练习3 牛顿运动定律5

合集下载

高中物理牛顿运动定律经典练习题

高中物理牛顿运动定律经典练习题

牛顿运动定律一、基础知识回顾:1、牛顿第一定律一切物体总保持,直到有外力迫使它改变这种状态为止。

注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。

(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。

2、惯性物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。

3、对牛顿第一运动定律的理解(1)运动是物体的一种属性,物体的运动不需要力来维持。

(2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。

(3)定律说明了任何物体都有一个极其重要的性质——惯性。

(4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。

4、对物体的惯性的理解(1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。

(2)惯性只与物体本身有关而与物体是否运动,是否受力无关。

任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。

质量是物体惯性的唯一量度。

(3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。

物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。

(4)惯性不是力。

5、牛顿第二定律的内容和公式物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。

公式是:a=F合/ m 或F合 =ma6、对牛顿第二定律的理解(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。

反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。

(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。

高中物理牛顿运动定律技巧(很有用)及练习题及解析

高中物理牛顿运动定律技巧(很有用)及练习题及解析

高中物理牛顿运动定律技巧(很有用)及练习题及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

2020届高考物理:牛顿运动定律(通用型)练习和答案

2020届高考物理:牛顿运动定律(通用型)练习和答案

2020届高考物理牛顿运动定律(通用型)练习及答案**牛顿运动定律**1、(2019·湖南联考)某同学为了取出如图所示羽毛球筒中的羽毛球,一手拿着球筒的中部,另一手用力击打羽毛球筒的上端,则()A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性2、(2019·莱州质检)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅上表面始终保持水平,如图所示。

当此车加速下坡时,一位乘客正盘腿坐在座椅上,则下列说法正确的是()A.乘客所受合外力可能竖直向下B.支持力可能大于重力C.若乘客未接触座椅靠背,则应受到向前(水平向左)的摩擦力作用D.可能处于超重状态3、(多选)如图所示,白色传送带保持v0=10 m/s的速度逆时针转动,现将一质量为0.4 kg的煤块轻放在传送带的A端,煤块与传送带间动摩擦因数μ=0.5,传送带AB两端距离x=16 m,传送带倾角为37°,(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)()A.煤块从A端运动到B端所经历的时间为2 sB.煤块从A端运动到B端相对传送带的位移为6 mC.煤块从A端运动到B端画出的痕迹长度为5 mD.煤块从A端运动到B端摩擦产生的热量为6.4 J4、如图所示,一只盛水的容器固定在一个小车上,在容器中分别悬挂和拴住一只铁球和一只乒乓球.容器中的水和铁球、乒乓球都处于静止状态.当容器随小车突然向右运动时,两球的运动状况是(以小车为参考系)()A.铁球向左,乒乓球向右B.铁球向右,乒乓球向左C.铁球和乒乓球都向左D.铁球和乒乓球都向右5、(多选)小华坐在一列正在行驶的火车车厢里,突然看到原来静止在水平桌面上的小球向后滚动,假设桌面是光滑的,则下列说法正确的是()A.小球在水平方向受到了向后的力使它向后运动B.小球所受的合力为零,以地面为参考系,小球的运动状态并没有改变C.火车一定是在向前加速D.以火车为参考系,此时牛顿第一定律已经不能适用6、如图(a)所示,质量为5 kg的小物块以初速度v0=11 m/s从θ=53°固定斜面底端先后两次滑上斜面,第一次对小物块施加一沿斜面向上的恒力F.第二次无恒力F.图(b)中的两条线段a、b分别表示存在恒力F和无恒力F时小物块沿斜面向上运动的v-t图线.不考虑空气阻力,g=10 m/s2,(sin 53°=0.8、cos 53°=0.6)下列说法中正确的是()A.恒力F的大小为5 NB.恒力F的大小为10 NC.物块与斜面间的动摩擦因数为1 3D.物块与斜面间的动摩擦因数为0.57、(多选)一物体重为50 N,与水平桌面间的动摩擦因数为0.2,现加上如图所示的水平力F1和F2,若F2=15 N时,物体做匀加速直线运动,则F1的值可能是(g取10 m/s2)()A.3 N B.25 NC.30 N D.50 N8、2017年6月4日,雨花石文创新品在南京市新城科技园发布,20余项文创新品体现金陵之美.某小朋友喜欢玩雨花石,他用水平外力F将斜面上两个形状规则的雨花石甲和丙成功叠放在一起,如图所示.斜面体乙静止在水平地面上.现减小水平外力F,三者仍然静止,则下列说法中正确的是()A.甲对丙的支持力一定减小B.乙对甲的摩擦力一定减小C.地面对乙的摩擦力一定减小D.甲可能受5个力的作用9、(2019·南昌二中月考)(多选)质量分别为M和m的物块A和B形状、大小均相同,将它们通过轻绳跨过光滑定滑轮连接,如图甲所示,绳子平行于倾角为α的斜面,A恰好能静止在斜面上,不考虑A、B与斜面之间的摩擦,若互换两物块位置,按图乙放置,然后释放A,斜面仍保持静止,则下列说法正确的是()甲乙A.轻绳的拉力等于mgB.轻绳的拉力等于MgC.A运动的加速度大小为(1-sin α)gD.A运动的加速度大小为M-m M g*10、如图所示,一个质量为m的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F1=k v,其中k为常数,则圆环运动过程中()A.最大加速度为Fm B.最大加速度为F+μmgmC.最大速度为F+μmgμk D.最大速度为mgk*11、(2019·商洛质检)(双选)如图所示,在粗糙的水平面上,质量分别为m和M的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是()A.若m>M,有x1=x2B.若m<M,有x1=x2C.若μ>sin θ,有x1>x2D.若μ<sin θ,有x1<x212、(2019·黄冈质检)图甲所示为测量木块与水平桌面之间动摩擦因数μ的实验装置示意图。

力学练习

力学练习

练习三 牛顿运动定律一.选择题(A) 物体在恒力作用下,不可能作曲线运动; (B) 物体在变力作用下,不可能作直线运动;(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速园周运动; (D) 物体在不垂直于速度方向力的作用下,不可能作园周运动;(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动.3.1(A)所示,m A >μm B 时,算出m B 向右的加速度为a ,今去掉m A 而代之以拉力T = m A g , 如图3.1(B)所示,算出m B 的加速度a ',则(A) a > a '. (B) a = a '. (C) a < a '. (D) 无法判断.3. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图3.2所示,斜面与地面之间无摩擦,则(A) 斜面保持静止. (B) 斜面向左运动. (C) 斜面向右运动.(D) 无法判断斜面是否运动.3.3所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为(A) 3mg . (B) 2mg . (C) 1mg . (D) 8mg / 3.5. 如图3.4所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将(A) 向上作加速运动. (B) 向上作匀速运动. (C) 立即处于静止状态.(D) 在重力作用下向上作减速运动. 二.填空题3.5所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos θ - mg = 0 (1) 也有人在沿绳子拉力方向求合力写出T - mg cos θ = 0 (2)显然两式互相矛盾,你认为哪式正确?答.理由图3.1图3.3< < < <图3.4am A是 .3.6所示,一水平圆盘,半径为r ,边缘放置一质量为m 的物体A ,它与盘的静摩擦系数为μ,圆盘绕中心轴OO '转动,当其角速度ω 小于或等于 时,物A 不致于飞出.3. 一质量为m 1的物体拴在长为l 1的轻绳上,绳子的另一端固定在光滑水平桌面上,另一质量为 m 2的物体用长为l 2的轻绳与m 1相接,二者均在桌面上作角速度为ω的匀速圆周运动,如图3.7所示.则l 1, l 2两绳上的张力T 1= ; T 2= . 三.计算题1. 一条轻绳跨过轴承摩擦可忽略的轻滑轮,在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环, 如图3.8所示.求环相对于绳以恒定的加速度a 2滑动时,物体和环相对地面的加速度各为多少?环与绳之间的摩擦力多大?m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k ,忽略子弹的重力,求(1) 子弹射入沙土后,速度随时间变化的函数关系式; (2) 子弹射入沙土的最大深度.练习四 功和能一.选择题(A) 功是标量,能也是标量,不涉及方向问题; (B) 某方向的合力为零,功在该方向的投影必为零; (C) 某方向合外力做的功为零,该方向的机械能守恒;(D) 物体的速度大,合外力做的功多,物体所具有的功也多. 错误的是(A) 势能的增量大,相关的保守力做的正功多;(B) 势能是属于物体系的,其量值与势能零点的选取有关; (C) 功是能量转换的量度;(D) 物体速率的增量大,合外力做的正功多.3. 如图4.1,1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下, M 与m 间有摩擦,则(A) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能守恒;(B) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能不守恒;a 2图3.8 图4.1(C) M 与m 组成的系统动量不守恒, 水平方向动量不守恒, M 、m 与地组成的系统机械能守恒;(D) M 与m 组成的系统动量不守恒, 水平方向动量守恒, M 、m 与地组成的系统机械能不守恒.M ,如图4.2所示.开始物体在平衡位置O 以上一点A . (1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2 ,则(A) A 1 > A 2. (B) A 1 < A 2. (C) A 1 = A 2. (D) 无法确定. 5. 一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是:(A) 汽车的加速度是不变的; (B) 汽车的加速度与它的速度成正比; (C) 汽车的加速度随时间减小; (D) 汽车的动能与它通过的路程成正比. 二.填空题1. 如图4.3所示,原长l 0、弹性系数为k 的弹簧悬挂在天花板上,下端静止于O 点;悬一重物m 后,弹簧伸长x 0而平衡,此时弹簧下端静止于O '点;当物体m 运动到P 点时,弹簧又伸长x .如取O 点为弹性势能零点,P 点处系统的弹性势能为 ;如以O '点为弹性势能零点,则P 点处系统的弹性势能为 ;如取O '点为重力势能与弹性势能零点,则P 点处地球、重物与弹簧组成的系统的总势能为 .R ,质量为M .现有一质量为m 的物体处在离地面高度2R 处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 ;如取无穷远处的引力势能为零,则系统的引力势能为.4.4所示, 一半径R =0.5m 的圆弧轨道, 一质量为m =2kg 的物体从轨道的上端A 点下滑, 到达底部B 点时的速度为v =2 m /s, 则重力做功为 ,正压力做功为 ,摩擦力做功为 .正压N 能否写成N = mg cos α = mg sin θ (如图示C 点)?答:. 三.计算题F ,则相应伸长为x , 力与伸长x 的关系为F =52.8 x +38.4x 2 (SI)求:(1) 将弹簧从定长 x 1 = 0.50m 拉伸到定长x 2 = 1.00m时,外力所需做的功.< 图4.2图4.4(2) 将弹簧放在水平光滑的桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长x 2 = 1.00m,再将物体由静止释放,求当弹簧回到x 1 = 0.50m 时,物体的速率.(3) 此弹簧的弹力是保守力吗?为什么?2. 如图4.5所示,甲乙两小球质量均为m ,甲球系于长为l 的细绳一端,另一端固定在O 点,并把小球甲拉到与O 处于同一水平面的A 点. 乙球静止放在O 点正下方距O 点为l 的B 点.弧BDC 为半径R =l /2的圆弧光滑轨道,圆心为O '.整个装置在同一铅直平面内.当甲球从静止落到B 点与乙球作弹性碰撞,并使乙球沿弧BDC 滑动,求D 点(θ=60︒)处乙球对轨道的压力.练习五 冲量和动量一.选择题(A) 大力的冲量一定比小力的冲量大; (B) 小力的冲量有可能比大力的冲量大; (C) 速度大的物体动量一定大; (D) 质量大的物体动量一定大.,这一周期内物体 (A) 动量守恒,合外力为零. (B) 动量守恒,合外力不为零.(C) 动量变化为零,合外力不为零, 合外力的冲量为零. (D) 动量变化为零,合外力为零.,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则(A) 此过程动量守恒,重力与地面弹力的合力为零.(B) 此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反. (C) 此过程动量守恒,合外力的冲量为零. (D) 此过程前后动量相等,重力的冲量为零.4. 质量为M 的船静止在平静的湖面上,一质量为m 的人在船上从船头走到船尾,相对于船的速度为v ..如设船的速度为V ,则用动量守恒定律列出的方程为(A) MV +mv = 0. (B) MV = m (v +V ). (C) MV = mv . (D) MV +m (v +V ) = 0. (E) mv +(M +m)V = 0.图4.5(F) mv =(M +m)V .5. 长为l 的轻绳,一端固定在光滑水平面上,另一端系一质量为m 的物体.开始时物体在A 点,绳子处于松弛状态,物体以速度v 0垂直于OA 运动,AO 长为h .当绳子被拉直后物体作半径为l 的圆周运动,如图5.1所示.在绳子被拉直的过程中物体的角动量大小的增量和动量大小的增量分别为(A) 0, mv 0(h/l -1). (B) 0, 0. (C) mv 0(l -h ), 0. (D) mv 0(l -h , mv 0(h/l -1). 二.填空题F = x i +3y 2j (S I) 作用于其运动方程为x = 2t (S I) 的作直线运动的物体上, 则0~1s 内力F 作的功为A = J .2. 完全相同的甲乙二船静止于水面上,一人从甲船跳到乙船,不计水的阻力, 则甲船的速率v 1与乙船的速率 v 2相比较有:v 1 v 2(填<、=、>), 两船的速度方向.(m =60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M =140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远m . 三.计算题r ,半锥角为θ的圆锥摆运动,其质量为m ,速度为v 0如图5.2所示.若质点从a 到b 绕行半周,求作用于质点上的重力的冲量I 1和张力T 的冲量I 2.2. 一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面,如果把绳的上端放开,绳将落在桌面上,试求在绳下落的过程中,任意时刻作用于桌面的压力.练习六 力矩 转动惯量 转动定律一.选择题(A) 火车在平直的斜坡上运动; (B) 火车在拐弯时的运动; (C) 活塞在气缸内的运动; (D) 空中缆车的运动.(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零;A 0图5.1m(E) 合外力不为零,合外力矩一定为零.A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有(A) I A >I B . (B) I A <I B .(C) 无法确定哪个大. (D) I A =I B .4. 质量为m , 内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微元,如图6.1所示.宽圆环的质量面密度为σ = m /S =m /[π (R 22-R 12)],细圆环的面积为d S =2πr d r ,得出微元质量d m = σd S = 2mr d r /( R 22-R 12),接着要进行的计算是,(A) I =()2d 2d 212221223221R Rm R R r mr m r mR R +=-=⎰⎰.(B) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=m R R R R R r mr R m 2221222221d 2)d (=mR 22 . (C) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2121222121d 2)d (=mR 12. (D) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R +=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+⎰⎰. (B) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R -=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-⎰⎰. (C) I =⎰mR m 22)d (-⎰m R m 21)d (=m (R 22-R 12) .(D) I =I 大圆-I 小圆=m (R 22-R 12)/2.5. 一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,杆与桌面间的摩擦系数为μ,求摩擦力矩M μ . 先取微元细杆d r ,其质量d m = λd r = (m /l )d r .它受的摩擦力是d f μ= μ(d m )g =(μmg /l )d r ,再进行以下的计算,(A) M μ=⎰r d f μ=⎰lr r lmgd μ=μmgl/2.(B) M μ=(⎰d f μ)l/2=(⎰lr l mgd μ)l/2=μmgl/2.(C) M μ=(⎰d f μ)l/3=(⎰l r lmg0d μ)l/3=μmgl/3. (D) M μ=(⎰d f μ)l =(⎰l r lmg0d μ)l =μmgl . 二.填空题6.2所示,两个质量和半径都相同的均匀滑轮,轴处无摩擦, α1和α2分别表示图(1)、图(2)中滑轮的角加速度,则α1 α2(填< = >) .2. 质量为m 的均匀圆盘,半径为r ,绕中心轴的转动惯量I 1 = ;质量为M ,半径为R , 长度为l 的均匀圆柱,绕中心轴的转动惯量I 2 = . 如果M =m , r = R , 则I 1 I 2 .图6.1 (1)(2)图6.26.3所示,半径分别为R A 和R B 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度ωA :ωB = ;两轮边缘上A 点及B 点的线速度v A :v B = ;切向加速度A a τ:B a τ= ;法向加速度nA a : nB a = .三.计算题m 的均匀细杆长为l ,竖直站立,下面有一绞链,如图6.4,开始时杆静止,因处于不稳平衡,它便倒下,求当它与铅直线成60︒角时的角加速度和角速度.2. 一质量为m ,半径为R 的均匀圆盘放在粗糙的水平桌面上,圆盘与桌面的摩擦系数为μ ,圆盘可绕过中心且垂直于盘面的轴转动,求转动过程中,作用于圆盘上的摩擦力矩.练习七 转动定律(续) 角动量一.选择题错误的是:(A) 角速度大的物体,受的合外力矩不一定大; (B) 有角加速度的物体,所受合外力矩不可能为零; (C) 有角加速度的物体,所受合外力一定不为零;(D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零. ,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A) 合力矩增大时, 物体角速度一定增大; (B) 合力矩减小时, 物体角速度一定减小; (C) 合力矩减小时,物体角加速度不一定变小; (D) 合力矩增大时,物体角加速度不一定增大.A 、B 、C(如图7.1所示)以相同的角速度ω绕其对称轴旋转, 己知R A =RC <R B ,若从某时刻起,它们受到相同的阻力矩,则(A) A 先停转. (B) B 先停转. (C) C 先停转. (D) A 、C 同时停转.4. 银河系中有一天体是均匀球体,其半径为R ,绕其对称轴自转的周期为T ,由于引力凝聚的作用,体积不断收缩,则一万年以后应有(A) 自转周期变小,动能也变小. (B) 自转周期变小,动能增大. (C) 自转周期变大,动能增大. (D) 自转周期变大,动能减小. (E)自转周期不变,动能减小.5. 一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他图6.4图7.1图6.3把二哑铃水平地收缩到胸前的过程中,(A) 人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒.(B) 人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒.(C) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒. (D) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒. 二.填空题1. 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动, 皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s 内被动轮的角速度达到8π rad/s ,则主动轮在这段时间内转过了 圈.XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z =.,孔中穿一轻绳,绳的一端栓一质量为m 的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R 1速率为v 1的圆周运动,今用力F 慢慢往下拉绳子,当圆周运动的半径减小到R 2时,则小球的速率为 , 力F 做的功为 . 三.计算题1. 如图7.2所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .设摩擦阻力矩保持不变.求摩擦阻力矩、飞轮的转动惯量以及绳系重物m 2后的张力?7.3所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为θ,求小球击中细棒前的速度值.图7.2图7.3。

