数据结构课程设计之二叉排序树的实现.pdf

合集下载

数据结构c语言课设-二叉树排序

数据结构c语言课设-二叉树排序

题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。

前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。

要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。

2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。

数据结构课程设计pdf

数据结构课程设计pdf

数据结构课程设计 pdf一、课程目标知识目标:1. 让学生掌握数据结构的基本概念,包括线性表、栈、队列、树、图等;2. 使学生了解不同数据结构的特点,并能运用其解决实际问题;3. 引导学生掌握常见数据结构的相关算法,如排序、查找等。

技能目标:1. 培养学生运用数据结构描述问题的能力,提高编程实现复杂问题的技能;2. 培养学生具备分析算法复杂度,选择合适数据结构和算法解决问题的能力;3. 提高学生的团队协作能力,通过小组讨论和项目实践,培养学生的沟通表达能力和协作精神。

情感态度价值观目标:1. 激发学生对计算机科学的兴趣,培养学生主动探索、勇于创新的精神;2. 培养学生具备良好的学习习惯,严谨的学术态度,对待问题敢于质疑、善于思考;3. 引导学生认识到数据结构在实际应用中的重要性,提高学生的专业认同感。

本课程针对高中年级学生,结合数据结构课程性质,注重理论与实践相结合,培养学生解决实际问题的能力。

考虑到学生的年龄特点,课程设计力求生动有趣,以激发学生的学习兴趣。

在教学过程中,注重启发式教学,引导学生主动探索、积极思考,提高学生的综合素质。

通过本课程的学习,期望学生能够达到上述课程目标,为后续计算机科学课程打下坚实基础。

二、教学内容1. 线性表:介绍线性表的定义、特点和基本操作,包括顺序存储和链式存储的实现方法。

教材章节:第一章第一节进度安排:2课时2. 栈和队列:讲解栈和队列的基本概念、性质以及应用场景,实现顺序栈和链栈、循环队列等。

教材章节:第一章第二节进度安排:3课时3. 树和二叉树:阐述树和二叉树的基本概念、性质、存储结构及遍历方法,包括二叉排序树、平衡二叉树等。

教材章节:第二章进度安排:5课时4. 图:介绍图的定义、存储结构、遍历算法以及最短路径、最小生成树等算法。

教材章节:第三章进度安排:5课时5. 排序与查找:讲解常见排序算法(冒泡、选择、插入等)和查找算法(顺序、二分、哈希等),分析其算法复杂度。

二叉排序树的实现_课程设计报告

二叉排序树的实现_课程设计报告

中北大学数据结构课程设计说明书2011年12月20日1.设计任务概述:功能描述:(1)以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T;(2)对二叉排序树T作中序遍历,输出结果;(3)输入元素x,查找二叉排序树T,若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”。

2.本设计所采用的数据结构二叉树及二叉链表3.功能模块详细设计3.1 详细设计思想建立二叉排序树采用边查找边插入的方式。

查找函数采用递归的方式进行查找。

如果查找到相等的则插入其左子树。

然后利用插入函数将该元素插入原树。

对二叉树进行中序遍历采用递归函数的方式。

在根结点不为空的情况下,先访问左子树,再访问根结点,最后访问右子树。

删除结点函数,采用边查找边删除的方式。

如果没有查找到,进行提示;如果查找到结点则将其左子树最右边的节点的数据传给它,然后删除其左子树最右边的节点。

3.2 核心代码(1)主菜单模块int main(){LNode root=NULL;int Num,a,x;printf("\n\n *******************************\n");printf(" ************主菜单*************\n");printf(" *1:进行中序排列 *\n");printf(" *2:进行删除操作 *\n");printf(" *3:退出 *\n");printf(" *******************************\n");printf("请输入要进行操作的数字以0结束:\n");运行结果(3)中序遍历模块void view(LNode p){//中序遍历函数if(p){view(p->lch);printf("%d ",p->date);view(p->rch);//递归调用return;}return;}运行结果(3)删除模块LNode DelNode(LNode t,int x) {LNode p=t;LNode q=NULL;LNode s;LNode f;while(p!=NULL){if(p->date==x){break;}q=p;if(x<=p->date){p=p->lch;}else{p=p->rch;}}if(p==NULL){printf("不存在您要删除的数 %d !",x);return p;}if(p->lch){s=p->lch; //s指向其左子树;f=p->lch; //f指向其左子树;while(s-> rch)//搜索左子树的最右边的叶子结点{f=s;s=s->rch;}p->date=s->date;if(f !=s){ //若不是p的左孩子,把r的左孩子作为r的父亲的右孩子f-> rch=s->lch;}else {p->lch = s->lch; //否则结点p的左子树指向s的左子树}free(s);return p;}else{if(q->lch==p){q->lch = p->rch;}else{q->rch = p->rch;}free(p);return q;}}3.3 程序运行结果4.课程设计心得、存在问题及解决方法通过这次课程设计,我进一步的懂得了二叉链表的建立方法,进一步的了解了二叉排序树的构造方法。

