数据结构课程设计--二叉排序树
数据结构c语言课设-二叉树排序
题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。
4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。
前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。
要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。
2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。
数据结构 二叉排序树
9.6.2 哈希函数的构造方法
构造哈希函数的目标:
哈希地址尽可能均匀分布在表空间上——均 匀性好; 哈希地址计算尽量简单。
考虑因素:
函数的复杂度; 关键字长度与表长的关系; 关键字分布情况; 元素的查找频率。
一、直接地址法 取关键字或关键字的某个线性函数值为哈希地址 即: H(key) = key 或: H(key) = a* key + b 其中,a, b为常数。 例:1949年后出生的人口调查表,关键字是年份 年份 1949 1950 1951 … 人数 … … … …
9.4 二叉排序树
1.定义:
二叉排序树(二叉搜索树或二叉查找树) 或者是一棵空树;或者是具有如下特性的二叉树
(1) 若它的左子树不空,则左子树上所有结点的 值均小于根结点的值;
(2) 若它的右子树不空,则右子树上所有结点 的值均大于等于根结点的值; (3) 它的左、右子树也都分别是二叉排序树。
例如:
H(key)
通常设定一个一维数组空间存储记录集合,则 H(key)指示数组中的下标。
称这个一维数组为哈希(Hash)表或散列表。 称映射函数 H 为哈希函数。 H(key)为哈希地址
例:假定一个线性表为: A = (18,75,60,43,54,90,46) 假定选取的哈希函数为
hash3(key) = key % 13
H(key) = key + (-1948) 此法仅适合于: 地址集合的大小 = = 关键字集合的大小
二、数字分析法
假设关键字集合中的每个关键字都是由 s 位数 字组成 (u1, u2, …, us),分析关键字集中的全体, 并从中提取分布均匀的若干位或它们的组合作为 地址。 例如:有若干记录,关键字为 8 位十进制数, 假设哈希表的表长为100, 对关键字进行分析, 取随机性较好的两位十进制数作为哈希地址。
数据结构课程设计
“数据结构”课程设计报告二叉排序树的查找与性能分析学生姓名:段晓宣,张静指导教师:陈少军所在系:电子信息系所学专业:计算机科学与技术年级: 2010级计算机(1)班目录第一章需求分析1.1选题要求 (3)1.2选题的背景与意义 (3)1.3本组课程设计的目标 (3)1.4人员组成和分工 (3)第2章概要分析 (4)2.1系统数据流图 (4)2.2原始数据 (4)2.3输出数据 (4)2.4对数据的处理 (5)2.5数据结构 (5)2.6模块划分 (5)第3章详细设计 (6)3.1二叉排序树的创建 (6)3.2二叉排序树的插入 (7)3.3二叉排序树的查找 (7)3.4计算多数据的平均查找长度 (9)3.5主函数 (9)第4章用户手册 (10)4.1 用户须知 (10)第5章系统测试 (11)项目总结 (12)参考文献 (13)二叉树排序树的查找与性能分析摘要:21世纪是信息化的时代,计算机深入到生活的各个领域。
随着计算机的发展,许多高科技产品如雨后春笋应运而生。
但究其本质而言,无非是以前的理论加以包装。
对于数据控制、管理及处理等方面也可见一斑。
在如今应用的计算机的数据存储方式仍然主要以线性,树型,图型等为主要的及结构。
因此了解并掌握数据结构的知识是很有必要的。
在此次实训期间,本组人员通过运用所学数据结构的知识,进行以二叉排序树的查找与性能分析为题的课程设计,在同组人员的共同努力下,基本实现了:1.创建二叉排序树2.利用文件存储二叉排序树3.二叉排序树的插入4.二叉排序树的查找5.二叉排序树平均查找长度的算法第1章需求分析1.1选题要求(1)根据输入的先序及递归建立二叉排序树;(2)通过文件,向二叉排序树插入结点,并生成二叉树;(3)设置报名号为关键字,可以根据关键字进行查找;(5)查找的同时可以判断比较的次数;(6)根据查找的算法计算出10000个数据平均查找长度;1.2选题的背景与意义(1)树型存储结构数据存储结构中重要的组成部分,二叉树由是树的重点。
数据结构-二叉排序树