物理试题 人教版 高考专题复习练习题3-牛顿运动定律

物理试题 人教版 高考专题复习练习题3-牛顿运动定律

第1讲牛顿第一定律、牛顿第三定律知识巩固练1.(2020年湖北部分重点中学联考)伽利略和牛顿都是物理学发展史上最伟大的科学家,巧合的是牛顿就出生在伽利略去世后第二年.下列关于力和运动关系的说法中,不属于他们观点的是( ) A.自由落体运动是一种匀变速直线运动B.力是使物体产生加速度的原因C.物体都具有保持原来运动状态的属性,即惯性D.力是维持物体运动的原因【答案】D2.(2020届黄山质检)关于物体的惯性,下列说法正确的是( )A.骑自行车的人,上坡前要快速蹬几下,是为了增大惯性冲上坡B.子弹从枪膛中射出后在空中飞行,速度逐渐减小,因此惯性也减小C.物体惯性的大小,由物体质量的大小决定D.物体由静止开始运动的瞬间,它的惯性最大【答案】C3.(2020年成都外国语学校模拟)下列说法正确的是( )A.凡是大小相等、方向相反,分别作用在两个物体上的两个力必定是一对作用力和反作用力B.凡是大小相等、方向相反,作用在同一物体上的两个力必定是一对作用力和反作用力C.即使大小相等、方向相反,作用在同一直线上且分别作用在两个物体上的两个力也不一定是一对作用力和反作用力D.相互作用的一对力究竟称哪一个力是反作用力不是任意的【答案】C4.火车在长直的水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为 ( )A.人跳起后,车厢内空气给他一向前的力,带着他随同火车一起向前运动B.人跳起的瞬间,车厢的底板给他一向前的力,推动他随同火车一起向前运动C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已D.人跳起后直到落地,在水平方向上始终具有和车相同的速度【答案】D5.如图所示的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法正确的是 ( )A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮【答案】A6.(多选)一根轻质弹簧竖直悬挂在天花板上,下端悬挂一小球,弹簧和小球的受力如图所示,下列说法正确的是( )A.F1的施力者是弹簧B.F2的反作用力是F3C.F3的施力者是小球D.F4的反作用力是F1【答案】BC7.水平放置的密闭玻璃管内充有水,它的中间有一气泡,如图所示,当玻璃管由静止开始向右沿水平方向运动时,气泡相对于玻璃管将要( )A.向右运动B.向左运动C.保持不动D.无法判断【答案】A 【解析】管中的气泡和相同体积水相比,其质量很小,气泡的惯性要比管中的水的惯性小的多,当玻璃管由静止开始向右沿水平方向运动时,玻璃管中的水由于惯性,仍然要保持原来的静止状态,使水涌向管的左端,气泡由于惯性较小,则相对于管子向右运动,故A正确.8.(2020年保定模拟)(多选)如图,一个人站在水平地面上的长木板上用力F向右推箱子,木板、人、箱子均处于静止状态,三者的质量均为m,重力加速度为g,则( )A.箱子对木板的摩擦力方向向右B.木板对地面的摩擦力方向向左C.木板对地面的压力大小为3mgD.若人用斜向下的力推箱子,则木板对地面的压力会大于3mg【答案】AC 【解析】以箱子为研究对象,水平方向上木板对箱子的摩擦力与人推箱子的力平衡,所以,木板对箱子的摩擦力方向向左,根据牛顿第三定律,箱子对木板的摩擦力方向向右,A正确;以整体为研究对象,地面对木板的支持力与整体所受的重力平衡,所以地面对木板的支持力为3mg,根据牛顿第三定律,木板对地面的压力大小为3mg,C正确,D错误;以整体为研究对象,地面对木板的摩擦力为0,所以木板对地面的摩擦力为0,B错误.综合提升练9.如图所示,两块小磁铁质量均为0.5 kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A正下方的地板上,弹簧的原长L0=10 cm,劲度系数k=100 N/m.当A、B均处于静止状态时,弹簧的长度L=11 cm.不计地磁场对磁铁的作用和磁铁与弹簧间相互作用的磁力,求B对地面的压力大小.(g取10 N/kg)解:对A受力分析如图所示,由平衡条件,得k(L-L0)-mg-F=0,解得F=-4 N,故B对A的作用力大小为4 N,方向竖直向上.由牛顿第三定律得A对B的作用力F′=-F=4 N,方向竖直向下.对B受力分析如图所示,由平衡条件,得F N-mg-F′=0,解得F N=9 N.由牛顿第三定律得B对地面的压力大小为9 N.第2讲 牛顿第二定律、两类动力学问题知识巩固练1.由牛顿第二定律表达式F =ma 可知( ) A .质量m 与合外力F 成正比,与加速度a 成反比 B .合外力F 与质量m 和加速度a 都成正比 C .物体的加速度的方向总是跟它速度的方向一致D .物体的加速度a 跟其所受的合外力F 成正比,跟它的质量m 成反比 【答案】D2.(2020届沈阳四校联考)如图所示,当小车向右加速运动时,物块M 相对车厢静止于竖直车厢壁上,当车的加速度增大时 ( )A .M 受静摩擦力增大B .M 对车厢壁的压力减小C .M 仍相对于车厢静止D .M 受静摩擦力减小【答案】C3.(2020年上海浦东新区一模)如图所示,小球沿不同倾角θ的光滑斜面滑下,小球的加速度a 及对斜面的压力N ,与各自最大值的比值y 随θ变化的图像分别对应y -θ图中的( )A .①和②B .①和④C .②和③D .③和④【答案】A 【解析】对小球进行受力分析,根据牛顿第二定律得a =mgsin θm =gsin θ,当θ=90°时,加速度最大为g ,则比值为y =ag =sin θ,随着θ的增大,y 增大,对应①;支持力N =mgcos θ,支持力的最大值为mg ,则有y =mgcos θmg=cos θ,随着θ的增大,y 减小,对应②.A 正确.4.一质量为m 的物块在倾角为θ的足够长斜面上匀减速下滑.现对物块施加一个竖直向下的恒力F ,如图所示,则物块减速为零的时间将( )A .变大B .变小C .不变D .不能确定【答案】B5.中国载人深潜器“蛟龙”号7 000 m 级海试中下潜深度达7 062 m ,再创中国载人深潜纪录.设潜水器在下潜或上升的过程中只受重力、海水浮力和海水阻力作用,已知海水浮力大小为F ,设海水阻力与潜水器的速率成正比.当潜水器的总质量为m 时恰好匀速下降,若使潜水器以同样速率匀速上浮,则需要抛弃物体的质量为(重力加速度为g)( )A .2Fg -mB .2⎝ ⎛⎭⎪⎫m -F g C .m -FgD .2m -Fg【答案】B6.(2020年保定安国中学月考)(多选)如图,小球在水平轻绳和轻弹簧拉力作用下静止,弹簧与竖直方向夹角为θ.设重力加速度为g ,下列正确的是( )A .剪断弹簧OA 瞬间,小球的加速度大小为g ,方向竖直向下B .剪断弹簧OA 瞬间,小球的加速度大小为gcos θ,方向与竖直方向成θ角斜向右下 C .剪断OB 绳瞬间,小球的加速度大小为gsin θ,方向与OA 垂直斜向左下 D .剪断OB 绳瞬间,小球的加速度大小为gtan θ,方向水平向左【答案】AD 【解析】剪断弹簧OA 瞬间,绳的拉力变为零,小球只受重力,由牛顿第二定律得a =g ,方向竖直向下,故A 正确,B 错误;以球为研究对象,由平衡条件得F OB -F OA sin θ=0,F OA cos θ-mg =0,联立解得F OB =mgtan θ.剪断轻绳OB 瞬间,弹簧的弹力没有变化,小球所受的合外力是重力与弹力的合力,与原来细绳的拉力大小相等,方向相反,由牛顿第二定律得a =mgtan θm =gtan θ,方向水平向左,故C错误,D 正确.综合提升练7.(2020年山东山师大附中月考)(多选)如图所示,一折杆固定在小车上,∠A =θ,B 端固定一个质量为m 的小球,设小车向右的加速度为a ,AB 杆对小球的作用力大小为F ,则下列说法正确的是( )A .当a =0时,F =mgcos θ,方向沿AB 杆B .当a =gtan θ时,F =mgcos θ,方向沿AB 杆C .无论a 取何值,F 都等于m g 2+a 2,方向都沿AB 杆D .无论a 取何值,F 都等于m g 2+a 2,方向与AB 杆所在直线无关【答案】BD 【解析】对小球受力分析,小球一共受两个力:重力和杆对球的弹力;因为小车和球相对静止,小车有向右的加速度,小球也有向右的加速度.设弹力与竖直方向夹角为α,画出小球的受力示意图如图,则Fcos α=mg 、Fsin α=ma ,解得F =mg2+ma2、tan α=ag.当a =0时,F =mg 、α=0,即力F 的方向竖直向上,故A 错误.当a =gtan θ时,F =mg 2+ma2=mgcos θ、α=θ,即力F 的方向沿AB 杆,故B 正确;无论a 取何值,F 都等于mg2+ma 2,方向与a 取值大小有关,与AB 杆所在直线无关,故C 错误,D 正确.8.(2020年天津滨海七校联考)一辆货车运载着圆柱形光滑的空油桶.在车厢底,一层油桶平整排列,相互紧贴并被牢牢固定.上一层只有一只桶C ,自由地摆放在A 、B 之间,和汽车一起保持静止,如图所示,当C 与车共同向左加速时( )A .A 对C 的支持力变大B .B 对C 的支持力不变 C .当向左的加速度达到32g 时,C 将脱离A D .当向左的加速度达到33g 时,C 将脱离A 【答案】D 【解析】对C 进行受力分析,如图所示.设B 对C 的支持力与竖直方向的夹角为θ,根据几何关系可得sin θ=R 2R =12,所以θ=30°;同理可得,A 对C 的支持力与竖直方向的夹角也为30°.原来C 处于静止状态,根据平衡条件可得N B sin 30°=N A si n 30°;令C 的加速度为a ,根据正交分解以及牛顿第二定律有N B ′sin 30°-N A ′sin 30°=ma ,可见A 对C 的支持力减小、B 对C 的支持力增大,故A 、B 错误;当A 对C 的支持力为零时,根据牛顿第二定律可得mgtan 30°=ma ,解得a =33g ,故C 错误,D 正确. 9.为研究运动物体所受的空气阻力,某研究小组的同学找来一个倾角可调、斜面比较长且表面平整的斜面体和一个滑块,并在滑块上固定一个高度可升降的风帆,如图甲所示.他们让带有风帆的滑块从静止开始沿斜面下滑,下滑过程帆面与滑块运动方向垂直.假设滑块和风帆总质量为m.滑块与斜面间的动摩擦因数为μ,帆受到的空气阻力与帆的运动速率成正比,即F f =kv.(1)写出滑块下滑过程中加速度的表达式;(2)求出滑块下滑的最大速度,并指出有哪些措施可以减小最大速度;(3)若m =2 kg ,斜面倾角θ=30°,g 取10 m/s 2,滑块从静止下滑的速度图像如图乙所示,图中的斜线为t =0时v -t 图线的切线,由此求出μ、k 的值.(结果保留2位有效数字)甲 乙解:(1)由牛顿第二定律,有 mgsin θ-μmgcos θ-kv =ma , 解得a =gsin θ-μgcos θ-kvm .(2)当a =0时速度最大 v m =mg sin θ-μcos θk,减小最大速度的方法:适当减小斜面倾角θ(保证滑块能静止下滑);风帆升起一些. (3)当v =0时,a =gsin θ-μgcos θ=3 m/s 2, 解得μ=2315≈0.23.最大速度v m =2 m/s ,即v m =mgsin θ-μcos θk=2 m/s解得k =3.0 N·s/m .第3讲牛顿运动定律的应用知识巩固练1.(2020年济南期末)在升降机底部安装一个加速度传感器,其上放置了一个质量为m小物块,如图甲所示.升降机从t=0时刻开始竖直向上运动,加速度传感器显示加速度a随时间t变化如图乙所示.取竖直向上为正方向,重力加速度为g,以下判断正确的是( )A.在0~2t0时间内,物块先处于失重状态,后处于超重状态B.在t0~3t0时间内,物块先处于失重状态,后处于超重状态C.t=t0时刻,物块所受的支持力大小为mgD.t=3t0时刻,物块所受的支持力大小为2mg【答案】D 【解析】由乙图可知,在0~2t0时间内,物块的加速度方向向上,先处于超重状态,A 错误;由乙图可知,在t0~3t0时间内,物块的加速度方向向上,处于超重状态,B错误;由乙图可知,t =t0时刻,物块的加速度a=g,根据牛顿第二定律N-mg=mg,得N=2mg,C错误;由乙图可知,t=3t0时刻,物块的加速度a=g,根据牛顿第二定律N-mg=mg,得N=2mg,D正确.2.a、b两物体的质量分别为m1、m2,由轻质弹簧相连.当用恒力F竖直向上拉着a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x1;当用大小仍为F的恒力沿水平方向拉着a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,如图所示,则( )A.x1一定等于x2B.x1一定大于x2C.若m1>m2,则x1>x2D.若m1<m2,则x1<x2【答案】A 【解析】当用恒力F竖直向上拉着a时,先用整体法,有F-(m1+m2)g=(m1+m2)a1,再隔离b,有kx1-m2g=m2a1,联立得x1=m2Fk m1+m2.当沿水平方向拉着a时,先用整体法,有F=(m1+m2)a2,再隔离b,有kx2=m2a2,联立得x2=m2Fk m1+m2,故x1=x2,故A正确.3.如图所示,质量为M的长木板位于光滑水平面上,质量为m的物块静止在长木板上,两者之间的动摩擦因数为μ,现对物块m施加水平向右的恒力F,若恒力F超过某一临界数值,长木板与物块将出现相对滑动.已知重力加速度大小为g ,物块与长木板之间的最大静摩擦力等于两者之间的滑动摩擦力,则恒力F 的临界数值为( )A .μmgB .μMgC .μmg ⎝ ⎛⎭⎪⎫1+m MD .μmg ⎝ ⎛⎭⎪⎫1+M m 【答案】C 【解析】以物块m 为研究对象,根据牛顿第二定律,有F -μmg=ma 1,以长木板M 为研究对象,根据牛顿第二定律,有μmg=Ma 2,若两者出现相对滑动应有a 1≥a 2,联立解得F≥μmg ⎝ ⎛⎭⎪⎫1+m M ,故C 正确.4.(2020年湖南师大附中月考)如图所示,一同学用双手(手未画出)水平对称地用力将两长方体课本夹紧,且同时以加速度a 竖直向上匀加速捧起.