数据结构之二叉树(BinaryTree)

数据结构之二叉树(BinaryTree)

数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。

⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。

定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。

(这⾥的左⼦树和右⼦树也是⼆叉树)。

值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。

具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。

⽆序树的⼦树⽆左右之分。

2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。

这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。

完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。

如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。

性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。

证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。

数据结构-二叉排序树

数据结构-二叉排序树

二叉排序树操作一、设计步骤1)分析课程设计题目的要求2)写出详细设计说明3)编写程序代码,调试程序使其能正确运行4)设计完成的软件要便于操作和使用5)设计完成后提交课程设计报告(一)程序功能:1)创建二叉排序树2)输出二叉排序树3)在二叉排序树中插入新结点4)在二叉排序树中删除给定的值5)在二叉排序树中查找所给定的值(二)函数功能:1) struct BiTnode 定义二叉链表结点类型包含结点的信息2) class BT 二叉排序树类,以实现二叉排序树的相关操作3) InitBitree() 构造函数,使根节点指向空4) ~BT () 析构函数,释放结点空间5) void InsertBST(&t,key) 实现二叉排序树的插入功能6) int SearchBST(t,key) 实现二叉排序树的查找功能7) int DelBST(&t,key) 实现二叉排序树的删除功能8) void InorderBiTree (t) 实现二叉排序树的排序(输出功能)9) int main() 主函数,用来完成对二叉排序树类中各个函数的测试二、设计理论分析方法(一)二叉排序树定义首先,我们应该明确所谓二叉排序树是指满足下列条件的二叉树:(1)左子树上的所有结点值均小于根结点值;(2)右子数上的所有结点值均不小于根结点值;(3)左、右子数也满足上述两个条件。

根据对上述的理解和分析,我们就可以先创建出一个二叉链表结点的结构体类型(struct BiTNode)和一个二叉排序树类(class BT),以及类中的构造函数、析构函数和其他实现相关功能的函数。

(二)插入函数(void InsertBST(&t,key))首先定义一个与BiTNode<k> *BT同一类型的结点p,并为其申请空间,使p->data=key,p->lchild和p->rchild=NULL。

二叉排序树实验报告

二叉排序树实验报告

深圳大学实验报告
课程名称:数据结构实验与课程设计
实验项目名称:二叉排序树实验
学院:计算机与软件学院
专业:
指导教师:
报告人:学号:班级: 3班
实验时间: 2012-11-28 实验报告提交时间: 2012-12-5
教务部制
int main(int argc,char *argv[])
{
int t[32];
int i,j,Key;
int TestNum,SampleNum;
// freopen("cin.txt","r",stdin);
// freopen("cout.txt","w",stdout);
BiSortTree *BST=new BiSortTree;
cin>>TestNum;
for(i=0;i<TestNum;i++){
cin>>SampleNum;
for(j=0;j<SampleNum;j++) cin>>t[j];
BST->CreateBST(t,SampleNum);
cin>>Key;
BST->SearchBST(Key);
cout<<BST->BisSuccess<<" "<<BST->BisPos <<" "<<BST->BisCount<<endl;
}
return 0;
}
运行截图:
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

二叉排序树运算-数据结构与算法课程设计报告_l

二叉排序树运算-数据结构与算法课程设计报告_l

合肥学院计算机科学与技术系课程设计报告2009 ~2010 学年第二学期课程数据结构与算法课程设计名称二叉排序树运算学生姓名顾成方学号03专业班级08计科(2)指导教师王昆仑张贯虹2010 年 5 月题目:(二叉排序树运算问题)设计程序完成如下要求:对一组数据构造二叉排序树,并在二叉排序树中实现多种方式的查找。