二叉排序树操作一、设计步骤1)分析课程设计题目的要求2)写出详细设计说明3)编写程序代码,调试程序使其能正确运行4)设计完成的软件要便于操作和使用5)设计完成后提交课程设计报告(一)程序功能:1)创建二叉排序树2)输出二叉排序树3)在二叉排序树中插入新结点4)在二叉排序树中删除给定的值5)在二叉排序树中查找所给定的值(二)函数功能:1) struct BiTnode 定义二叉链表结点类型包含结点的信息2) class BT 二叉排序树类,以实现二叉排序树的相关操作3) InitBitree() 构造函数,使根节点指向空4) ~BT () 析构函数,释放结点空间5) void InsertBST(&t,key) 实现二叉排序树的插入功能6) int SearchBST(t,key) 实现二叉排序树的查找功能7) int DelBST(&t,key) 实现二叉排序树的删除功能8) void InorderBiTree (t) 实现二叉排序树的排序(输出功能)9) int main() 主函数,用来完成对二叉排序树类中各个函数的测试二、设计理论分析方法(一)二叉排序树定义首先,我们应该明确所谓二叉排序树是指满足下列条件的二叉树:(1)左子树上的所有结点值均小于根结点值;(2)右子数上的所有结点值均不小于根结点值;(3)左、右子数也满足上述两个条件。
根据对上述的理解和分析,我们就可以先创建出一个二叉链表结点的结构体类型(struct BiTNode)和一个二叉排序树类(class BT),以及类中的构造函数、析构函数和其他实现相关功能的函数。
(二)插入函数(void InsertBST(&t,key))首先定义一个与BiTNode<k> *BT同一类型的结点p,并为其申请空间,使p->data=key,p->lchild和p->rchild=NULL。
二叉排序树实验报告
深圳大学实验报告
课程名称:数据结构实验与课程设计
实验项目名称:二叉排序树实验
学院:计算机与软件学院
专业:
指导教师:
报告人:学号:班级: 3班
实验时间: 2012-11-28 实验报告提交时间: 2012-12-5
教务部制
int main(int argc,char *argv[])
{
int t[32];
int i,j,Key;
int TestNum,SampleNum;
// freopen("cin.txt","r",stdin);
// freopen("cout.txt","w",stdout);
BiSortTree *BST=new BiSortTree;
cin>>TestNum;
for(i=0;i<TestNum;i++){
cin>>SampleNum;
for(j=0;j<SampleNum;j++) cin>>t[j];
BST->CreateBST(t,SampleNum);
cin>>Key;
BST->SearchBST(Key);
cout<<BST->BisSuccess<<" "<<BST->BisPos <<" "<<BST->BisCount<<endl;
}
return 0;
}
运行截图:
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。
数据结构二叉排序树
05
13
19
21
37
56
64
75
80
88
92
low mid high 因为r[mid].key<k,所以向右找,令low:=mid+1=4 (3) low=4;high=5;mid=(4+5) div 2=4
05
13
19
low
21
37
56
64
75
80
88
92
mid high
因为r[mid].key=k,查找成功,所查元素在表中的序号为mid 的值
平均查找长度:为确定某元素在表中某位置所进行的比 较次数的期望值。 在长度为n的表中找某一元素,查找成功的平均查找长度:
ASL=∑PiCi
Pi :为查找表中第i个元素的概率 Ci :为查到表中第i个元素时已经进行的比较次数
在顺序查找时, Ci取决于所查元素在表中的位置, Ci =i,设每个元素的查找概率相等,即Pi=1/n,则:
RL型的第一次旋转(顺时针) 以 53 为轴心,把 37 从 53 的左上转到 53 的左下,使得 53 的左 是 37 ;右是 90 ,原 53 的左变成了 37 的右。 RL型的第二次旋转(逆时针)
一般情况下,假设由于二叉排序树上插入结点而失去 平衡的最小子树的根结点指针为a(即a是离插入结点最 近,且平衡因子绝对值超过1的祖先结点),则失去平衡 后进行调整的规律可归纳为下列四种情况: ⒈RR型平衡旋转: a -2 b -1 h-1 a1
2.查找关键字k=85 的情况 (1) low=1;high=11;mid=(1+11) / 2=6
05
13
19
21
数据结构第六章二叉树的应用教案
6.3 哈夫曼树
• • 最优树的定义 如何构造最优树
6.3.1 基本术语
路径和路径长度
若在一棵树中存在着一个结点序列 k1,k2,…,kj,使得ki是ki+1的 双亲(1≤i<j),则称此结点序列是 从k1到kj的路径从k1到kj所经过的 分支数称为这两点之间的路径长度
结点的权和带权路径长度
权 给结点赋上一个有某种意义 的实数,我们称为权。 带权路径长度 从根结点到该结点之间路径 长度与该结点上权的乘积。
23 设 key = 48
T