已知课本A 质量为m ,课本B 质量为2m ,手的作用力大小为F ,书本A 、B 之间动摩擦因数为μ,用整体法与隔离法可分析出此过程中,书A 受到书B 施加的摩擦力大小为( )A .μFB .2μFC .12m(g +a) D .m(g +a)【答案】C5.(2020年顺县二中期末)(多选)如图所示,在光滑平面上有一静止小车,小车质量为M =5 kg ,小车上静止地放置着质量为m =1 kg 的木块,和小车间的动摩擦因数为μ=0.2,用水平恒力F 拉动小车,下列关于木块的加速度a m 和小车的加速度a M 可能正确的有( )A .a m =1 m/s 2,a M =1 m/s 2B .a m =1 m/s 2,a M =2 m/s 2C .a m =2 m/s 2,a M =4 m/s 2D .a m =3 m/s 2,a M =5 m/s 2【答案】AC 【解析】当拉力较小时,两物体一起加速度运动;当拉力增大到一定值时,两物体发生相对滑动,此后m 受到的是滑动摩擦力,故其加速度恒定为a =μmg m =2 m/s 2,因此当系统加速度小于等于2 m/s 2时,两物体一起运动,加速度相同,故A 正确,B 错误;发生相对滑动后,m 的加速度大小恒为2m/s 2且a m <a M ,故C 正确,D 错误.6.如图所示,质量为m 1=2 kg 的物体A 经跨过定滑轮的轻绳与质量为M =5 kg 的箱子B 相连,箱子底板上放一质量为m 2=1 kg 的物体C ,不计定滑轮的质量和一切阻力,在箱子加速下落的过程中,g 取10 m/s 2,下列说法正确的是( )A .物体A 处于失重状态,加速度大小为10 m/s 2B .物体A 处于超重状态,加速度大小为20 m/s 2C .物体C 处于失重状态,对箱子的压力大小为5 ND .轻绳对定滑轮的作用力大小为80 N 【答案】C7.粗糙水平面上放有P 、Q 两个木块,它们的质量依次为m 1、m 2,与水平面的动摩擦因数依次为μ1、μ2.分别对它们施加水平拉力F ,它们的加速度a 随拉力F 变化的规律如图所示.下列判断正确的是( )A .m 1>m 2,μ1>μ2B .m 1>m 2,μ1<μ2C .m 1<m 2,μ1>μ2D .m 1<m 2,μ1<μ2【答案】B 【解析】根据牛顿第二定律可知,加速度a 与拉力F 变化的规律,即为F -μmg=ma ,则a 与F 图像的斜率表示1m ,图像与横坐标的含义为摩擦力的大小,因此则有m 1>m 2,而μ1m 1g <μ2m 2g ,所以μ1<μ2,故B 正确,A 、C 、D 错误.综合提升练8.(2021年广东一模)(多选)研究“蹦极”运动时,在运动员身上系好弹性绳并安装传感器,可测得运动员竖直下落的距离及其对应的速度大小.根据传感器收集到的数据,得到如图所示的“速度—位移”图像.若空气阻力和弹性绳的重力可以忽略,根据图像信息,下列说法正确的有( )A.弹性绳原长为15 mB.当运动员下降10 m时,处于失重状态C.当运动员下降15 m时,绳的弹性势能最大D.当运动员下降20 m时,其加速度方向竖直向上【答案】BD 【解析】15 m时速度最大,此时加速度为零,合外力为零,弹力不为零,弹力等于重力,弹性绳处于伸长状态,故A错误;当运动员下降10 m时,速度向下并且逐渐增大,处于失重状态,故B 正确;当运动员下降15 m时,速度不为零,运动员继续向下运动,弹性绳继续伸长,弹性势能继续增大,故C错误;当运动员下降20 m时,运动员向下减速运动,其加速度方向竖直向上,故D正确.9.(2020年中山纪念学校质检)(多选)如图所示,质量分别为m1、m2的A、B两个滑块放在斜面上,中间用一个轻杆相连,A、B与斜面间的动摩擦因数分别为μ1、μ2,它们在斜面上加速下滑.关于杆的受力情况,下列分析正确的是( )A.若μ1>μ2,m1=m2,则杆受到压力B.若μ1=μ2,m1>m2,则杆受到拉力C.若μ1<μ2,m1<m2,则杆受到压力D.若μ1=μ2,m1≠m2,则杆不受到作用力【答案】AD 【解析】假设杆无弹力,滑块受重力、支持力和滑动摩擦力,根据牛顿第二定律,有m1gsin θ-μ1m1gcos θ=m1a1,解得a1=g(sin θ-μ1cos θ),同理a2=g(sin θ-μ2cos θ),若μ1>μ2,则a1<a2,B加速度较大,则杆受到压力,故A正确;若μ1=μ2,则a1=a2,两个滑块加速度相同,说明无相对滑动趋势,故杆无弹力,故B错误,D正确;若μ1<μ2,则a1>a2,A加速度较大,则杆受到拉力,故C错误.10.(2020届赣州名校一模)(多选)如图所示,传送带与水平面之间的夹角θ=30°,传送带两端A、B间的距离l=5 m,传送带在电动机的带动下以v=1 m/s的速度沿顺时针方向匀速运动,现将一质量m=10 kg的小物体(可视为质点)轻放在传送带上的A点,已知小物体与传送带之间的动摩擦因数μ=32,在传送带将小物体从A点输送到B点的过程中(g取10 m/s2)( )A.小物体在传送带上运动的时间为5 sB.传送带对小物体做的功为255 JC.电动机做的功为255 JD .小物体与传送带间因摩擦产生的热量为15 J【答案】BD 【解析】物体刚放上A 点时,受到的滑动摩擦力沿传送带向上,物体做匀加速直线运动,此时a 1=μmgcos θ-mgsin θm =g(μcos θ-sin θ)=2.5 m/s 2,假设物体能与皮带达到相同的速度,则物体加速上滑的位移x 1=v 22a 1=0.2 m<l =5 m ,假设成立,物体加速到v =1 m/s ,用时t 1=va 1=0.4 s ,因为μmgcos θ>mgsin θ,故之后小物体将向上做匀速运动,运动的时间t 2=l -x 1v =4.8 s ,故运动的总时间t =t 1+t 2=5.2 s ,故A 错误;小物体运动到B 点的速度为1 m/s ,从A 到B ,由动能定理,有W 传-mgLsin θ=12mv 2-0,解得W 传=255 J ,故B 正确;在相对滑动时,s 相=vt 1-x 1=0.2 m ,则物体与传送带间因摩擦产生的热量Q =μmgcos θ·s 相=15 J ,故D 正确;由功能关系,可知电动机做的功等于物体增加的机械能和因滑动摩擦而产生的热量,则W 电=W 传+Q =270 J ,故C 错误.11.(2020届重庆南开中学期末)如图所示,质量M =1 kg 的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m =1 kg 、大小可以忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,g 取10 m/s 2,在铁块上加一个水平向右的拉力,则:(1)F 增大到多少时,铁块能在木板上发生相对滑动?(2)若木板长L =1 m ,水平拉力恒为8 N ,经过多长时间铁块运动到木板的右端?解:(1)设F =F 1时,铁块、木板恰好保持相对静止,此时两者的加速度相同,两者间的静摩擦力达到最大.对木板,根据牛顿第二定律,得 μ2mg -μ1(m +M)g =Ma , 解得a =2 m/s 2.以铁块和木板整体为研究对象,根据牛顿第二定律,有 F 1-μ1(m +M)g =(m +M)a , 解得F 1=6 N.(2)铁块的加速度大小a 1=F -μ2mg m =4 m/s 2,木板的加速度大小a 2=μ2mg -μ1m +M g M =2 m/s 2,设经过时间t 铁块运动到木板的右端,则有 12a 1t 2-12a 2t 2=L , 解得t =1 s.实验4 验证牛顿运动定律知识巩固练1.在利用打点计时器和小车来做“验证牛顿运动定律”的实验时,下列说法错误的是 ( ) A.平衡摩擦力时,应将砝码盘及盘内砝码通过定滑轮拴在小车上B.连接砝码盘和小车的细绳应跟长木板保持平行C.平衡摩擦力后,长木板的位置不能移动D.小车释放前应靠近打点计时器,且应先接通电源再释放小车【答案】A2.在验证牛顿第二定律的实验中,如图所示分别是甲、乙、丙、丁四个实验小组根据实验数据画出的图像.对于这四个图像,分析正确的是( )甲乙丙丁A.甲未平衡摩擦力B.乙平衡摩擦力过度C.丙是小车质量太大了D.丁是不满足m≪M的条件【答案】D 【解析】甲平衡摩擦力时倾角过大,乙平衡摩擦力时倾角过小,丁图出现弯曲是由于砝码质量过大,不满足m≪M的条件.3.某同学设计了如图所示的装置来探究加速度与力的关系,弹簧测力计固定在一合适的木块上,桌面的右边缘固定一个光滑的定滑轮,细绳的两端分别与弹簧测力计的挂钩和矿泉水瓶连接.在桌面上画出两条平行线P、Q,并测出间距d.开始时将木块置于P处,现缓慢向瓶中加水,直到木块刚刚开始运动为止,记下弹簧测力计的示数F0,以此表示滑动摩擦力的大小.再将木块放回原处并按住,继续向瓶中加水后,记下弹簧测力计的示数F,然后释放木块,并用秒表记下木块从P运动到Q处所用的时间t.(1)木块的加速度可以用d和t表示为a=________.(2)改变瓶中水的质量重复实验,确定加速度a与弹簧测力计示数F的关系.下图中能表示该同学实验结果的是________.A B C D(3)用加水的方法改变拉力的大小与挂钩码的方法相比,它的优点是________. A .可以改变滑动摩擦力的大小 B .可以更方便地获取更多组实验数据 C .可以更精确地测出摩擦力的大小 D .可以获得更大的加速度以提高实验精度 【答案】(1)2dt2 (2)C (3)BC4.如图所示为“验证牛顿第二定律”的实验装置示意图.沙和沙桶的总质量为m ,小车和砝码的总质量为M.实验中用沙和沙桶总重力的大小作为细线对小车拉力的大小.(1)实验中,为了使细线对小车的拉力等于小车所受的合外力,先调节长木板一端滑轮的高度,使细线与长木板平行.接下来还需要进行的一项操作是( )A .将长木板水平放置,让小车连着已经穿过打点计时器的纸带,给打点计时器通电,调节m 的大小,使小车在沙和沙桶的牵引下运动,从打出的纸带判断小车是否做匀速运动B .将长木板的一端垫起适当的高度,让小车连着已经穿过打点计时器的纸带,撤去沙和沙桶,给打点计时器通电,轻推小车,从打出的纸带判断小车是否做匀速运动C .将长木板的一端垫起适当的高度,撤去纸带、沙和沙桶,轻推小车,观察判断小车是否做匀速运动(2)实验中要进行质量m 和M 的选取,以下最合理的一组是( ) A .M =200 g ;m =10 g,15 g,20 g,25 g,30 g,40 g B .M =200 g ;m =20 g,40 g,60 g,80 g,100 g,120 g C .M =400 g ;m =10 g,15 g,20 g,25 g,30 g,40 g D .M =400 g ;m =20 g,40 g,60 g,80 g,100 g,120 g(3)如图是实验中得到的一条纸带,A 、B 、C 、D 、E 、F 、G 为7个相邻的计数点,相邻计数点之间还有4个点未画出.量出相邻计数点之间的距离分别为x AB =4.22 cm ,x BC =4.65 cm ,x CD =5.08 cm ,x DE =5.49 cm ,x EF =5.91 cm ,x FG =6.34 cm.已知打点计时器的工作频率为50 Hz ,则小车的加速度a =________m/s 2(结果保留2位有效数字).【答案】(1)B (2)C (3)0.42综合提升练5.如图为测量物块与水平桌面之间动摩擦因数的实验装置示意图.实验步骤如下:①用天平测量物块和遮光片的总质量M ,重物的质量m ,用游标卡尺测量遮光片的宽度d ,用米尺测量两光电门之间的距离s ;②调整轻滑轮,使细线水平;③让物块从光电门A 的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A 和光电门B 所用的时间Δt A 和Δt B ,求出加速度a ;④多次重复步骤③,求a 的平均值a ; ⑤根据上述实验数据求出动摩擦因数μ. 回答下列问题:(1) 测量d 时,某次游标卡尺(主尺的最小分度为1 mm)的示数如图所示.其示数为________cm.(2)物块的加速度a 可用d ,s ,Δt A 和Δt B 表示为a =________________. (3)动摩擦因数μ可用M ,m ,a 和重力加速度g 表示为μ=________________.(4)如果细线没有调整到水平,由此引起的误差属于________(填“偶然误差”或“系统误差”). 【答案】见解析【解析】(1)d =0.9 cm +12×0.05 mm=0.9 cm +0.060 cm =0.960 cm . (2)因为v A =d Δt A ,v B =d Δt B ,又由2as =v 2B -v 2A ,解得a =12s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫d Δt B 2-⎝ ⎛⎭⎪⎫d Δt A 2.(3)设细线上的拉力为F T ,则 mg -F T =m a ,F T -μMg=M a , 两式联立,解得μ=mg -M +ma Mg.(4)由实验装置引起的误差为系统误差.6.某实验小组应用如图所示装置“探究加速度与物体受力的关系”,已知小车的质量为M ,砝码及砝码盘的总质量为m ,所使用的打点计时器所接的交变电流的频率为50 Hz.实验步骤如下:A .按图所示安装好实验装置,其中与定滑轮及弹簧测力计相连的细线竖直;B.调节长木板的倾角,轻推小车后,使小车能沿长木板向下匀速运动;C.挂上砝码盘,接通电源后,再放开小车,打出一条纸带,由纸带求出小车的加速度;D.改变砝码盘中砝码的质量,重复步骤C,求得小车在不同合力作用下的加速度.根据以上实验过程,回答以下问题:(1)对于上述实验,下列说法正确的是________.A.小车的加速度与砝码盘的加速度大小相等B.实验过程中砝码盘处于超重状态C.与小车相连的轻绳与长木板一定要平行D.弹簧测力计的示数应为砝码和砝码盘总重力的一半E.砝码和砝码盘的总质量应远小于小车的质量(2)实验中打出的一条纸带如图所示,由该纸带可求得小车的加速度为________m/s2.(结果保留2位有效数字)(3)由本实验得到的数据作出小车的加速度a与弹簧测力计的示数F的关系图像,与本实验相符合的是________.A B C D【答案】(1)C (2)0.16 (3)A。