基本任务:⑴选择合适的储存结构构造二叉排序树;⑵对二叉排序树T作中序遍历,输出结果;⑶在二叉排序树中实现多种方式的查找,并给出二叉排序树中插入和删除的操作。

⑷尽量给出“顺序和链式”两种不同结构下的操作,并比较。

一、问题分析和任务定义本次程序需要完成如下要求:首先输入任一组数据,使之构造成二叉排序树,并对其作中序遍历,然后输出遍历后的数据序列;其次,该二叉排序树能实现对数据(即二叉排序树的结点)的查找、插入和删除等基本操作。

实现本程序需要解决以下几个问题:1、如何构造二叉排序树。

2、如何通过中序遍历输出二叉排序树。

3、如何实现多种查找。

4、如何实现插入删除等操作。

二叉排序树的定义:⑴其左子树非空,则左子树上所有结点的值均小于根结点的值。

⑵若其右子树非空,则右子树上所有结点的值大于根结点的值。

⑶其左右子树也分别为二叉排序树。

本问题的关键在于对于二叉排序树的构造。

根据上述二叉排序树二叉排序树的生成需要通过插入算法来实现:输入(插入)的第一个数据即为根结点;继续插入,当插入的新结点的关键值小于根结点的值时就作为左孩子,当插入的新结点的关键值大于根结点的值时就作为右孩子;在左右子树中插入方法与整个二叉排序树相同。

当二叉排序树建立完成后,要插入新的数据时,要先判断已建立的二叉排序树序列中是否已有当前插入数据。

因此,插入算法还要包括对数据的查找判断过程。

本问题的难点在于二叉排序树的删除算法的实现。

删除前,首先要进行查找,判断给出的结点是否已存在于二叉排序树之中;在删除时,为了保证删除结点后的二叉树仍为二叉排序树,要考虑各种情况,选择正确的方法。

数据结构 -第12周查找第3讲-二叉排序树.pdf

数据结构 -第12周查找第3讲-二叉排序树.pdf

以二叉树或树作为表的组织形式,称为树表,它是一类动态查找表,不仅适合于数据查找,也适合于表插入和删除操作。

常见的树表:二叉排序树平衡二叉树B-树B+树9.3.1 二叉排序树二叉排序树(简称BST)又称二叉查找(搜索)树,其定义为:二叉排序树或者是空树,或者是满足如下性质(BST性质)的二叉树:❶若它的左子树非空,则左子树上所有节点值(指关键字值)均小于根节点值;❷若它的右子树非空,则右子树上所有节点值均大于根节点值;❸左、右子树本身又各是一棵二叉排序树。

注意:二叉排序树中没有相同关键字的节点。

二叉树结构满足BST性质:节点值约束二叉排序树503080209010854035252388例如:是二叉排序树。

66不试一试二叉排序树的中序遍历序列有什么特点?二叉排序树的节点类型如下:typedef struct node{KeyType key;//关键字项InfoType data;//其他数据域struct node*lchild,*rchild;//左右孩子指针}BSTNode;二叉排序树可看做是一个有序表,所以在二叉排序树上进行查找,和二分查找类似,也是一个逐步缩小查找范围的过程。

1、二叉排序树上的查找Nk< bt->keybtk> bt->key 每一层只和一个节点进行关键字比较!∧∧p查找到p所指节点若k<p->data,并且p->lchild=NULL,查找失败。

若k>p->data,并且p->rchild=NULL,查找失败。

查找失败的情况加上外部节点一个外部节点对应某内部节点的一个NULL指针递归查找算法SearchBST()如下(在二叉排序树bt上查找关键字为k的记录,成功时返回该节点指针,否则返回NULL):BSTNode*SearchBST(BSTNode*bt,KeyType k){if(bt==NULL||bt->key==k)//递归出口return bt;if(k<bt->key)return SearchBST(bt->lchild,k);//在左子树中递归查找elsereturn SearchBST(bt->rchild,k);//在右子树中递归查找}在二叉排序树中插入一个关键字为k的新节点,要保证插入后仍满足BST性质。