20 10 T 23 T 25
T T
30
T
40 35 T
bool Find(BTreeNode* T, ElemType& item) if(T==NULL) return false; //查找失败 else { if(item==T->data) { item=T->data; return true; } else if(item<T->data) //向左子树继续查找 return Find(T->left, item); else return Find(T->right, item); } //向右子树继续查找
ri r2i ri r2i 1
(小顶堆)
或
ri r2i ri r2i 1
(大顶堆)
12, 36, 27, 65, 40, 34, 98, 81, 73, 55, 49
是小顶堆
12, 36, 27, 65, 40, 14, 98, 81, 73, 55, 49
不是堆
子树上查找;
3)大于根结点的关键字,则继续在右
子树上查找。
数据结构实验三——二叉树基本操作及运算实验报告
《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
二叉排序树课程设计
二叉排序树课程设计一、课程目标知识目标:1. 学生能够理解二叉排序树的基本概念和性质,掌握其结构特点和应用场景。
2. 学生能够掌握二叉排序树的插入、删除和查找操作,并了解其时间复杂度。
3. 学生能够理解二叉排序树与其他排序算法的关系,了解其在排序中的应用。
技能目标:1. 学生能够运用所学知识,独立构建二叉排序树,并实现插入、删除和查找功能。
2. 学生能够分析二叉排序树的性能,对其进行优化,提高排序效率。
3. 学生能够运用二叉排序树解决实际问题,如数据排序、查找等。
情感态度价值观目标:1. 学生通过学习二叉排序树,培养对数据结构和算法的兴趣,提高解决问题的能力。
2. 学生在学习过程中,学会合作、交流,培养团队精神和共享意识。
3. 学生能够认识到二叉排序树在实际应用中的价值,激发对计算机科学的热爱。
本课程针对高中年级学生,课程性质为理论与实践相结合。
在教学过程中,注重启发式教学,引导学生主动探究、实践。
根据学生特点和教学要求,课程目标具体、可衡量,以便学生和教师能够清晰地了解课程的预期成果。
课程目标的分解为具体的学习成果,为后续的教学设计和评估提供依据。
二、教学内容1. 引入二叉排序树的概念,讲解其定义、性质和基本操作。
- 理解二叉树的基础知识,回顾二叉树的遍历方法。
- 介绍二叉排序树的定义,阐述其特点及应用场景。
- 分析二叉排序树的性质,如二叉排序树的中序遍历结果为有序序列。
2. 探讨二叉排序树的构建、插入、删除和查找操作。
- 讲解二叉排序树的构建方法,学会从无序数据建立二叉排序树。
- 分析插入、删除和查找操作的步骤,理解它们的时间复杂度。
- 举例说明如何利用二叉排序树实现数据排序和查找。
3. 分析二叉排序树的性能及优化方法。
- 探讨二叉排序树的高度、平衡因子等性能指标。
- 介绍常见的优化方法,如平衡二叉树(AVL树)和红黑树。
4. 实践环节:二叉排序树的应用。
- 设计实践题目,让学生动手实现二叉排序树的基本操作。
二叉排序树课程设计
二叉排序树课程设计一、课程目标知识目标:1. 理解二叉排序树的概念和特点;2. 掌握二叉排序树的插入、删除和查找操作;3. 能够分析二叉排序树的时间复杂度;4. 了解二叉排序树在实际应用中的优势。
技能目标:1. 能够手动构建二叉排序树并进行基本操作;2. 能够运用编程语言实现二叉排序树的基本功能;3. 能够分析并解决二叉排序树相关的问题;4. 能够运用二叉排序树解决实际排序和查找问题。
情感态度价值观目标:1. 培养学生对数据结构和算法的兴趣,激发学习热情;2. 培养学生的逻辑思维能力和问题解决能力;3. 培养学生的团队协作意识,学会与他人共同分析、解决问题;4. 培养学生严谨的科学态度,注重算法的正确性和效率。
课程性质:本课程为计算机科学领域的数据结构与算法课程,旨在让学生掌握二叉排序树的基本概念和操作,提高学生的编程能力和逻辑思维能力。
学生特点:学生具备基本的计算机知识和编程基础,对数据结构有一定了解,但对二叉排序树的认识可能较浅。
教学要求:结合学生特点,采用讲解、实践和讨论相结合的教学方法,使学生在理解二叉排序树理论知识的基础上,能够动手实践并解决实际问题。
在教学过程中,注重培养学生的自主学习能力和团队合作精神,提高学生的综合素质。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程打下坚实基础。