大学物理习题3-5

大学物理习题3-5

度aA和aB分别为:
[]
(A) aA=0, aB=0 ; ( B) aA>0, aB<0 ;
(C) aA<0, aB>0; (D) aA<0, aB=0;
mB g
kx kx
mA g 图1
思路:整体和局部受力分析
F撤销之前,对于整体:匀速运动,系统受力平衡
F (mA mB )g 0

mB
v2 r

0
(有做单摆运动的趋势,
受力分析:
T
T2
mg和T '的合力提供向心力)
T ' mB g cos T :T ' 1 cos2
mg T '
图3
mB g cos

mB g
mB g sin
答案:1/ cos2
5.如图所示,A,B,C三物体,质量分别为M=0.8kg, m=m0=0.1kg,当它们如图a放置时,物体正好做匀速 运动。(1)求物体A与水平桌面的摩擦系数;(2) 若按b放置时,求系统的加速度及绳的张力。
②质点系的功能定理
W外 +W内非 =E2 -E1
即系统机械能的增量等于外力功与内部非保守力功之总和。
③机械能守恒定理 如果W外=0,即系统与外界无机械能交换,同时W内非=0,即系 统内部无机械能与其他形式能量的转换,则系统的机械能始终 保持一个常数,即
Ek E p
说明:
1、动能是状态量,是质点因运动而具有的做功本领。
m0
mM
a m g T M (m m0 ) g
mM
mM
6.质量为m的子弹以速度v0水平射入沙土中,设子 弹所受阻力与速度反向,大小与速度成正比,比例系

牛顿运动定律

牛顿运动定律

练习1-5 牛顿运动定律一、填空题1.一切物体总保持静止或匀速直线运动状态,直到力迫使它改变这种状态为止。

这是牛顿第一定律。

2. 力是改变物体运动状态的原因。

3.物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

这就是牛顿第二定律。

4. 质量是物体惯性大小的量度。

5.两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

这是牛顿第三定律。

6.作用力和反作用力总是成对出现,同时产生,同时消失。

7.作用力和反作用力总是分别作用在两个物体上,各自产生各自的作用效果,不能平衡,不能抵消。

8.在力学的国际单位制中,长度、时间和质量的单位叫作基本单位,其他物理量的单位叫作导出单位。

9. 从牛顿运动定律可知:在不受外力作用或合外力为零时,物体将保持静止或匀速直线运动状态。

力是使物体产生加速度的原因。

10.质量为0.3kg的物体在0.6N的拉力作用下,产生的加速度为2m/s2。

11.一个物体受到4N的力,产生2m/s2的加速度。

要使它产生3m/s2的加速度,需要对它施加 6N 的力。

12.甲、乙两辆实验小车,在相同的力作用下,甲车产生的加速度为2m/s2,乙车产生的加速度为8m/s2,甲车的质量是乙车的 4 倍。

13.用弹簧秤在水平桌面上匀速拉动一物体,弹簧秤的读数是 2.94N;当以0.98m/s2的加速度使物体做匀加速直线运动时,弹簧秤的示数是 4.90N,则物体的质量是 2 kg。

14.在平直公路上行驶的卡车上放有一个木箱,当卡车做匀加速直线运动时,木箱可能向后滑动;当卡车做匀减速直线运动时,木箱可能向前滑动。

(填“匀加速”或“匀减速”)二、判断题1. 只有运动的物体才具有惯性,静止的物体没有惯性。

(× )2.受到外力作用的物体没有惯性,不受外力作用的物体才有惯性。

(×)3.物体的运动需要力来维持。

(× )4.力是改变物体运动速度的原因。

高一物理牛顿运动定律练习及答案.