数据结构二叉排序树课程设计报告

数据结构二叉排序树课程设计报告

课程设计报告——数据结构题目:二叉排序树姓名:学号:专业:班级:指导老师:年月日目录一、课程设计简介 (3)二、原理分析及流程 (3)2.1、原理分析 (3)2.2、流程图 (4)1、main()函数 (4)2、创建 (4)3、插入 (5)4、查找 (6)5、中序遍历输出 (7)三、算法描述 (8)3.1、存储结构 (8)3.2、插入算法 (8)3.3、查找算法 (9)3.4、删除算法 (10)四、小结与体会 (12)五、程序执行过程 (13)5.1、创建二叉排序树并中序输出 (13)5.2、插入并中序输出 (13)5.3、查找 (14)六、程序清单 (14)一、课程设计简介1.1、题目:二叉排序树相关操作1、创建二叉排序树;2、插入给定值;3、查找给定值;4、删除给定值的结点。

1.2、报告要求:1、封面;2、题目与流程图或模块图;3、程序清单和运行结果;4、小结(收获和体会);5、装订成册。

1.3、目的:课程设计为学生提供了一个既动手又动脑,独立实践的机会,将课本上的理论知识和实际有机的结合起来,锻炼学生的分析解决实际问题的能力。

提高学生适应实际,实践编程的能力。

二、原理分析及流程2.1、原理分析:根据题目要求,要实现这些功能,就必须创建一个菜单。

这个菜单设置在main()函数里面,然后使用while()...switch()语句进行循环调用相关函数,以达到实现相关功能的目的。

2.2、流程图:1、main()函数:23、插入:4、查找:5、中序遍历输出:三、算法描述3.1、存储结构定义一个链表式的二叉排序树,用链表的方式构造结点,存储二叉排序树中的结点、结点类型和指针类型如下:#include <stdio.h>#define null 0typedef int keytype;typedef struct node{keytype key;struct node *lchild,*rchild;}bstnode,*bstree;3.2、插入算法在二叉排序树中插入一个新节点,首先要查找该节点在二叉排序树中是否已经存在。

