为 ,应力幅或交变应力 是 ,应力比R是 ,当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。这就是σm=0,R=-1的情况。当施加载荷后又撤除该载荷,将发生脉动循环载荷。这就是σm=σmax/2,R=0的情况。
No Separation(不分离): 这种接触方式和绑定类似。它只适用于面。不允许接触区域的面分离,但是沿着接触面可以有小的无摩擦滑动。
Frictionless(无摩擦): 这种接触类型代表单边接触,即,如果出现分离则法向压力为零。只适用于面接触。因此,根据不同的载荷,模型间可以出现间隙。它是非线性求解,因为在载荷施加过程中接触面积可能会发生改变。假设摩擦系数为零,因此允许自由滑动。使用这种接触方式时,需注意模型约束的定义,防止出现欠约束。程序会给装配体加上弱弹簧,帮助固定模型,以得到合理的解。无摩擦约束给施加面上提供了垂直方向的限制。
基于ANSYS Workbench的主轴箱有限元分析及优化设计
![基于ANSYS Workbench的主轴箱有限元分析及优化设计](https://img.taocdn.com/s3/m/144336cc8bd63186bcebbc8a.png)
尺寸 P l为 8 4 5 7 . mm, 4 为 6 . 2 P 9 6 mm, 6 为 2 3 P 5.
4 mm, 6 P7为 3 4 5 mm, 行 圆 整 后 P1为 8 5 5 .4 进 7 mm ,
[ ]MigC n ,QagZ a ,T oH n n u neo iee t 5 n og i h o a a .If ec fd f n n l fr
4 8 2 0 .7
比 较
减 少
2 8l 3.
降 低
0. 0 7 07
提 高
2 7 9. 9
降 低
0. 1 74
f1 轴箱 优化 尺寸 对一 阶固有 频率 的灵 敏度 a主
5 结 束 语
●
暑
曼
、
首先 通过 对 主 轴 箱 进 行 有 限元 分 析 , 到 主轴 得
本 文建 立 了主 轴 箱 的 有 限 元 模 型 , 以铣 削 工 况
ANSYSWORKBENCH全船结构有限元分析流程
![ANSYSWORKBENCH全船结构有限元分析流程](https://img.taocdn.com/s3/m/4fb226ffbe1e650e53ea996a.png)
一、建立有限元模型与ANSY经典版相比,WORKBENCH操作界面更加美观,建模、分析的过程更加智能化,更容易上手。
但作为一个专注于有限元分析的软件,其日渐强大的建模模块(Geometry) 对建立复杂的船体曲面仍显得力不从心。
因此需要在其他建模软件(笔者使用了SolidWorks) 中建立船体实体模型后导入WORKBENCH完成随后的建模和分析工作。
鉴于实体单元在计算中消耗过多的内存和计算时间,本文采用概念建模(Concept) 的方法将船体板定义为无厚度的壳体(SurfaceBody) ,将船体骨架定义为线体(Line Body) ,壳体和线体划分的网格类似于经典版的壳单元(Shell) 和梁单元(Beam)。
1.导入实体模型可采用多种方法导入,如直接将模型文件拖入WORKBENCFProjectSchematic(项目概图)窗口,如图1所示。
还可双击启动Geometry模块后,在其File菜单中选择导入命令,导入后的模型如图2 所示。
模型已冻结,分为船体和上层建筑两部分,船首指向X轴正向,船体上方指向Z轴正向。
坐标原点位于船体基平面、中站面和中线面的交点处。
图2 导入后的模型2.生成舷墙(1)在中纵剖面(ZXPlane) 建立草图(NewSketch) ,进入绘制草图模式。
点击“TreeOutline ” —“Sketching ”,沿甲板边线位置绘制一条曲线。
返回模型模式,点击“ Sketching ” —“ Modeling ” —“ Extrude ”,生成一个SurfaceBody。
(2)沿甲板将船体分开,点击“Create” —“Slice ”,在“ DetailView ” 窗口“ SliceType ”选项中选择“SlicebySurface ”项,“ TargetFace ”选择上一步生成的SurfaceBody,“SliceTargets ”选项中选“ SelectedBodies ”,点选船体结构―“ Apply ” —“ Gen erate ”,原来的船体分成两部分,上面是舷墙部分,下面是船舱部分,如图3 所示。
基于ANSYS Workbench的车架结构有限元分析及拓扑优化技术研究共3篇
![基于ANSYS Workbench的车架结构有限元分析及拓扑优化技术研究共3篇](https://img.taocdn.com/s3/m/e58544bc85868762caaedd3383c4bb4cf6ecb760.png)
基于ANSYS Workbench的车架结构有限元分析及拓扑优化技术研究共3篇基于ANSYS Workbench的车架结构有限元分析及拓扑优化技术研究1基于ANSYS Workbench的车架结构有限元分析及拓扑优化技术研究随着汽车行业的快速发展,越来越多的汽车制造商在车辆设计中使用有限元分析技术来优化其设计。
车架结构作为汽车的基础组件,其性能直接影响整个车辆的安全性和稳定性。
因此,基于ANSYS Workbench的车架结构有限元分析及拓扑优化技术研究成为了汽车行业的热点问题。
首先,对车架结构进行有限元分析。
有限元分析是一种基于数值计算的工程分析方法,通过对车架结构进行建模、分析,可以预测车架在受力情况下的变形和应力分布,为车架结构的设计优化提供依据。