高一物理牛顿运动定律练习及答案.

相关习题:(牛顿运动定律)一、牛顿第一定律练习题一、选择题1.下面几个说法中正确的是[ ]A.静止或作匀速直线运动的物体,一定不受外力的作用B.当物体的速度等于零时,物体一定处于平衡状态C.当物体的运动状态发生变化时,物体一定受到外力作用D.物体的运动方向一定是物体所受合外力的方向2.关于惯性的下列说法中正确的是[ ]A.物体能够保持原有运动状态的性质叫惯性B.物体不受外力作用时才有惯性C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性D.物体静止时没有惯性,只有始终保持运动状态才有惯性3.关于惯性的大小,下列说法中哪个是正确的?[ ]A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大C.两个物体只要质量相同,那么惯性就一定相同D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ]A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来D.人跳起后直到落地,在水平方向上人和车具有相同的速度5.下面的实例属于惯性表现的是[ ]A.滑冰运动员停止用力后,仍能在冰上滑行一段距离B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板C.奔跑的人脚被障碍物绊住就会摔倒D.从枪口射出的子弹在空中运动6.关于物体的惯性定律的关系,下列说法中正确的是[ ]A.惯性就是惯性定律B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律C.物体运动遵循牛顿第一定律,是因为物体有惯性D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因7.如图所示,劈形物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M,则小球在碰到斜面前的运动轨迹是[ ] A.沿斜面向下的直线B.竖直向下的直线C.无规则的曲线D.抛物线二、填空题8.行驶中的汽车关闭发动机后不会立即停止运动,是因为____,汽车的速度越来越小,最后会停下来是因为____。