数据结构 二叉排序树

数据结构 二叉排序树

数据结构二叉排序树在计算机科学的世界里,数据结构就像是一个个精心设计的工具箱,每种数据结构都有其独特的用途和优势。

而在众多的数据结构中,二叉排序树是一个非常重要的存在。

二叉排序树,也被称为二叉搜索树,它是一种特殊的二叉树。

那么,什么是二叉树呢?想象一下,有一个节点,从这个节点伸出两条分支,就像一个“Y”字,这就是最简单的二叉树结构。

而二叉排序树在这个基础上,有着特定的规则。

二叉排序树的规则很简单但却很关键:对于树中的每个节点,其左子树中的所有节点的值都小于该节点的值,其右子树中的所有节点的值都大于该节点的值。

这一规则使得二叉排序树在数据的查找、插入和删除操作上有着出色的性能。

先来说说查找操作。

假如我们要在二叉排序树中查找一个特定的值,我们从根节点开始。

如果要查找的值小于根节点的值,我们就往左子树找;如果大于根节点的值,就往右子树找。

然后在相应的子树中重复这个过程,直到找到目标值或者确定目标值不存在。

这个过程就像是在一个有序的数列中进行二分查找,效率非常高。

插入操作也不复杂。

同样从根节点开始,如果要插入的值小于当前节点的值,就往左子树走;如果大于,就往右子树走。

一直找到一个合适的空位置,将新节点插入进去。

由于二叉排序树始终保持着有序的特性,所以插入操作能够快速地找到合适的位置。

删除操作相对来说稍微复杂一些。

如果要删除的节点没有子节点,那直接删除就好。

如果有一个子节点,就用这个子节点替换要删除的节点。

如果有两个子节点,我们可以找到它的右子树中的最小节点,用这个最小节点的值替换要删除的节点的值,然后再删除这个最小节点。

二叉排序树的优点很明显。

首先,它的平均查找、插入和删除的时间复杂度都是 O(log n),其中 n 是树中的节点数量。

这意味着当数据量越大时,它的效率优势就越明显。

其次,它的结构相对简单,易于理解和实现。

然而,二叉排序树也并非完美无缺。

它可能会出现不平衡的情况。

比如,如果我们插入的数据是有序的,那么二叉排序树可能会退化成一个链表,此时查找、插入和删除的时间复杂度就会变成 O(n),大大降低了效率。

二叉排序书课程设计

二叉排序书课程设计

二叉排序书课程设计一、课程目标知识目标:1. 让学生理解二叉排序树的概念、性质和基本操作,掌握二叉排序树的插入、删除和查找过程。

2. 使学生能够运用二叉排序树解决实际问题,如数据排序和查找。

技能目标:1. 培养学生运用二叉排序树进行数据组织和分析的能力。

2. 培养学生编写和调试二叉排序树相关程序的能力。

情感态度价值观目标:1. 培养学生对数据结构和算法的兴趣,激发学生学习主动性和积极性。

2. 培养学生勇于克服困难、独立解决问题的精神,增强团队合作意识。

3. 培养学生认识到二叉排序树在实际应用中的价值,提高对计算机科学的认识。

课程性质:本课程为计算机科学领域的数据结构与算法课程,以二叉排序树为主题,结合实际案例,使学生掌握二叉排序树的相关知识。

学生特点:学生已具备一定的编程基础和逻辑思维能力,但对二叉排序树的概念和操作尚不熟悉。

教学要求:1. 通过讲解、示例和练习,使学生掌握二叉排序树的基本原理和操作。

2. 注重理论与实践相结合,提高学生解决实际问题的能力。

3. 鼓励学生主动思考、提问,培养良好的学习习惯。

4. 强化编程实践,提高学生的编程技能和逻辑思维能力。

二、教学内容1. 引言:介绍二叉排序树的基本概念,及其在数据结构和算法中的应用。

- 相关章节:课本第X章“二叉树与二叉排序树”2. 二叉排序树的性质与定义:- 内容:二叉排序树的定义、性质、特点- 相关章节:课本第X章“二叉排序树的性质与定义”3. 二叉排序树的插入操作:- 内容:插入过程、算法实现、示例演示- 相关章节:课本第X章“二叉排序树的插入操作”4. 二叉排序树的删除操作:- 内容:删除过程、算法实现、示例演示- 相关章节:课本第X章“二叉排序树的删除操作”5. 二叉排序树的查找操作:- 内容:查找过程、算法实现、示例演示- 相关章节:课本第X章“二叉排序树的查找操作”6. 二叉排序树的应用实例:- 内容:实际案例、程序编写、问题解决- 相关章节:课本第X章“二叉排序树的应用”7. 二叉排序树的遍历:- 内容:遍历方法、算法实现、示例演示- 相关章节:课本第X章“二叉树的遍历”8. 总结与拓展:- 内容:二叉排序树的优缺点、拓展知识、高级话题- 相关章节:课本第X章“二叉排序树的总结与拓展”教学进度安排:1. 引言与基本概念(1课时)2. 二叉排序树的性质与定义(1课时)3. 插入与删除操作(2课时)4. 查找操作(1课时)5. 应用实例与程序编写(2课时)6. 遍历方法(1课时)7. 总结与拓展(1课时)三、教学方法1. 讲授法:- 通过对二叉排序树的基本概念、性质和操作进行系统讲解,使学生建立完整的知识体系。

数据结构07二叉排序树的基本操作

数据结构07二叉排序树的基本操作

《数据结构》实验报告院系____________________ 专业____________________姓名__林桢曦__________ 学号__106052010235__________ 电话______________________级__________班_______年____月____日1.实验题目(1)二叉排序树的基本操作(2)二叉树和Huffman树2.需求分析(1)编写二叉排序树的基本操作函数,调用上述函数实现初始化,插入元素,查找元素,删除元素等操作。