二、教学内容1. 引入二叉排序树的概念,阐述其定义、性质和应用场景;- 教材章节:第三章第一节“二叉排序树的定义和性质”2. 讲解二叉排序树的插入、删除、查找操作及其实现方法;- 教材章节:第三章第二节“二叉排序树的操作”3. 分析二叉排序树的性能特点,包括时间复杂度和空间复杂度;- 教材章节:第三章第三节“二叉排序树的性能分析”4. 介绍二叉排序树在实际应用中的优势,如排序、查找等;- 教材章节:第三章第四节“二叉排序树的应用”5. 结合实例,让学生动手实践二叉排序树的构建和操作;- 教材章节:第三章实例分析与编程练习6. 总结二叉排序树的特点和适用场景,与其他排序方法进行对比;- 教材章节:第三章总结与拓展教学进度安排:1. 第1课时:引入二叉排序树的概念、性质和应用场景;2. 第2课时:讲解二叉排序树的插入、删除、查找操作;3. 第3课时:分析二叉排序树的性能特点;4. 第4课时:介绍二叉排序树在实际应用中的优势;5. 第5课时:结合实例,学生动手实践二叉排序树的构建和操作;6. 第6课时:总结二叉排序树,与其他排序方法进行对比。
数据结构二叉排序树实验报告
*bst=s;
}
else if(key<(*bst)->key)
InsertBST(&((*bst)->lchild),key);//将s插入左子串
else if(key>(*bst)->key)
InsertBST(&((*bst)->rchild),key);//将s插入右子串
InsertBST(BSTree *bst,int key)
inorder(BSTree bt)
3、完整的程序:
#include"stdio.h"
#include"malloc.h"
typedef struct node
{
int key;//关键字的值
struct node *lchild,*rchild;//左右指针
}BSTNode,*BSTree;
元素类型为整形和指针形。
2、每个模块的分析:
(1)主程序模块:
main()
{
BSTree bt;
printf("please insert the numbers( 以0作为结束标志):\n");
CreateBST(&bt); /*构造排序二叉树*/
printf("\n中序遍历结果是:");
s->rchild=NULL;
*bst=s;
}
else if(key<(*bst)->key)
InsertBST(&((*bst)->lchild),key);//将s插入左子串
else if(key>(*bst)->key)
二叉排序树(二叉链表结构存储)数据结构课程设计报告
二叉排序树(二叉链表结构存储)数据结构课程设计报告目录1需求分析 (1)1.1课程设计题目、任务及要求 (1)1.2课程设计思想 (1)2概要设计 (2)2.1 二叉排序树的定义 (2)2.2二叉链表的存储结构 (2)2.3建立二叉排序树 (2)2.4二叉排序树的生成过程 (3)2.5中序遍历二叉树 (3)2.6二叉排序树的查找 (3)2.7二叉排序树的插入 (4)2.8平均查找长度 (4)3详细设计和实现 (4)3.1主要功能模块设计 (4)3.2主程序设计 (5)4调试与操作说明 (12)4.1程序调试 (12)4.2程序操作说明 (13)总结 (16)致谢 (17)参考文献 (19)1需求分析1.1课程设计题目、任务及要求二叉排序树。
用二叉链表作存储结构(1)以(0)为输入结束标志,输入数列L,生成一棵二叉排序树T;(2)对二叉排序树T作中序遍历,输出结果;(3)计算二叉排序树T查找成功的平均查找长度,输出结果;(4)输入元素x,查找二叉排序树T:若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”;1.2课程设计思想建立二叉排序树采用边查找边插入的方式。
查找函数采用递归的方式进行查找。
如果查找成功则不应再插入原树,否则返回当前结点的上一个结点。
然后利用插入函数将该元素插入原树。
对二叉排序树进行中序遍历采用递归函数的方式。
在根结点不为空的情况下,先访问左子树,再访问根结点,最后访问右子树。
由于二叉排序树自身的性质,左子树小于根结点,而根结点小于右子树,所以中序遍历的结果是递增的。
计算二插排序树的平均查找长度时,仍采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。
平均查找长度就等于s/i(i为树中结点的总个数)。
删除结点函数,采用边查找边删除的方式。
如果没有查找到,则不对树做任何的修改;如果查找到结点,则分四种情况分别进行讨论:1、该结点左右子树均为空;2、该结点仅左子树为空;3、该结点仅右子树为空;4、该结点左右子树均不为空。
《数据结构》课程设计--二叉排序树调整为平衡二叉树
《数据结构》课程设计--二叉排序树调整为平衡二叉树2013-2014学年第一学期《数据结构》课程设计报告题目:二叉排序树调整为平衡二叉树专业:网络工程班级:二姓名:汪杰指导教师:刘义红成绩:计算机与信息工程系2013年 1 月 2日目录1、问题描述………………………………………2、设计思路(数学模型的选择) ……………3、二叉排序树和平衡二叉树定义…………………………4、程序清单……………………………5.程序功能说明……………………………5.运行与调试分析………………………6.总结…………………………………1.问题描述输入带排序序列生成二叉排序树,并调整使其变为平衡二叉树,运行并进行调试。