高中物理第四章运动和力的关系5牛顿运动定律的应用练习含解析新人教版必修第一册

高中物理第四章运动和力的关系5牛顿运动定律的应用练习含解析新人教版必修第一册

第5节牛顿运动定律的应用必备知识基础练进阶训练第一层知识点一动力学中的两类基本问题1.则2F的恒定合力使质量为2m的物体由静止开始运动,在2t时间内移动的距离为( ) A.2x B.4x C.8x D.16x2.(多选)静止在水平地面上的小车,质量为5 kg,在50 N的水平拉力作用下做直线运动,2 s内匀加速前进了4 m,在这个过程中(g取10 m/s2)( )A.动摩擦因数是0.8B.摩擦力的大小是10 NC.小车加速度的大小是1 m/s2D.小车加速度的大小是2 m/s23.民航客机一般都有紧急出口,发生意外情况的飞机紧急着陆后,打开紧急出口,狭长的气囊会自动充气,生成一条连接出口与地面的斜面,斜面的倾角为30°,人员可沿斜面匀加速滑行到地上.如果气囊所构成的斜面长度为8 m,一个质量为50 kg的人从静止开始沿气囊滑到地面所用时间为2 s,求:(g= 10 m/s2)(1)人滑至地面时速度的大小;(2)人与气囊之间的动摩擦因数.知识点二牛顿运动定律在多过程、多物体问题中的应用用大小为6 N的水平作用力F拉物体A,两物体一起向右做匀加速运动,若两物体与地面间的动摩擦因数均为0.1,取重力加速度g=10 m/s2,下列说法正确的是()A.B的加速度大小为5 m/s2B.A拉B的作用力为2 NC.若撤去外力F,A物体做减速运动,B物体做加速运动D.若撤去外力F,A物体的加速度大小为1 m/s25.一质量为m=1 kg的物体在水平恒力F作用下沿直线水平运动,1 s末撤去恒力F,其v -t图像如图所示,则恒力F和物体所受阻力F f的大小是()A.F=9 N,F f=2 NB.F=8 N,F f=3 NC.F=8 N,F f=2 ND.F=9 N,F f=3 N关键能力综合练进阶训练第二层一、单项选择题1.用30 N的水平外力F,拉一个静止在光滑水平面上的质量为20 kg的物体,力F作用3 s后消失.则第5 s末物体的速度和加速度大小分别是( )A.v=4.5 m/s,a=1.5 m/s2B.v=7.5 m/s,a=1.5 m/s2C.v=4.5 m/s,a=0D.v=7.5 m/s,a=02.如图所示,质量为m=3 kg的木块放在倾角为θ=30°的足够长的固定斜面上,木块可以沿斜面匀速下滑.若用沿斜面向上的力F作用于木块上,使其由静止开始沿斜面向上加速运动,经过t=2 s时间木块沿斜面上升4 m的距离,则推力F的大小为(g取10 m/s2)( )A.42 N B.6 NC.21 N D.36 N3.雨滴从空中由静止落下,若雨滴下落时空气对它的阻力随雨滴下落速度的增大而增大,如图所示的图像能正确反映雨滴下落运动情况的是( )4.竖直上抛物体受到的空气阻力F f大小恒定,物体上升到最高点的时间为t1,从最高点再落回抛出点所需时间为t2,上升时加速度大小为a1,下降时加速度大小为a2,则( ) A.a1>a2,t1<t2B.a1>a2,t1>t2C.a1<a2,t1<t2D.a1<a2,t1>t2二、多项选择题5.如图所示,在光滑斜面上,有一轻质弹簧的一端固定在一个垂直于斜面的挡板上,有一小球A沿着斜面下滑,从小球A刚接触弹簧的瞬间到弹簧压缩到最低点的过程中,下列说法中正确的是( )A.小球的加速度将先增大,后减小B.小球的加速度将先减小,后增大C.小球的速度将先增大,后减小D.小球的速度将先减小,后增大6.(易错题)如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出( )A.木板的质量为1 kgB .2 s ~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2三、非选择题7.木块质量m =8 kg ,在F =4 N 的水平拉力作用下,沿粗糙水平面从静止开始做匀加速直线运动,经t =5 s 的位移x =5 m .g 取10 m /s 2,求:(1)木块与粗糙平面间的动摩擦因数. (2)若在5 s 后撤去F,木块还能滑行多远?8.质量为4 kg 的物体放在与水平面成30°角、足够长的粗糙斜面底端,物体与斜面间的动摩擦因数μ=33,作用在物体上的外力与斜面平行,随时间变化的图像如图所示,根据所给条件(sin 30°=12,cos 30°=32,g 取10 m /s 2)求:(1)物体所受的摩擦阻力多大?(2)物体在0~4 s 内的加速度为多少?0~4 s 内的位移为多少?学科素养升级练进阶训练第三层1.(生活情境)蹦极是一项户外休闲活动,跳跃者站在约40米以上高度的位置,用橡皮绳固定住后跳下,落地前弹起.如图为蹦极运动的示意图,弹性绳的一端固定在O点,另一端和运动员相连,运动员从O点自由下落,至B点弹性绳自然伸直,经过C点时合力为零,到达最低点D 后弹起.整个过程中忽略空气阻力.在这个过程中( )A.经过B点时,运动员的速度最大B.从O点到C点,运动员的加速度大小不变C.从B点到C点,运动员的速度不断增大D.从C点到D点,运动员的加速度不断减小2.如图所示,一名消防队员在模拟演习训练中,沿着长为12 m的竖立在地面上的钢管下滑.已知这名消防队员的质量为60 kg,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零.如果他加速时的加速度大小是减速时的2倍,下滑的总时间为3 s,g取10 m/s2,那么该消防队员( )A.下滑过程中的最大速度为4 m/sB.加速与减速过程中所受摩擦力大小之比为1∶7C.加速与减速过程的位移之比为1∶4D.加速与减速过程的时间之比为2∶13.在设计游乐场中“激流勇进”的倾斜滑道时,小组同学将划艇在倾斜滑道上的运动视为由静止开始的无摩擦滑动,已知倾斜滑道在水平面上的投影长度L是一定的,而高度可以调节,则( )A.滑道倾角越大,划艇下滑时间越短B.划艇下滑时间与倾角无关C.划艇下滑的最短时间为2 L gD.划艇下滑的最短时间为2L g4.(学术情境)为了测试智能汽车自动防撞系统的性能.质量为 1 500 kg的智能汽车以10 m/s的速度在水平面匀速直线前进,通过激光雷达和传感器检测到正前方22 m处有静止障碍物时,系统立即自动控制汽车,使之做加速度大小为1 m/s2的匀减速直线运动,并向驾驶员发出警告.驾驶员在此次测试中仍未进行任何操作,汽车继续前行至某处时自动触发“紧急制动”,即在切断动力系统的同时提供12 000 N的总阻力使汽车做匀减速直线运动,最终该汽车恰好没有与障碍物发生碰撞.求:(1)汽车在“紧急制动”过程的加速度大小.(2)触发“紧急制动”时汽车的速度大小和其到障碍物的距离.(3)汽车在上述22 m的运动全过程中平均速度的大小.5.滑草是最近几年在国内兴起的一种休闲健身运动,有一种滑法是人坐在滑草车上从草坡上滑下,既刺激又省劲.如图所示,现有一滑草场近似处理为斜坡段和水平段连接,其斜坡段长度为L1=72 m,倾角为18°,水平段长度为L2=30 m,斜坡段和水平段的动摩擦因数都为μ=0.3,滑草车的质量m=10 kg,人的质量M=40 kg,人坐在滑草车上从斜坡的顶端由静止滑下,不考虑滑草车在斜坡与水平段连接处的机械能损失,问:(sin18°=0.31,cos18°=0.95)(1)滑草车沿斜坡下滑时的加速度大小?(2)滑草车最后停在离终点多远的地方?(3)滑草车在水平段上滑行时人对车的作用力大小?6.如图甲所示,在水平地面上方存在厚度为h的“神秘区域”(图中阴影部分),任何物体进入该区域后均受到竖直方向的恒力F的作用,且物体一旦碰到该区域底部就会被粘在底部.若将一质量为m的小圆环A从距地面H处的P点释放,不考虑空气阻力,重力加速度为g,请思考以下问题:(1)若小圆环A从P点静止释放后还能返回释放点,小圆环A在“神秘区域”内所受恒力F 的大小和方向是怎样的?(2)现将小圆环A套在均匀直杆B上,开始时A处于B的最下端,B竖直放置,A刚好位于P 点,将A、B一起由静止释放,如图乙所示.它们之间发生相对滑动时的摩擦力为f,假设“神秘区域”对处于其中的杆B不产生作用力,杆B在下降过程中始终竖直,且杆B的长度能够保证小圆环A与杆B不会分离,若小圆环A从释放后还能离开“神秘区域”,小圆环A在“神秘区域”内所受恒力F的大小和方向又是怎样的?第5节 牛顿运动定律的应用必备知识基础练1.解析:由牛顿第二定律可知,质量为m 的物体的加速度为a =F m ,位移为x =12at 2,整理可得x =Ft 22m ;2F 的恒定合力使质量为2m 的物体由静止开始运动,加速度为a ′=Fm,位移为x ′=12a ′(2t )2,则可得x ′=2Ft 2m=4x ,故B 正确;A 、C 、D 错误. 答案:B2.解析:根据运动学公式有x =12at 2,代入数据解得a =2 m/s 2,故C 错误,D 正确;根据牛顿第二定律有F -f =ma ,解得摩擦力的大小为f =F -ma =50 N -10 N =40 N,故B 错误;由滑动摩擦力的公式f =μN =μmg ,可得动摩擦因数为μ=f mg=0.8,故A 正确.答案:AD3.解析:(1)由运动学公式有:x =12at 2代入数据解得:a =4 m/s 2则到达地面时的速度为:v =at =8 m/s(2)由牛顿第二定律可得:mg sin θ-μmg cos θ=ma 代入数据解得:μ=315 答案:(1)8 m/s (2)3154.解析:对A 、B 整体,由牛顿第二定律有F -μ(m 1+m 2)g =(m 1+m 2)a ,解得a =1 m/s 2,即B 的加速度大小为1 m/s 2,故A 错误;对B 物体,由牛顿第二定律有T -μm 2g =m 2a ,解得T =2 N,故B 正确;若撤去外力F ,则A 、B 两物体均在摩擦力作用下做减速运动,A 、B 两物体的加速度大小均为a ′=μm 1g m 1=μm 2g m 2=μg =1 m/s 2,故C 错误,D 正确. 答案:BD5.解析:由v -t 图像可知,0~1 s 内,物体做匀加速直线运动,其加速度大小为a 1=Δv 1Δt 1=61 m/s 2=6 m/s 2;1~3 s 内,物体做匀减速直线运动,其加速度的大小为a 2=62 m/s 2=3 m/s 2.根据牛顿第二定律,0~1 s 有F -F f =ma 1,1~3 s 有F f =ma 2,解得F =9 N,F f =3 N .故D 正确,A 、B 、C 错误.答案:D关键能力综合练1.解析:力F 作用下a =F m =3020m/s 2=1.5 m/s 2,3 s 末的速度v =at =4.5 m/s,3 s 后撤去拉力,F =0,a =0,物体做匀速运动,故C 正确.答案:C2.解析:因木块能沿斜面匀速下滑,由平衡条件知:mg sin θ=μmg cos θ,所以μ=tanθ;当木块在推力作用下加速上滑时,由运动学公式x =12at 2得a =2 m/s 2,由牛顿第二定律得:F-mg sin θ-μmg cos θ=ma ,得F =36 N,D 正确.答案:D3.解析:雨滴受重力和空气阻力的作用,由牛顿第二定律得mg -F阻=ma ,雨滴加速下落,速度增大,阻力增大,所以加速度减小,在v -t 图像中其斜率越来越小,故选项C 正确.答案:C4.解析:上升过程中,由牛顿第二定律得mg +F f =ma 1, 设上升高度为h ,则h =12a 1t 21,下降过程中,由牛顿第二定律得mg -F f =ma 2,h =12a 2t 22,由以上各式得a 1>a 2,t 1<t 2,故选项A 正确. 答案:A5.解析:小球接触弹簧后,弹簧的弹力先小于重力沿斜面向下的分力,小球的合力沿斜面向下,加速度也沿斜面向下,与速度方向相同,故小球做加速运动,因弹力逐渐增大,合力减小,加速度减小;随着小球向下运动,弹簧的弹力增大,当弹簧的弹力大于重力沿斜面向下的分力后,小球的合力沿斜面向上,加速度沿斜面向上,与速度方向相反,小球做减速运动,弹力增大,合力增大,加速度也增大;综上可知,加速度先减小后反向增大,小球速度先增大后减小,故B 、C 正确,A 、D 错误.答案:BC 6.解析:由受力分析知,物块:f =F f ,根据作用力与反作用力特点知,F f ′=F f , 在4~5 s 内,f =0.2 N此时F 撤去,木板减速,由牛顿第二定律知:F f ′=ma 2,由v -t 图像知a 2=0.2 m/s 2, 解得m =1 kg,A 正确.在2~4 s 内,木板:F -F f ′=ma 1,又F f ′=F f =f =0.2 N,由v -t 图像知a 1=0.2 m/s 2, 解得F =0.4 N,B 正确.因为无法得知物块质量,木板与物块间的动摩擦因数无法求解,D 错误. 由图像知0~2 s 内F 变化,C 错误.答案:AB7.解析:(1)由x =12at 2得a 1=2x t2=0.4 m/s 2.由牛顿第二定律F -F f =ma 1得F f =F -ma 1=(4-8×0.4) N=0.8 N,由F f =μmg 得μ=F f mg =0.88×10=0.01.(2)撤去F 后,木块受摩擦力F f =μmg =0.8 N,加速度a 2=-μg =-0.1 m/s 2.5 s 末的速度v =a 1t =0.4×5 m/s=2 m/s.x =-v 22a =-222×-0.1m =20 m.答案:(1)0.01 (2)20 m 8.解析:(1)如右图,对物体进行受力分析可得:G 1=mg sin 30°=20 N, F N =G 2=mg cos 30°=20 3 N, F f =μF N =33×20 3 N =20 N. (2)由牛顿第二定律可得,0~4 s 内物体的加速度:a =F -G 1-F f m=5 m/s 2, 0~4 s 内位移:x 1=12at 2=40 m.答案:(1)20 N (2)5 m/s 240 m学科素养升级练1.解析:由题意可知,运动员先做自由落体运动,加速度为g ,到达B 点时绳子张紧后人受到弹力作用,开始时弹力小于重力,人将继续加速且加速度逐渐减小,人做加速度减小的加速运动,到达C 点时加速度为零,速度达最大,故AB 错误,C 正确;从C 到D ,弹力大于重力,合力向上且逐渐增加,故加速度方向向上且逐渐增加,人开始减速,到达D 点时向上的加速度最大,速度为零,故D 错误.答案:C2.解析:设消防队员最大速度为v ,则加速过程中的平均速度和减速过程中的平均速度都是12v ,故全程的平均速度是12v .则h =v -t =12vt ,解得v =2h t =2×123 m/s =8 m/s,故A 错误.设消防队员加速过程和减速过程的加速度大小分别为a 1和a 2.由题知,加速过程有mg -f 1=ma 1,减速过程有f 2-mg =ma 2.根据速度公式,有a 1t 1=a 2t 2=v ,t 1+t 2=3 s,a 1=2a 2,12a 1t 21+12a 2t 22=h .联立解得a 1=8 m/s 2,a 2=4 m/s 2,f 1=120 N,f 2=840 N .故f 1∶f 2=1∶7,故B 正确.由速度公式得t 1=v a 1=88 s =1 s,t 2=v a 2=84s =2 s,所以加速与减速过程的时间之比为1∶2,故D 错误.由位移公式得s 1=12a 1t 21=12×8×12 m =4 m,s 2=12a 2t 22=12×4×22m =8 m,加速与减速过程的位移之比为1∶2,故C 错误.答案:B3.解析:设滑道倾角为θ,则滑道的长度为Lcos θ,根据牛顿第二定律,可知下滑时的加速度a =g sin θ,则根据运动学公式有:Lcos θ=12g sin θt 2,解得t = 4Lg sin 2θ,可知滑道倾角θ=45°时,划艇下滑时间最短,最短时间t min =2Lg,故C 正确,B 、D 错误;θ<45°时,倾角越大,时间越短,θ>45°时,倾角越大,时间越长,故A 错误.答案:C4.解析:(1)由牛顿第二定律可得: “紧急制动”过程的加速度a 2=f m其中f =12 000 N,m =1 500 kg, 代入解得:a 2=8 m/s 2;(2)设触发“紧急制动”时汽车的速度大小为v ,其到障碍物的距离为x 2则有:x 2=v 22a 2已知“紧急制动”前的加速度为a 1=1 m/s 2位移为x 2=v 20-v22a 1且有:x 1+x 2=x已知总位移x =22 m,v 0=10 m/s 解得:v =8 m/s,x 2=4 m ; (3)紧急制动前的时间为:t 1=v 0-va 1=2 s 紧急制动后的时间为:t 2=v a 2=1 s 总时间为:t =t 1+t 2=3 s所以v =x t =223m/s.答案:(1)8 m/s 2(2)8 m/s 4 m (3)223m/s5.解析:(1)设沿斜坡下滑的加速度为a 1,根据牛顿第二定律得,mg sin θ-μmg cos θ=ma 1,代入数据解得:a 1=0.25 m/s 2. (2)设滑到斜坡底端的速率为v ,则有:v 2=2a 1L 1,代入数据解得:v =6 m/s.设在水平段滑行的加速度大小为a 2,则有:μmg =ma 2, 解得:a 2=3 m/s 2,设水平运动的位移为x ,则有:v 2=2a 2x解得:x =v 22a 2=366m =6 m.所以最后停止点距终点的距离为:x ′=L 2-x =30 m -6 m =24 m(3)滑草车在水平段上做减速运动,a 2=3 m/s 2则人在水平方向受到的力:F x =Ma 2=40×3 N=120 N所以车对人的力:F =F 2x +Mg 2= 1202+4002N =418 N根据牛顿第三定律可得,人对车的作用力大小也是418 N 答案:(1)0.25 m/s 2(2)24 m (3)418 N6.解析:(1)若要使小圆环A 从无初速度释放后还能返回释放点,小圆环A 在“神秘区域”内所受合力方向应竖直向上,所以恒力F 的方向竖直向上.取小圆环A 到达底部时速度刚好为零的临界情况进行分析,设小圆环A 进入“神秘区域”上边缘时的速度为v 1,从释放到进入“神秘区域”上边缘的过程中,根据自由落体运动的规律有:v 21=2g (H -h ).从小圆环A 进入“神秘区域”直至到达底部时速度刚好为零的过程,根据运动学的规律有:v 21=2a 1h ,根据牛顿第二定律有:F -mg =ma 1,整理可得:F =mg Hh .因此,要使小圆环能返回释放点,则F 应大于mg H h,方向竖直向上.(2)小圆环A 与杆B 从释放到进入“神秘区域”上边缘的过程中,一起做自由落体运动,进入“神秘区域”后小圆环A 与杆B 不分离,说明“神秘区域”给小圆环A 的恒力F 的方向竖直向上,设小圆环A 进入“神秘区域”上边缘时的速度为v 2.对小圆环A ,进入“神秘区域”之前有:v 22=2g (H -h ),进入“神秘区域”直至到达底部时速度刚好为零的过程有:v 22=2a 2h ,F -mg -f =ma 2,整理可得:F =f +mg H h.因此,要使小圆环从释放后还能离开“神秘区域”,则F 应大于f +mg H h.答案:见解析。