(2)编写二叉树的基本操作函数,用递归方法分别实现先序,中序和后序遍历二叉树。

3.概要设计7.1ADT tree {数据对象:D={a i|a i∈IntegerSet,i=0,1,2,…,n,n≥0}结构关系:R={<a i,a i+1>|a i,a i+1 ∈D}基本操作:SearchNode(TREE *tree, i nt key,TREE **pkpt,TREE **kpt)操作前提:tree是一个已初始化的二叉树操作结果:查找树根结点,键值赋给key,并返回key结点的父节点指针和key结点的指针InsertNode(TREE **tree,int key)操作前提:tree是一个已初始化的二叉树操作结果:将key值插入tree中DeleteNode(TREE **tree,int key)操作前提:二叉树tree已存在操作结果:将二叉树中的元素值为key的元素删除OutputTree(TREE *tree)操作前提:二叉树tree已存在操作结果:将二叉树中的元素值输出}(1)本程序包含7个函数:•主函数main()•进栈函数pop()•出栈函数push()查找函数SearchNode()•插入函数InsertNode()•删除函数DeleteNode()显示函数OutputTree()各函数间调用关系如下:主函数调用其他函数(2)主函数的伪码main(){ 定义各个变量;输入结点个数;For循环输入元素值;输出元素值;输入删除的元素值;显示元素值;}7.2ADT tree {数据对象:D={a i|a i∈IntegerSet,i=0,1,2,…,n,n≥0}结构关系:R={<a i,a i+1>|a i,a i+1 ∈D}基本操作:CreateBiTree(BiTree &T)操作前提:T是一个已初始化的二叉树操作结果:创建一颗二叉树re_PreOrder(BiTree &tree)操作前提:tree是一个已初始化的二叉树操作结果:先序遍历,递归方法re_MidOrder(BiTree &tree)操作前提:二叉树tree已存在操作结果:中序遍历,递归方法re_PostOrder(BiTree &tree)操作前提:二叉树tree已存在操作结果:后序遍历,递归方法}本程序包含5个函数:•主函数main()•创建二叉树函数CreateBiTree()•先序函数re_PreOrder()中序函数re_MidOrder()•后序函数re_PostOrder()各函数间调用关系如下:主函数调用其他函数主函数的伪码main(){ 定义变量BiTree T;调用CreateBiTree函数;调用re_PreOrder函数;调用re_MidOrder函数;调用re_PostOrder函数;}4.详细设计(1)7.1类型定义typedef struct tree{int data;struct tree *lchild;struct tree *rchild;}TREE;typedef struct stack{TREE *t;int flag;struct stack *link;}STACK;7.2类型定义typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}*BiTree;5.调试分析调试时遇到空指针问题,部分值未赋值。

数据结构-课程设计报告二叉排序树的实现

数据结构-课程设计报告二叉排序树的实现

课程设计课程名称数据构造课程设计题目名称二叉排序树的实现学院应用数学学院专业班级学号学生XX指导教师2013 年12 月26 日1.设计任务1)实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、XX、成绩3项),比照查找效率,并说明为什么二叉排序树效率高〔或者低〕。

2. 函数模块:2.1.主函数main模块功能1.通过bstree CreatTree()操作建立二叉排序树。

2.在二叉排序树t中通过操作bstree InsertBST(bstree t,intkey,nametype name,double grade)插入一个节点。

3. 从二叉排序树t中通过操作void Delete(bstree &p)删除任意节点。

4. 在二叉排序树t中通过操作bstnode *SearchBST(bstree t,keytype key)查找节点。

5. 在二叉排序树t中通过操作p=SearchBST(t,key)查询,并修改节点信息6. 非递归遍历二叉排序树。

7. 定义函数void pare()对数组和二叉排序树的查找效率进展比拟比拟。

2.2创立二叉排序树CreatTree模块从键盘中输入关键字及记录,并同时调用插入函数并不断进展插入。

最后,返回根节点T。

2.3删除模块:二叉排序树上删除一个阶段相当于删去有序系列中的一个记录,只要在删除某个节点之后依旧保持二叉排序树的性质即可。

假设二叉排序树上删除节点为*p〔指向节点的指针为p〕,其双亲节点为*f〔节点指针为f〕。

假设*p节点为叶子节点,那么即左右均为空树,由于删去叶子节点不破坏整棵树的构造,那么只需修改其双亲节点的指针即可;假设*p节点只有左子树或只有右子树,此时只要令左子树或右子树直接成为其双亲节点*f的左子树即可;假设*p节点的左子树和右子树均不为空,其一可以令*p的左子树为*f的左子树,而*p的右子树为*s的右子树,其二可以令*p的直接前驱〔或直接后继〕替代*p,然后再从二叉排序树中删去它的直接前驱〔或直接后继〕。