2.设计思路平衡二叉树的调整方法平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是,则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。
具体步骤如下:⑴每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值均不超过1,则平衡二叉树没有失去平衡,继续插入结点;⑵若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点;⑶判断新插入的结点与最小不平衡子树的根结点的关系,确定是哪种类型的调整;⑷如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或LR型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;3.二叉排序树和平衡二叉树定义二叉排序树二叉排序树(Binary Sort Tree)又称二叉查找树。
二叉排序书课程设计
二叉排序书课程设计一、课程目标知识目标:1. 让学生理解二叉排序树的概念、性质和基本操作,掌握二叉排序树的插入、删除和查找过程。
2. 使学生能够运用二叉排序树解决实际问题,如数据排序和查找。
技能目标:1. 培养学生运用二叉排序树进行数据组织和分析的能力。
2. 培养学生编写和调试二叉排序树相关程序的能力。
情感态度价值观目标:1. 培养学生对数据结构和算法的兴趣,激发学生学习主动性和积极性。
2. 培养学生勇于克服困难、独立解决问题的精神,增强团队合作意识。
3. 培养学生认识到二叉排序树在实际应用中的价值,提高对计算机科学的认识。
课程性质:本课程为计算机科学领域的数据结构与算法课程,以二叉排序树为主题,结合实际案例,使学生掌握二叉排序树的相关知识。
学生特点:学生已具备一定的编程基础和逻辑思维能力,但对二叉排序树的概念和操作尚不熟悉。
教学要求:1. 通过讲解、示例和练习,使学生掌握二叉排序树的基本原理和操作。
2. 注重理论与实践相结合,提高学生解决实际问题的能力。
3. 鼓励学生主动思考、提问,培养良好的学习习惯。
4. 强化编程实践,提高学生的编程技能和逻辑思维能力。
二、教学内容1. 引言:介绍二叉排序树的基本概念,及其在数据结构和算法中的应用。
- 相关章节:课本第X章“二叉树与二叉排序树”2. 二叉排序树的性质与定义:- 内容:二叉排序树的定义、性质、特点- 相关章节:课本第X章“二叉排序树的性质与定义”3. 二叉排序树的插入操作:- 内容:插入过程、算法实现、示例演示- 相关章节:课本第X章“二叉排序树的插入操作”4. 二叉排序树的删除操作:- 内容:删除过程、算法实现、示例演示- 相关章节:课本第X章“二叉排序树的删除操作”5. 二叉排序树的查找操作:- 内容:查找过程、算法实现、示例演示- 相关章节:课本第X章“二叉排序树的查找操作”6. 二叉排序树的应用实例:- 内容:实际案例、程序编写、问题解决- 相关章节:课本第X章“二叉排序树的应用”7. 二叉排序树的遍历:- 内容:遍历方法、算法实现、示例演示- 相关章节:课本第X章“二叉树的遍历”8. 总结与拓展:- 内容:二叉排序树的优缺点、拓展知识、高级话题- 相关章节:课本第X章“二叉排序树的总结与拓展”教学进度安排:1. 引言与基本概念(1课时)2. 二叉排序树的性质与定义(1课时)3. 插入与删除操作(2课时)4. 查找操作(1课时)5. 应用实例与程序编写(2课时)6. 遍历方法(1课时)7. 总结与拓展(1课时)三、教学方法1. 讲授法:- 通过对二叉排序树的基本概念、性质和操作进行系统讲解,使学生建立完整的知识体系。
二叉排序树的应用
3.2.2插入模块
在二叉排序树中插入新结点,要保证插入后的二叉树仍符合二叉排序树的定义。插入过程:若二叉排序树为空,则待插入结点*p作为根结点插入到空树中;当非空时,将待插结点关键字p->item和树根关键字t->item进行比较,若p->item=t->item,则无需插入,若p->item<t->item则插入到根的左子树中,若p->item>t->item,则插入到根的右子树中。而子树中的插入过程和在树中的插入过程相同,如此进行下去,直到把结点*P作为一个新的树叶插入到二叉排序树中,或者直到发现树已有相同关键字的结点为止。其算法如下:
{
btree *stack[100];
btree *p = NULL;
btree *q = NULL;
int sign = 0;
int top = -1;
p = b;
《数据结构》
课程设计报告书
题目:二叉排序树的实现
系别:计算机科学与应用
1设计要求
(1)用顺序和二叉链表作存储结构
(2)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T;