人教版高一物理必修一第四章 牛顿运动定律练习(附)答案

人教版高一物理必修一第四章 牛顿运动定律练习(附)答案

2020—2021人教版物理必修一第四章 牛顿运动定律练习(附)答案 人教必修一第四章 牛顿运动定律1、物体的运动状态与受力情况的关系是( )A .物体受力不变时,运动状态也不变B .物体受力变化时,运动状态才会改变C .物体不受力时,运动状态就不会改变D .物体不受力时,运动状态也可能改变2、伽利略理想实验揭示了( )A .若物体运动,那么它一定受力B .力不是维持物体运动的原因C .只有受力才能使物体处于静止状态D .只有受力才能使物体运动3、(多选)下列说法中正确的是( )A .在力学中,力是基本概念,所以力的单位“牛顿”是力学单位制中的基本单位B .因为力的单位是牛顿,而1 N =1 kg·m/s 2,所以牛顿是个导出单位C .各物理量采用国际单位制单位,通过物理公式得出的最终结果的单位一定为国际单位制单位D .物理公式不仅确定了物理量之间的数量关系,同时也确定了物理量间的单位关系4、导出单位是由基本单位组合而成的,则下列说法中正确的是( )A .加速度的单位是m/s 2,是由m 、s 两个基本单位组合而成的B .加速度的单位是m/s 2,由公式a =Δv Δt 可知它是由m/s 和s 两个基本单位组合而成的C .加速度的单位是m/s 2,由公式a =F m 可知它是由N 、kg 两个基本单位组合而成的D .以上说法都是正确的5、如图所示,将吹足气的气球由静止释放 ,气球内气体向后喷出,气球会向前运动,这是因为气球受到()A.重力B.手的推力C.空气的浮力D.喷出气体对气球的作用力6、A、B两物体以相同的初速度滑到同一粗糙水平面上,若两物体的质量m A>m B,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A与x B相比为()A.x A=x B B.x A>x BC.x A<x B D.不能确定7、(双选)在一电梯的地板上有一压力传感器,其上放一物体,如图甲所示,当电梯运行时,传感器示数大小随时间变化的关系图象如图乙,根据图象分析得出的结论中正确的是()A.从时刻t1到t2,物块处于失重状态B.从时刻t3到t4,物块处于失重状态C.电梯可能开始停在低楼层,先加速向上,接着匀速向上,再减速向上,最后停在高楼层D.电梯可能开始停在高楼层,先加速向下,接着匀速向下,再减速向下,最后停在低楼层8、关于惯性和惯性定律的说法,正确的是()A.物体在任何情况下都有惯性B.物体只有在运动时才有惯性C.物体不受外力作用时,一定处于静止状态D.物体不受外力作用时,一定做匀速直线运动9、如图所示,一倾角为α的光滑斜面向右做匀加速运动,物体A相对于斜面静止,则斜面运动的加速度为()A.gsin αB.gcos αC.gtan α D.g tan α10、下列各组属于国际单位制的基本单位的是()A.千克、米、秒B.克、牛顿、米C.质量、长度、时间D.质量、力、位移11、如图所示是火箭加速上升时的照片,此时喷出气体对火箭作用力的大小()A.等于火箭的重力B.等于火箭对喷出气体的作用力C.小于火箭对喷出气体的作用力D.大于火箭对喷出气体的作用力12、光滑水平面上静止一个物体,现有水平恒力F作用在物体上,使物体的位移为x0时,立刻换成-4F的力,作用相同时间,物体的总位移为() A.-x0B.x0C.0 D.-2x013、如图所示,升降机天花板上用轻弹簧悬挂一物体,升降机静止时弹簧伸长10 cm,运动时弹簧伸长9 cm,则升降机的运动状态可能是(g取10 m/s2)()A.以a=1 m/s2的加速度加速下降B.以a=1 m/s2的加速度加速上升C.以a=9 m/s2的加速度减速上升D.以a=9 m/s2的加速度减速下降14、在做匀速直线运动的小车上水平放置一密闭的装有水的瓶子,瓶内有一气泡,如图所示,当小车突然停止运动时,气泡相对于瓶子怎样运动?15、自制一个加速度计,其构造是:一根轻杆,下端固定一个小球,上端装在水平轴O上,杆可在竖直平面内左右摆动,用白硬纸作为表面,放在杆摆动的平面上,并刻上刻度,可以直接读出加速度的大小和方向.使用时,加速度计右端朝汽车前进的方向,如图所示,g取9.8 m/s2.(1)硬纸上刻度线b在经过O点的竖直线上,则在b处应标的加速度数值是多少?(2)刻度线c和O点的连线与Ob的夹角为30°,则c处应标的加速度数值是多少?(3)刻度线d和O点的连线与Ob的夹角为45°.在汽车前进时,若轻杆稳定地指在d处,则0.5 s内汽车速度变化了多少?16、如图所示,一个质量为m=2 kg的均匀小球,放在倾角θ=37°的光滑斜面上.若球被与斜面垂直的光滑挡板挡住,处于平衡状态.求小球对挡板和斜面的压力.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)2020—2021人教版物理必修一第四章牛顿运动定律练习(附)答案人教必修一第四章牛顿运动定律1、物体的运动状态与受力情况的关系是()A.物体受力不变时,运动状态也不变B.物体受力变化时,运动状态才会改变C.物体不受力时,运动状态就不会改变D.物体不受力时,运动状态也可能改变C[物体受力不变时,加速度不变,若加速度不为零,速度一定在改变,则运动状态一定在改变;若加速度为零,速度不变,运动状态不变,故A错误;物体受力变化时,加速度在变化,速度在改变,运动状态在改变;若物体受力不变时,运动状态也会改变,故B错误;物体不受力时,根据牛顿第一定律可知运动状态不会改变,故C正确,D错误.]2、伽利略理想实验揭示了()A.若物体运动,那么它一定受力B.力不是维持物体运动的原因C.只有受力才能使物体处于静止状态D.只有受力才能使物体运动【答案】B [伽利略理想实验指出:如果水平面没有摩擦,那么在水平面上的物体一旦获得某一速度,物体将保持这一速度一直运动下去,而不需要外力来维持,故A 、D 错误;运动和静止都不需要力来维持,故B 正确,C 错误.]3、(多选)下列说法中正确的是( )A .在力学中,力是基本概念,所以力的单位“牛顿”是力学单位制中的基本单位B .因为力的单位是牛顿,而1 N =1 kg·m/s 2,所以牛顿是个导出单位C .各物理量采用国际单位制单位,通过物理公式得出的最终结果的单位一定为国际单位制单位D .物理公式不仅确定了物理量之间的数量关系,同时也确定了物理量间的单位关系【答案】BCD [力虽然是力学中一个最基本的概念,但它不是力学中的基本物理量(力学中的基本物理量是质量、长度和时间),所以它的单位“牛顿”不是力学中的基本单位.力学中的基本单位是千克、米、秒,其他单位都是导出单位.]4、导出单位是由基本单位组合而成的,则下列说法中正确的是( )A .加速度的单位是m/s 2,是由m 、s 两个基本单位组合而成的B .加速度的单位是m/s 2,由公式a =Δv Δt 可知它是由m/s 和s 两个基本单位组合而成的C .加速度的单位是m/s 2,由公式a =F m 可知它是由N 、kg 两个基本单位组合而成的D .以上说法都是正确的【答案】A [在力学中长度、时间、质量的单位为基本单位,而m/s 、N 都是导出单位,B 、C 、D 错误,A 正确.]5、如图所示,将吹足气的气球由静止释放 ,气球内气体向后喷出,气球会向前运动,这是因为气球受到( )A .重力B.手的推力C.空气的浮力D.喷出气体对气球的作用力【答案】D[气球内气体向后喷出时,气球对气体有向后的作用力,气体对气球有向前的反作用力使气球向前运动,D项正确.]6、A、B两物体以相同的初速度滑到同一粗糙水平面上,若两物体的质量m A>m B,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A与x B相比为()A.x A=x B B.x A>x BC.x A<x B D.不能确定【答案】A[由F f=μmg=ma得a=μg,故A、B两物体的加速度相同,又据运动学公式v20=2ax知x=v202a,故两物体滑行的最大距离x A=x B,故A正确.] 7、(双选)在一电梯的地板上有一压力传感器,其上放一物体,如图甲所示,当电梯运行时,传感器示数大小随时间变化的关系图象如图乙,根据图象分析得出的结论中正确的是()A.从时刻t1到t2,物块处于失重状态B.从时刻t3到t4,物块处于失重状态C.电梯可能开始停在低楼层,先加速向上,接着匀速向上,再减速向上,最后停在高楼层D.电梯可能开始停在高楼层,先加速向下,接着匀速向下,再减速向下,最后停在低楼层BC[从F-t图象可以看出,0~t1,F=mg,电梯可能处于静止状态或匀速运动状态;t1~t2,F>mg,电梯具有向上的加速度,物块处于超重状态,可能加速向上运动或减速向下运动;t2~t3,F=mg,可能静止或匀速运动;t3~t4,F<mg,电梯具有向下的加速度,物块处于失重状态,可能做加速向下或减速向上运动.综上分析可知,B、C正确.]8、关于惯性和惯性定律的说法,正确的是()A.物体在任何情况下都有惯性B.物体只有在运动时才有惯性C.物体不受外力作用时,一定处于静止状态D.物体不受外力作用时,一定做匀速直线运动【答案】A[惯性是物体本身的一种固有属性,其大小只与质量有关,质量越大,惯性越大;惯性的大小和物体是否运动、是否受力以及运动的快慢是没有任何关系的,A正确,B错误;由惯性定律可知,当物体不受外力时将保持静止或做匀速直线运动,C、D错误.]9、如图所示,一倾角为α的光滑斜面向右做匀加速运动,物体A相对于斜面静止,则斜面运动的加速度为()A.gsin αB.gcos αC.gtan α D.g tan α【答案】C[物体随斜面体一起沿水平方向运动,则加速度一定在水平方向,物体受到重力和垂直斜面向上的支持力,两者合力方向一定水平向右,如图所示由牛顿第二定律得mgtan α=ma,则a=gtan α,选项C正确,A、B、D错误.] 10、下列各组属于国际单位制的基本单位的是()A.千克、米、秒B.克、牛顿、米C.质量、长度、时间D.质量、力、位移【答案】A[选项C、D中所给的都是物理量,不是物理单位,C、D错误;千克、米、秒分别为质量、长度、时间三个基本物理量的单位,A正确;B项中牛顿是导出单位,B 错误.]11、如图所示是火箭加速上升时的照片,此时喷出气体对火箭作用力的大小( )A .等于火箭的重力B .等于火箭对喷出气体的作用力C .小于火箭对喷出气体的作用力D .大于火箭对喷出气体的作用力【答案】B [火箭加速上升,则合力方向向上,所以喷出气体对火箭作用力大于火箭重力,选项A 错误;喷出气体对火箭作用力与火箭对喷出气体的作用力是一对作用力与反作用力,大小相等,选项B 正确,C 、D 错误.]12、光滑水平面上静止一个物体,现有水平恒力F 作用在物体上,使物体的位移为x 0时,立刻换成-4F 的力,作用相同时间,物体的总位移为( )A .-x 0B .x 0C .0D .-2x 0【答案】A [以F 方向为正方向,设开始阶段加速度为a ,则后一阶段加速度为-4a ,由运动规律:x 0=12at 2,x ′=at·t -12×4at 2,x =x 0+x ′.三个方程联立求得x =-x 0,故A 正确.]13、如图所示,升降机天花板上用轻弹簧悬挂一物体,升降机静止时弹簧伸长10 cm ,运动时弹簧伸长9 cm ,则升降机的运动状态可能是(g 取10 m/s 2)( )A .以a =1 m/s 2的加速度加速下降B .以a =1 m/s 2的加速度加速上升C .以a =9 m/s 2的加速度减速上升D .以a =9 m/s 2的加速度减速下降A[当升降机静止时,根据胡克定律和二力平衡条件得kx1-mg=0,其中k为弹簧的劲度系数,x1=0.1 m.当弹簧伸长量为x2=9 cm时,kx2<mg,说明物体处于失重状态,升降机加速度a的方向必向下,由牛顿第二定律得mg-kx2=ma,解得a=1 m/s2.升降机加速度方向向下,如果向下运动,则为加速运动,如果向上运动,则为减速运动.由此可知选项A正确.]14、在做匀速直线运动的小车上水平放置一密闭的装有水的瓶子,瓶内有一气泡,如图所示,当小车突然停止运动时,气泡相对于瓶子怎样运动?[解析]首先确定本题应该用惯性知识来分析,但此题涉及的不仅仅是气泡,还有水,由于惯性的大小与质量有关,而水的质量远大于同体积气泡的质量,因此水的惯性远大于气泡的惯性,当小车突然停止时,水保持向前运动的趋势远大于气泡向前运动的趋势,当水相对于瓶子向前运动时,水将挤压气泡,使气泡相对于瓶子向后运动.[答案]见解析15、自制一个加速度计,其构造是:一根轻杆,下端固定一个小球,上端装在水平轴O上,杆可在竖直平面内左右摆动,用白硬纸作为表面,放在杆摆动的平面上,并刻上刻度,可以直接读出加速度的大小和方向.使用时,加速度计右端朝汽车前进的方向,如图所示,g取9.8 m/s2.(1)硬纸上刻度线b在经过O点的竖直线上,则在b处应标的加速度数值是多少?(2)刻度线c和O点的连线与Ob的夹角为30°,则c处应标的加速度数值是多少?(3)刻度线d和O点的连线与Ob的夹角为45°.在汽车前进时,若轻杆稳定地指在d处,则0.5 s内汽车速度变化了多少?[解析](1)当轻杆与Ob重合时,小球所受合力为0,其加速度为0,车的加速度亦为0,故b处应标的加速度数值为0.(2)解法一:合成法当轻杆与Oc重合时,以小球为研究对象,受力分析如图甲所示.根据力的合成的平行四边形定则和牛顿第二定律得mgtan θ=ma1,解得a1=gtan θ=9.8×3 3m/s2≈5.66 m/s2.甲解法二:正交分解法建立直角坐标系,并将轻杆对小球的拉力正交分解,如图乙所示.乙则沿水平方向有:Fsin θ=ma,竖直方向有:Fcos θ-mg=0联立以上两式可解得小球的加速度a≈5.66 m/s2,方向水平向右,即c处应标的加速度数值为5.66 m/s2.(3)若轻杆与Od重合,同理可得mgtan 45°=ma2,解得a2=gtan 45°=9.8 m/s2,方向水平向左,与速度方向相反所以在0.5 s内汽车速度应减少,减少量Δv=a2Δt=9.8×0.5 m/s=4.9 m/s.[答案](1)0(2)5.66 m/s2 (3)减少了4.9 m/s16、如图所示,一个质量为m=2 kg的均匀小球,放在倾角θ=37°的光滑斜面上.若球被与斜面垂直的光滑挡板挡住,处于平衡状态.求小球对挡板和斜面的压力.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)[解析]对小球进行受力分析,挡板和斜面对小球有支持力F N1=mgsin θ=12 NF N2=mgcos θ=16 N根据牛顿第三定律可知挡板和斜面对小球的支持力与小球对挡板和斜面的压力大小相等、方向相反,则F′N1=F N1=12 N,方向垂直于挡板向下,F′N2=F N2=16 N,方向垂直于斜面向下.[答案]12 N,垂直于挡板向下16 N,垂直于斜面向下。