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。
11 创新 10 对前人工作有改进或突破,或有独特见解。
成绩
指导教师评语
指导教师签名: 年 月 日
摘要及关键字
本程序中的数据采用“树形结构”作为其数据结构。具体采用的是“二叉排序树”。
1.2.5 平衡二叉树( AVL树 )
①平衡二叉树(Balanced Binary Tree)是指树中任一结点的左右子树的高度大致相同。 ②任一结点的左右子树的高度均相同(如满二叉树),则二叉树是完全平衡的。通常,只要二叉树的高度为O(1gn),就可看作是平衡的。 ③平衡的二叉排序树指满足BST性质的平衡二叉树。 ④AVL树中任一结点的左、右子树的高度之差的绝对值不超过1。在最坏情况下,n个结点的AVL树的高度约为1.44lgn。而完全平衡的二叉树高度约为lgn,AVL树是最接近最优的。
1.2.4平均查找长度…………………………………………………………… 6
1.2.5平均二叉树(AVL树)…………………………………………………… 6
1.2.6平衡因子………………………………………………………………… 7
1.2.7平衡二叉树的调整方法…………………………………………………… 7
攀枝花学院本科学生课程设计任务书
题 目 二叉排序树与平衡二叉树的实现
1、课程设计的目的
使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。
使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。
3) 使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。

数据结构二叉排序树课程设计报告毕业资料

数据结构二叉排序树课程设计报告毕业资料

课程设计报告——数据结构题目:二叉排序树姓名:学号:专业:班级:指导老师:年月日目录一、课程设计简介 (3)二、原理分析及流程 (3)2.1、原理分析 (3)2.2、流程图 (4)1、main()函数 (4)2、创建 (4)3、插入 (5)4、查找 (6)5、中序遍历输出 (7)三、算法描述 (8)3.1、存储结构 (8)3.2、插入算法 (8)3.3、查找算法 (9)3.4、删除算法 (10)四、小结与体会 (12)五、程序执行过程 (13)5.1、创建二叉排序树并中序输出 (13)5.2、插入并中序输出 (13)5.3、查找 (14)六、程序清单 (14)一、课程设计简介1.1、题目:二叉排序树相关操作1、创建二叉排序树;2、插入给定值;3、查找给定值;4、删除给定值的结点。

1.2、报告要求:1、封面;2、题目与流程图或模块图;3、程序清单和运行结果;4、小结(收获和体会);5、装订成册。

1.3、目的:课程设计为学生提供了一个既动手又动脑,独立实践的机会,将课本上的理论知识和实际有机的结合起来,锻炼学生的分析解决实际问题的能力。

提高学生适应实际,实践编程的能力。

二、原理分析及流程2.1、原理分析:根据题目要求,要实现这些功能,就必须创建一个菜单。

这个菜单设置在main()函数里面,然后使用while()...switch()语句进行循环调用相关函数,以达到实现相关功能的目的。

1、main()函数:2。

数据结构课程设计-二叉树

数据结构课程设计-二叉树

《数据结构》课程设计说明书二叉平衡树算法实现班级组别:二指导老师:完成时间:2019.6.19 组长:学号:05 组员1:学号:33 组员2:学号:组员3:学号:成绩:目录目录一、课题设计任务 (2)二、任务分析 (2)1. 数据逻辑结构(算法描述) (2)2. 关键算法思想 (3)三、概要设计(总体设计) (3)四、详细设计 (4)1. 数据存储结构 (4)2. 各模块流程图及算法 (5)3. 算法效率分析 (9)五、测试 (10)1. 删除 (10)2. 查找 (10)3. 遍历 (10)六、课程设计心得 (10)七、参考文献 (11)八、附录 (11)一、课题设计任务针对给定的序列建立存储结构,实现各种遍历;实现树的生成,实现数据的查找、插入、删除,输出各种遍历。

二、任务分析1.数据逻辑结构(算法描述)//中序--递归void InorderTra(PNode root) {if (root) {InorderTra(root->leftChild); //中序遍历左子树printf("%d\t", root->keyValue); //访问根节点InorderTra(root->rightChild); //中序遍历右子数}}//前序--递归void PreOrderTra(PNode root) {if (root != NULL) {printf("%d\t", root->keyValue); //访问根节点PreOrderTra(root->leftChild); //前序遍历左子树PreOrderTra(root->rightChild); //前序遍历右子数}}//后序--递归void PostOrderTra(PNode root) {if (root) {PostOrderTra(root->leftChild); //后序遍历左子树PostOrderTra(root->rightChild); //后序遍历右子树printf("%d\t", root->keyValue); //访问根节点}}//求树的最大深度int getDeep(PNode root) {if (!root) {return 0;}int leftDeep = getDeep(root->leftChild) + 1;int rightDeep = getDeep(root->rightChild) + 1;return leftDeep > rightDeep ? leftDeep : rightDeep;}//从根节点开始打印出所有层void printByLevel(PNode root, int deep) {for (int i = 0; i < deep; i++) {LevelOrderTra(root, i);}printf("\n");}2.关键算法思想树的生成过程保持左右平衡,插入删除过程中保证树的平衡。