(3)对二叉排序树T作中序遍历,输出;
(4)输入元素x,查找二叉排序树T,若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”;
int main(void)
{
int a = 0;
int x = 0;
int b = 0;
btree *head = NULL;
btree *s = NULL;
head = (btree *)malloc(sizeof(btree));
数据结构课程设计_二叉树操作
数据结构课程设计_⼆叉树操作数据结构课程设计题⽬:⼆叉树的操作学⽣姓名:学号:系部名称:计算机科学与技术系专业班级:指导教师:课程设计任务书第⼀章程序要求1)完成⼆叉树的基本操作。
2)建⽴以⼆叉链表为存储结构的⼆叉树;3)实现⼆叉树的先序、中序和后序遍历;4)求⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。
第⼆章算法分析建⽴以⼆叉链表为存储结构的⼆叉树,在次⼆叉树上进⾏操作;1先序遍历⼆叉树的操作定义为:若⼆叉树唯恐则为空操作;否则(1)访问根节点;(2)先序遍历做字数和;(3)先序遍历有⼦树;2中序遍历⼆叉树的操作定义为:若⼆叉树为空,则空操作;否则(1)中序遍历做⼦树;(2)访问根节点;(3)中序遍历有⼦树;3后续遍历⼆叉树的操作定义为:若⼆叉树为空则为空操作;否则(1)后序遍历左⼦树;(2)后序遍历右⼦树;(3)访问根节点;⼆叉树的结点总数、叶⼦结点个数及⼆叉树的深度。
第三章⼆叉树的基本操作和算法实现⼆叉树是⼀种重要的⾮线性数据结构,是另⼀种树形结构,它的特点是每个节点之多有两棵⼦树(即⼆叉树中不存在度⼤于2的结点),并且⼆叉树的结点有左右之分,其次序不能随便颠倒。
1.1⼆叉树创建⼆叉树的很多操作都是基于遍历实现的。
⼆叉树的遍历是采⽤某种策略使得采⽤树形结构组织的若⼲年借点对应于⼀个线性序列。
⼆叉树的遍历策略有四种:先序遍历中续遍历后续遍历和层次遍历。
基本要求1 从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。
2 输出⼆叉树。
3 对⼆叉树进⾏遍历(先序,中序,后序和层次遍历)4 将⼆叉树的遍历打印出来。
⼀.问题描述⼆叉树的很多操作都是基于遍历实现的。
⼆叉树的遍历是采⽤某种策略使得采⽤树型结构组织的若⼲结点对应于⼀个线性序列。
⼆叉树的遍历策略有四种:先序遍历、中序遍历、后序遍历和层次遍历。
⼆.基本要求1.从键盘接受输⼊数据(先序),以⼆叉链表作为存储结构,建⽴⼆叉树。
2.输出⼆叉树。
二叉排序树课程设计报告
计算机科学与技术系课程设计报告2008~2009学年第二学期课程数据结构与算法课程设计名称二叉排序树运算学生姓名学号专业班级指导教师2009 年6月一、问题分析和任务定义题目:二叉排序树运算任务定义:对一组数据构造二叉排序树,并在二叉排序树中实现多种方式的查找。
基本任务:(1)选择合适的存储结构构造二叉排序树;(2)对二叉排序树T作中序遍历,输出结果;(3)在二叉排序树中实现多种方式的查找,并给出二叉排序树中插入和删除的操作。
(4)尽量给出“顺序和链式”两种不同结构下的操作,并比较。
若要完成题目的要求,需要解决以下几个问题:1、选择一种数据结构存储二叉树的信息。
2、建立一个新的二叉排序树3、在二叉排序树中插入,删除,查找相关节点二、数据结构的选择和概要设计1、数据结构的选择:题目要求选择合适的存储结构构造二叉排序树,我选择链式结构存储。
用链表的方式构造节点,存储二叉排序树中的节点!节点类型和指针类型如下!typedef struct node{int key;int other ;struct node *lchild,*rchild;}Bstnode;2、概要设计:为了完成所需的功能,需要的函数及其功能如下:main():主函数模块Bsearch():查找相应的节点InsertBST ():插入一个新节点CreateBST ():创建一棵二叉排序树Inorder ():对二叉排序树进行中序遍历menu():主函数显示菜单模块DeleteBST ():删除节点主函数流程图:图(a)主函数流程图子函数流程图:插入子函数InsertBST ()的流程图:图(b)子函数InsertBST ()的流程图子函数Bsearch(p)的流程图图(c)子函数Bsearch(p)的流程图三、详细设计和编码二叉排序树的基本操作1、二叉排序树的查找算法(1)若二叉排序树为空,则查找失败。
(2)否则,将根结点的关键字与待查关键字进行比较,若相等,则查找成功;若根节点关键字大于待查值,则进入左子树重复次步骤,否则,进入右子树进行此步骤;若在查找过程中遇到二叉排序树的叶子节点时,还没有找到待查节点,则查找不成功。
数据结构课程设计-二叉树