在分析过程中,需要考虑到汽车运行时架构所受的各种载荷,如重载、碰撞、悬挂等,并基于此建立合理的有限元模型,以获取准确的分析结果。
其次,在有限元分析的基础上,进行车架结构的拓扑优化。
拓扑优化是一种通过对物体表面进行材料、几何形状和边界条件的优化来减小物体质量而不牺牲其刚度或强度的过程。
在车架结构的拓扑优化中,需要变化车架结构的拓扑形状和尺寸,以达到最优的结构几何形状,并在不降低其强度和刚度的情况下降低其重量。
这些优化参数将被输入到有限元模型中,以验证优化方案的准确性和可行性。
最后,结合有限元分析和拓扑优化技术,开展实验研究。
实验研究是验证车架结构有限元分析和拓扑优化方案可行性的关键步骤。
通过对车架结构进行真实场景的测试和检验,可以检验分析结果和优化方案的准确性与可靠性,并对分析程序和拓扑优化技术进行改进和优化。
综上所述,基于ANSYS Workbench的车架结构有限元分析和拓扑优化技术研究是目前汽车设计领域的热点问题。
这种技术的模拟和验证可以为车辆制造商提供更加精确、高效和经济的汽车设计方案,同时也可以促进汽车行业的发展和进步综合以上研究,基于ANSYS Workbench的车架结构有限元分析和拓扑优化技术是一种可行的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于ANSYS WORKBENCH的装配体有限元分析模拟装配体的本质就是设置零件与零件之间的接触问题。
装配体的仿真所面临的问题包括:(1)模型的简化。
这一步包含的问题最多。
实际的装配体少的有十几个零件,多的有上百个零件。
这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。
在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。
(2)零件之间的联接。
装配体的一个主要特征,就是零件多,而在零件之间发生了关系。
我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。
如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。
如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢?(3)材料属性的考虑。
在一个复杂的装配体中所有的零件,其材料属性多种多样。
我们在初次分析的时候,可以只考虑其线弹性属性。
但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。
此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。
(4)有限元网格的划分。
我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙的网格模型。
但是如果从HYPERMESH的角度来看,ANSYS自动划分的网格,很多都是不合理的,质量较差而不能使用。
那么对于装配体中的每个零件,我们该如何划分网格?对于每一个零件,我们是否要对之进行切割形成规则的几何体后,然后尽量使用六面体网格?如果我们这样做的话,那么单单划分网格这一项,就要消耗我们大量的时间。
而且,当这种网格划分完以后,我们还需要反复加密网格,反复计算,直到结果的收敛。
就如同减速器这样的一个装配体,稍微粗略的划分网格,都是10万多个节点,如果我们网格划分得细密一些,很容易上百万个节点。
这么大量的节点,一般的笔记本和台式机计算起来都很困难。
这给我们的仿真工作带来了极大的困扰。
这些问题都是前处理中出现的。
如何解决这些问题,恐怕要我们广大的CAE工程师和CAE研究人员共同努力,从各个侧面进行研究,得到一些个别的成果,然后在某些时候,再集成起来,得到具有普遍指导意义的方法和结论。
ANSYS WORKBENCH提供的六种接触类型不少朋友提到了关于接触类型的问题,对于如何使用接触类型弄不清楚。
为了帮助刚入门的朋友们了解这些接触类型,笔者首先翻译了ANSYS 关于接触类型的帮助,然后对之进行点评。
翻译的部分帮助如下:ANSYS WORKBENCH提供了6种接触类型,这些接触类型大多只对面接触使适用。
(1)bonded.使用绑定以后,在接触面或者接触边之间不存在切向的相对滑动或者法向的相对分离。
这是缺省的接触类型,适用于所有的接触区域(实体接触,面接触,线接触)。
(2)no separation.这与绑定类似。
在接触面或者接触线之间不允许发生法向的相对分离,但是允许发生少量的切向无摩擦滑动。
(3)frictionless:用于模拟无摩擦的单边接触。
所谓单边接触,就是说,一旦两个物体之间出现了分离,则法向力就为零。
因此当外力发生改变时,接触面之间可能会分开,也可能会闭合。
这种情况下假设摩擦系数为零,即当发生切向相对滑动时,没有摩擦力。
(4)rough:与无摩擦接触类型相似。
它模拟非常粗糙的接触,保证两个物体之间只是发生静摩擦,而不会发生切向的滑移,从而不会产生滑动摩擦。
它相当于在两个物体之间施加了无限大的摩擦系数。
(5)frictional:有摩擦的接触。
这是最实际的情况,两个接触面之间既可以法向分离,也可以切向滑动。
当切向外力大于最大静摩擦力后,发生切向滑动。
一旦发生切向滑动后,会在接粗面之间出现滑动摩擦力,该滑动摩擦力要根据正压力和摩擦系数来计算。
此时需要用户输入摩擦系数。
(6)forced frictional sliding:该选项只对刚体动力学适用。
它与frictional类型类似,只是没有静摩擦阶段。