数据结构课程设计二叉排序树的实现

数据结构课程设计二叉排序树的实现

课程设计课程名称数据结构课程设计题目名称二叉排序树的实现学院应用数学学院专业班级学号学生姓名指导教师2013 年 12 月 26 日1.设计任务1)实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进行先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明为什么二叉排序树效率高(或者低)。

2. 函数模块:.主函数main模块功能1.通过bstree CreatTree()操作建立二叉排序树。

2.在二叉排序树t中通过操作bstree InsertBST(bstree t,intkey,nametype name,double grade)插入一个节点。

3. 从二叉排序树t中通过操作void Delete(bstree &p)删除任意节点。

4. 在二叉排序树t中通过操作bstnode *SearchBST(bstree t,keytype key)查找节点。

5. 在二叉排序树t中通过操作p=SearchBST(t,key)查询,并修改节点信息6. 非递归遍历二叉排序树。

7. 定义函数void compare()对数组和二叉排序树的查找效率进行比较比较。

创建二叉排序树CreatTree模块从键盘中输入关键字及记录,并同时调用插入函数并不断进行插入。

最后,返回根节点T。

删除模块:二叉排序树上删除一个阶段相当于删去有序系列中的一个记录,只要在删除某个节点之后依旧保持二叉排序树的性质即可。

假设二叉排序树上删除节点为*p(指向节点的指针为p),其双亲节点为*f(节点指针为f)。

若*p节点为叶子节点,则即左右均为空树,由于删去叶子节点不破坏整棵树的结构,则只需修改其双亲节点的指针即可;若*p节点只有左子树或只有右子树,此时只要令左子树或右子树直接成为其双亲节点*f的左子树即可;若*p节点的左子树和右子树均不为空,其一可以令*p的左子树为*f的左子树,而*p的右子树为*s的右子树,其二可以令*p的直接前驱(或直接后继)替代*p,然后再从二叉排序树中删去它的直接前驱(或直接后继)。

数据结构课程设计之二叉排序树的实现

数据结构课程设计之二叉排序树的实现

中南大学信息科学与工程学院课题名称: 二叉排序树的实现 信息科学与工程学院 通信工程学 班 学 姓院: 级: 号: 名:指导老师:漆华妹数据结构课程设计一、引言数据结构是一门理论性强、思维抽象、难度较大的课程,是基础课和专业课之间的桥梁。

该课程的先行课程是计算机基础、程序设计语言、离散数学等,后续课程有操作系统、编译原理、数据库原理、软件工程等。

通过本门课程的学习,我们应该能透彻地理解各种数据对象的特点,学会数据的组织方法和实现方法,并进一步培养良好的程序设计能力和解决实际问题的能力。

数据结构是计算机科学与技术专业的一门核心专业基础课程,在该专业的课程体系中起着承上启下的作用,学好数据结构对于提高理论认知水平和实践能力有着极为重要的作用。

学习数据结构的最终目的是为了获得求解问题的能力。

对于现实世界中的问题,应该能从中抽象出一个适当的数学模型,该数学模型在计算机内部用相应的数据结构来表示,然后设计一个解此数学模型的算法,再进行编程调试,最后获得问题的解答。

实习课程是为了加强编程能力的培养,鼓励学生使用新兴的编程语言。

相信通过数据结构课程实践,无论是理论知识,还是实践动手能力,我们都会有不同程度上的提高。

二、课程设计目的本课程是数据结构课程的实践环节。

主要目的在于加强学生在课程中学习的相关算法和这些方法的具体应用,使学生进一步掌握在C++或其他语言中应用这些算法的能力。

通过课程设计题目的练习,强化学生对所学知识的掌握及对问题分析和任务定义的理解。

三、问题描述及基本要求二叉排序树的实现:用顺序和二叉链表作存储结构1)以回车(…\n‟)为输入结束标志,输入数列L,生成一棵二叉排序树T;2)对二叉排序树T作中序遍历,输出结果;3)输入元素x,查找二叉排序树T,若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”。

一、问题分析和任务定义在设计之前,首先应该充分地分析和理解问题,明确问题要求做什么?限制条件是什么?对所需完成的任务作出明确的回答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档