《数据结构》课程设计说明书二叉平衡树算法实现班级组别:二指导老师:完成时间:2019.6.19 组长:学号:05 组员1:学号:33 组员2:学号:组员3:学号:成绩:目录目录一、课题设计任务 (2)二、任务分析 (2)1. 数据逻辑结构(算法描述) (2)2. 关键算法思想 (3)三、概要设计(总体设计) (3)四、详细设计 (4)1. 数据存储结构 (4)2. 各模块流程图及算法 (5)3. 算法效率分析 (9)五、测试 (10)1. 删除 (10)2. 查找 (10)3. 遍历 (10)六、课程设计心得 (10)七、参考文献 (11)八、附录 (11)一、课题设计任务针对给定的序列建立存储结构,实现各种遍历;实现树的生成,实现数据的查找、插入、删除,输出各种遍历。
二、任务分析1.数据逻辑结构(算法描述)//中序--递归void InorderTra(PNode root) {if (root) {InorderTra(root->leftChild); //中序遍历左子树printf("%d\t", root->keyValue); //访问根节点InorderTra(root->rightChild); //中序遍历右子数}}//前序--递归void PreOrderTra(PNode root) {if (root != NULL) {printf("%d\t", root->keyValue); //访问根节点PreOrderTra(root->leftChild); //前序遍历左子树PreOrderTra(root->rightChild); //前序遍历右子数}}//后序--递归void PostOrderTra(PNode root) {if (root) {PostOrderTra(root->leftChild); //后序遍历左子树PostOrderTra(root->rightChild); //后序遍历右子树printf("%d\t", root->keyValue); //访问根节点}}//求树的最大深度int getDeep(PNode root) {if (!root) {return 0;}int leftDeep = getDeep(root->leftChild) + 1;int rightDeep = getDeep(root->rightChild) + 1;return leftDeep > rightDeep ? leftDeep : rightDeep;}//从根节点开始打印出所有层void printByLevel(PNode root, int deep) {for (int i = 0; i < deep; i++) {LevelOrderTra(root, i);}printf("\n");}2.关键算法思想树的生成过程保持左右平衡,插入删除过程中保证树的平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构课程设计--二叉排序树
成绩: __________课程设计(数据结构)
院、系计算机与软件学院专业软件工程
姓名学号
指导教师
二零一二年十二月二十五日
目录
1.绪论 (1)
2.课程设计 (2)
2.1课程设计目的 (2)
2.2课程设计要求 (2)
3.课程实验内容 (2)
3.1普通二叉排序树的插入,删除 (2)
3.2按递增顺序插入N个整数,并按同样顺序删除 (4)
3.3按递增顺序插入N个整数,并按相反顺序删除 (4)
3.4按随机顺序插入N个整数,并按随机顺序删除 (4)
4.课程设计实验结果 (6)
4.1课程实验数据 (6)
4.2实验操作效率比较图 (6)
I
二叉排序树
魏麟祥
南京信息工程大学计算机与软件学院,南京 210044
摘要:本文主要是对二叉排序树的操作效率进行探讨,先从二叉排序树的定义来进行分析,然后分析其主要的性质。
通过对其性质的分析,让人们了解二叉排序树的运行。
从理论上分析二叉排序树的创建、删除、插入以及遍历,运用C 语言算法编程实现对普通二叉排序树制定操作,通过普通二叉排序树对实例的运行时间来判断普通二叉排序树的运行效率。
关键词:二叉排序树;C语言;随机函数
1.绪论
通过对数据结构的不断学习,对二叉排序树有了一定的了解。
在教材中,只是从理论上说明了二叉排序树的定义及其效率,并没有用具体算法的在计算机上实现。
就此问题,本文在其理论的基础上给出了具体的算法。
利用普通二叉排序树的定义,为了更详细的描述二叉排序树的算法,文章采用C语言来编程实现。
该算法主要描述二叉排序树的建立,删除,插入以及遍历等操作。
通过分别测试3类数据来直观的表现出普通二叉排序树的运行效率。
2.课程设计
2.1课程设计目的
掌握了解二叉排序树插入删除的效率,通过合作写程序提高自己的设计能力和测试的能力。
在写程序的时候能了解自己的不足,提高自己解决问题的能力。
2.2课程设计要求
对普通二叉排序树实现定制操作,分析这一数据结构对应的插入和删除操作效率。