此时,系统会在每个接触点上施加一个切向的阻力。
该切向阻力正比于法向接触力。
到底使用哪种接触类型,取决于你需要解决的问题。
如果(1)需要模拟两个物体之间轻微的分离(2)要获得接接触面附近的应力,那么可以考虑下列三种接触类型:frictionless,rough和frictional.它们可以模拟间隙,并能更精确的建模真实的接触区域。
不过使用这三种接触会导致更长的求解时间,也可能会导致收敛问题。
如果出现了收敛问题,那么可以对接触区域使用更细的网格。
笔者的点评如下:装配体的分析中,如何对两个物体之间的连接关系进行建模是一个关键技术问题。
对于连接关系,总体考虑如下:(1)如果两个相邻物体在分析中始终不会有相对运动,最好直接在DM中用多体部件来表达,这最省事。
(2)如果两个相邻物体在分析中存在相对运动,而我们并不关注其连接点附近的应力情况,那么用运动副来表述更简单。
(3)如果相邻两物体在分析中有相对运动,而且我们对这种相对运动的接触面及其附近点的应力情况感兴趣,那么使用接触。
关于接触类型的分类问题。
实际上,接触就是依据两个物体之间是否有切向和法向的相对分离来进行划分的。
在两个相互接触的物体之间,也只能发生这两种运动。
要么,在法线方向上可以分开;要么在切线方向上可以发生相对移动。
如果(1)法线方向不可分开,切线方向也不可发生相对滑动,则使用boneded。
(2)法线方向不可分开,切线方向可以发生轻微的无摩擦滑动,则使用no separation.(3) 法线方向可以分开,切线方向不可以发生相对滑动,则用rough.(4) 法线方向可以分开,切线方向可以发生相对滑动,且没有摩擦力。
则是frictionless。
(5) 法线方向可以分开,切线方向可以发生相对滑动,存在摩擦力。
则是frictional。
基于Ansys Workbench的接触分析例子1前面一篇基于Ansys经典界面的接触分析例子做完以后,不少朋友希望了解该例子在Workbench中是如何完成的。
我做了一下,与大家共享,不一定正确。
毕竟这种东西,教科书上也没有,我只是按照自己的理解在做,有错误的地方,恳请指正。
1.问题描述一个钢销插在一个钢块中的光滑销孔中。
已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。
钢块与钢销的弹性模量均为36e6,泊松比为0.3.由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。
现在要对该问题进行两个载荷步的仿真。
(1)要得到过盈配合的应力。
(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。
2.问题分析由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。
进行该分析,需要两个载荷步:第一个载荷步,过盈配合。
求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。
第二个载荷步,拔出分析。
往外拉动钢销1.7 units,对于耦合节点上使用位移条件。
打开自动时间步长以保证求解收敛。
在后处理中每10个载荷子步读一个结果。
本篇只谈第一个载荷步的计算。
3.生成几何体上述问题是ANSYS自带的一个例子。
对于几何体,它已经编制了生成几何体的命令流文件。
所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。
(3.1)首先打开ANSYS APDL14.5.(3.2)然后读入已经做好的几何体。
从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框找到ANSYS自带的文件\Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp 【OK】后四分之一几何模型被导入,结果如下图(3.3)导出几何模型从【工具菜单】】-->【File】-->【Export】打开导出文件对话框,在该对话框中设置如下即把数据库中的几何体导出为一个block.igs文件。
【OK】以后该文件被导出。
(3.4)退出ANSYS APDL14.5.选择【OK】退出经典界面。
4.打开Ansys WorkBench,并新建一个静力学分析系统。
结果如下图导入几何体模型。
在Geometry单元格中,选择Import Geometry -->Browse,如下图找到上一步所生成的block.igs文件。
则该静力学系统示意图更新如下。
可见,几何单元格后面已经打勾,说明文件已经关联。
5.浏览几何模型双击Geometry单元格,打开几何体。
在弹出的长度单位对话框内,选择米(Meter)的单位。
然后按下工具栏中的Generate按钮如下图则主窗口中模型如下图可见,长方形的变长是2m,这与题目中给定的大小是一致的。
然后退出DesignModeler,则又重新回到WorkBench界面中。
6.定义材料属性双击Engineering Data,则默认材料是钢材。
这里直接修改该钢材的属性即可。
只有线弹性材料属性:弹性模量36E6和泊松比0.3然后在工具栏中选择“Return To Project”以返回到WorkBench界面中。
7.创建接触在主窗口中分别选择目标面,接触面如下然后对该接触的细节面板设置如下其中,(1)说明接触类型是带摩擦的接触,摩擦系数是0.2,是非对称接触(2)指明法向接触面的刚度因子是0.1.8.划分网格双击Model单元格进入到Mechanical中。