要求对N个不同整数进行下列操作:(1)按递增顺序插入N个整数,并按同样顺序删除;(2)按递增顺序插入N个整数,并按相反顺序删除;(3)按随机顺序插入N 个整数,并按随机顺序删除;要求N从1000到10000取值,并以数据规模N为横轴,运行时间为纵轴,画出3种不同数据结构对应的操作效率比较图。
3.课程实验内容
3.1普通二叉排序树的插入,删除
Status Insert(BiTree &T,int e){
i f(!Search(T,e,NULL,p)){ //查
找不成功
s=(BiTree)malloc(sizeof(BiTNode));
s->data=e;s->lchild=NULL;s->rch ild=NULL;
if(!p)T=s; //被插结点*s为新的根结点
else if(e<p->data)p->lchild=s; // 被插结点*s为左孩子
else p->rchild=s; // 被插结点*s为右孩子
return ok;}else return false;}
Status DeleteBST(BiTree &T,int key){
//若二叉排序树T存在关键字等于key的数据元素时,则删除该数据元素结点
i f(!T)return false;
e lse {
if(key==T->data)return Delete(T);
else if(key<T->data)return DeleteBST(T->lchild,key);
else return DeleteBST(T->rchild,key);
}
}
3.2按递增顺序插入N个整数,并按同样顺序删除
Status CreateBiTree(BiTree &T,int n){
i nt i;T=NULL;for(i=0;i<n;i++){int key=i;Insert(T,key);} //循环插入N个整数r eturn ok;}
void Dele(BiTree &T,int m,int n){int i;int key;
for(i=0;i<m;i++){key=i;DeleteBST(T,key) ;} } //按照相同顺序删除M个整数
3.3按递增顺序插入N个整数,并按相反顺序删除
void Dele(BiTree &T,int m,int n){
i nt i;int key;
f or(i=n-1;i>=n-m;i--){key=i;DeleteBST(T
,key);}} //按照相反顺序删除M个整数
3.4按随机顺序插入N个整数,并按随机顺序删除
void Rand(BiTree &T,int n,int a[]){ //返回一随机数值,范围在0至RAND_MAX 间
i nt j,p,i=0;srand((unsigned)time(NULL));
//设置随机种子
f or(i=0;i<n;i++){p=rand()%n;
for(j=0;j<i;j++)if(p==a[j]) break;
i f(j>=i)a[i]=p;else{i--;continue;}}
f or(i=0;i<n;i++)printf("%5d",a[i]);}
Status CreateBiTree(BiTree &T,int n,int a[]){
R and(T,n,a);int i;T=NULL;
f or(i=0;i<n;i++){
Insert(T,a[i]);} //随机输入不同的整数
r eturn ok;
}
void Dele(BiTree &T,int m,int n,int a[]){
i nt i;int key;
f or(i=0;i<m;i++){key=i;
DeleteBST(T,a[i]);}
}
4.课程设计实验结果
4.1课程实验数据
要求N从1000到10000取值,测试3种数据
结构的运行时间,通过Microsoft Visual C++中配
置文件的计时功能测试。
时间单位:毫秒
个数N10002000300040005000600070008000同顺序删除92.005275.934547.312887.7761310.0321809.5282407.2573054.456反顺序删除140.025445.191923.4331567.1932394.6293359.7084457.3945767.839随机删除117.063270.571437.634610.964801.0811235.9241465.5811564.223个数N900010000
同顺序删除3801.8194647.078
反顺序删除7231.9568925.636
随机删除1872.2862800.354
4.2实验操作效率比较图
根据4.1中的数据绘图,以数据规模N为横轴,
运行时间为纵轴制作3种数据结构的操作效率比较
图。
参考文献
[1]严蔚敏吴为民.《数据机构》.清华大学出版社,1997.4
[2]李含光郑关胜.《C语言程序设计教程》.清华大学出版社,2011.1
[3]程晓旭张海.《C语言算法速查手册》.人民邮电出版社,2009.10
[4] 汪沁奚李峰.《数据结构》.清华大学出
版社,2009.9
8。