2022-2023学年人教物理高一上学期分层练习第5节 牛顿运动定律的应用带讲解

2022-2023学年人教物理高一上学期分层练习第5节  牛顿运动定律的应用带讲解

第5节 牛顿运动定律的应用一、牛顿定律与直线运动1.(多选)一个静止在水平面上的物体质量为2 kg ,在水平向右的5 N 的拉力作用下滑行,物体与水平面间的滑动摩擦力为2 N ,4 s 后撤去拉力,则( )A .物体在4 s 末的速度为6 m/sB .物体在4 s 末的速度为10 m/sC .物体滑行的时间为6 sD .物体滑行的时间为10 s物体在4 s 末的速度 v 1=a 1t 1=6 m/s选项A 正确,B 错误;CD .4 s 后,根据牛顿第二定律得,物体匀减速运动的加速度 物体继续滑行的时间2122-0-6s=6s -1v v t a ==则物体滑行的时间为6 s+4 s=10 s ,选项C 错误,D 正确。

故选AD 。

2.如图甲所示,一质量为m 的滑块放在粗糙的水平面上,滑块与水平面之间的动摩擦因数为μ。

现给滑块一水平向右的初速度v 0= 6m/s ,同时给滑块一水平向左的恒力F = 4N ,若以滑块的出发点为原点,取向右的方向为正方向,在电脑上描绘出滑块速度随时间的变化规律如图乙所示,取g = 10m/s 2下列说法正确的是( ) A .滑块的质量为4kgB .滑块与水平面之间的动摩擦因数为0.2 C .3s 末滑块返回到出发点D .4s 末滑块加速度大小为1m/s 2D【详解】ABD .由v —t 图像可知加速度大小a 1 = 3m/s 2,a 2 = 1m/s 2两个过程分别受力分析,根据牛顿第二定律得F + μmg = ma 1F - μmg = ma 2联立解得m = 2kgμ = 0.1AB 错误、D 正确;C .由v —t 图像可知,滑块先向右匀减速,再向左匀加速,v —t 图像面积为物体的位移,2 ~ 3s 内的位移大小小于0 ~ 2s 内位移大小,故3s 末滑块未返回到出发点,C 错误。

故选D 。

3.(2022·江苏省新海高级中学高一期中)用一水平力F 拉静止在水平面上的物体,在外力F 从零开始逐渐增大的过程中,物体的加速度a 随外力F 变化的关系如图所示,g 取10 m/s 。

(物理)物理牛顿运动定律的应用练习题20篇

(物理)物理牛顿运动定律的应用练习题20篇

(物理)物理牛顿运动定律的应用练习题20篇一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1竖直方向有 Ncosθ+μNsinθ﹣mg=0对整体有 F 1=(M+m )a 1代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2,对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0对整体有 F 2=(M +m )a 2代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N .【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度.(2)A 、B 两球落地时的动能.(3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -=对B :B B B B m g f m a -=A B f f =0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E = (3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+--代入以上数据得:250J E ∆=【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到.(2)根据运动性质和动能定理可得到.(3)由能量守恒定律可求出.3.如图,一块长度为9L m =、质量为1M kg =的长木板静止放置在粗糙水平地面上.另有质量为1m kg =的小铅块(可看做质点),以012/v m s =的水平初速度向右冲上木板.已知铅块与木板间的动摩擦因数为10.4μ=,木板与地面间的动摩擦因数为20.1μ=,重力加速度取210/g m s =,求:()1铅块刚冲上木板时,铅块与木板的加速度1a 、2a 的大小;()2铅块从木板上滑落所需时间;()3为了使铅块不从木板上滑落,在铅块冲上木板的瞬间,对长木板施加一水平向右的恒定拉力F ,求恒力F 的范围.【答案】(1)4m/s 2;2m/s 2(2)1s (3)2N≤F≤10N【解析】【分析】(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和木板的位移之差等于L ,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不能从左侧滑下求解力F 的范围;【详解】(1)铅块:11mg ma μ=解得a 1=4m/s 2;对木板:122()mg M m g Ma μμ-+=解得a 2=2m/s 2(2)从开始到滑落过程:2201112111()22v t a t a t L +-= 解得t 1=1s 10118/v v a t m s =-=2212/v a t m s ==(3)到右端恰好共速:2202122211()22v t a t a t L '+-= '01222v a t a t -= 解得a ′2=4m/s 2木板:'122()F mg M m g Ma μμ+-+= 解得F ≥2N ;共速后不能从左侧滑下:2-()()F M m g M m a μ+=+共,1a g μ≤共 解得F ≤10N , 则F 的范围:2N ≤F ≤10N【点睛】本题主要是考查牛顿第二定律的综合应用,对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.4.如图所示,质量均为3kg m =的物体A 、B 紧挨着放置在粗糙的水平面上,物体A 的右侧连接劲度系数为100N/m k =的轻质弹簧,弹簧另一端固定在竖直墙壁上,开始时两物体压紧弹簧并恰好处于静止状态。

牛顿运动定律

牛顿运动定律

可以把物体的加速度看成是各个力单独作用时
所产生的分加速度的合成。
3
在直角坐标系中
Fx
ma x
m
d x
dt
Fy
ma y
m
d y
dtFzmazmd zdt
在自然坐标系中
F
m
d dt
2
Fn m
4
三、牛顿第三定律
当物体A以力 F1作用在物体B上时,物体B也必 定同时以力 F2作用在物体A上。F1和 F2大小相等, 方向相反,且力的作用线在同一直线上。
6
例:一细绳跨过一轴承光滑的定滑轮,绳的两端分别
悬有质量为m1和m2的物体(m1<m2),如图所示。设滑 轮和绳的质量可忽略不计,绳不能伸长,试求物体m1 和m2的加速度大小和绳子张力的大小。 解:选取对象
m1和m2 分析运动
a
m1
m1,以加速度a1向上运动 m2,以加速度a2向下运动 分析受力
m2
2
要深刻地理解和掌握牛顿第二定律,需认识它 的几个特性。
(1)因果性:合外力是使物体产生加速度的原 因,而加速度则是合外力作用产生的效果。
(2)瞬时性:牛顿第二定律是力的瞬时作用规
律。力和加速度同时产生、同时变化、同时消
逝。
F、a 之间一一对应
(3)矢量性:F
ma
是矢量式。
(4)独立性:当物体受到几个力的作用时,
1
二、牛顿第二定律
物体受到外力作用时,它所获得的加速度的大 小与合外力的大小成正比,与物体的质量成反比; 加速度的方向与合外力的方向相同。
F ma
意义:
(1)正确地揭示了物体的加速度与它所受的合外力 及自身质量之间的定量关系。

鲁科版高中物理必修第一册第5章牛顿运动定律第5节超重与失重课后练习(含答案)

鲁科版高中物理必修第一册第5章牛顿运动定律第5节超重与失重课后练习(含答案)
N的钩码,弹簧秤弹力随时间改变的规律可通过一传感器干脆得出〔如下图〕。下面分析正确的选项是


A. 从时刻t1到时刻t2钩码处于超重状态
B. 从时刻t3到时刻t4钩码处于失重状态
C. 电梯可能起先在15楼,先加速向下,再匀速向下,再减速向下,最终停在1楼
D. 电梯可能起先在1楼,先加速上升,再匀速向上,再减速向上,最终停在15楼

A. 电梯可能向下减速运动,加速度大小为1m/s2
B. 电梯可能向下加速运动,加速度大小为1m/s2
C. 电梯可能向上加速运动,加速度大小为0.9m/s2
D. 电梯可能向下加速运动,加速度大小为0.9m/s2
3.载人飞船在放射和返回地面的过程中,都具有很大的、竖直向上的加速度,会使宇航员的大脑短暂缺血,而发生“黑视〞。那么以下说法正确的选项是〔
12.以下关于各项体育运动的说明正确的选项是(
)
A. 蹦床运发动在空中上升到最高点时处于超重状态
B. 跳高运发动在越杆时处于平衡状态
C. 举重运发动把杠铃举过头停在最高点时,杠铃处于平衡状态
D. 跳远运发动助跑是为了增加自己的惯性,以便跳得更远
二、填空题
13.在“探究超重与失重的规律〞试验中,得到了如右图所示的图线.图中的实线所示是某同学利用力传感器悬挂一个砝码在竖直方向运动时,数据采集器记录下的力传感器中拉力的大小改变状况.从图中可以知道该砝码的重力约为________N,A、B、C、D四段图线中砝码处于超重状态的为________,处于失重状态的为________.

A. 飞船放射时,宇航员处于失重状态
B. 飞船返回地面的过程中,宇航员处于失重状态
C. 飞船放射瞬时宇航员的重力变大

(物理)物理牛顿运动定律的应用练习题含答案及解析

(物理)物理牛顿运动定律的应用练习题含答案及解析

(物理)物理牛顿运动定律的应用练习题含答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送带逆时针转动,运行速度v=1.0m/s。

牛顿第三定律(5)

牛顿第三定律(5)
么相同点与不同点?
FN FN
FN’
海豹对球的支持力与球 的重力是一对平衡力
海豹对球的支持力与球对海 豹的压力是一对作用力和反
作用力。

分组讨论 书本放在课桌上它受到什么力?画出 示意图,它们有什么关系?它们的反作用 力是什么力?作用在谁身上?如果课桌没 有了,会怎样?
第四章:牛顿运动定律
§4.5牛顿第三定律
南昌市第一中学 张勇治
一、力是物体间的相互作用 施力物体 受力物体


两块磁铁之间的吸引作用
异名磁极互相吸引

将一个电灯悬挂在天花板上


练习2、通过细绳拉物体沿粗糙水平面运动,以下说法正确的 是: A、物体加速运动时,绳子拉物体的力大于物体拉绳子的力。 B、物体减速运动时,绳子拉物体的力小于物体拉绳子的力。 C、只有物体匀速运动时,绳子拉物体的力才等于物体拉绳子 的力 D、无论物体如何运动,绳子拉物体的力一定等于物体拉绳子 的力


三、作用力和反作用力与一对平衡力的异同点
相互作用力
相 同 点
一对平衡力
等值、反向、共线
作用在两个物体上 作用在一个物体上 性质不一定相同 不一定同时产生、同时 变化、同时消失 效果互相抵消

不 同 点
性质相同 同时产生、同时变化、同时 消失 效果不能抵消
练习1、人在跑步的时候,人和地球间有多少对作用力 和反作用力?
反作
FN 人
用力 反作
压力(弹力), 作用在地面上 摩擦力,作用 在地面上
.
G
f
反作 用力
用力
万有引力,作用在 地球上
作用力、反作用力性质相同, 分别作用在两个不同的物体上

高中物理牛顿运动定律练习题(含解析)

高中物理牛顿运动定律练习题(含解析)

高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。

对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。

若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。

牛顿第三定律

牛顿第三定律

A、B读数是否相同?
相同 相同 相同
注意事项:
1、使用弹簧测力计前先进行调零。 2、使用前先拉一拉测力计,防止弹簧被卡住。 3、拉伸弹簧测力计时不能超过量程。 4、将弹簧测力计放在水平桌面上水平拉。 5、读数时,视线要与刻度线平行,要有估读值。
5 牛顿第三定律
实验探究2:静力传感器 1.操作步骤: (1)两个传感器对拉,拉力逐渐增大,然后逐渐减小,直到为零 (2)将一个传感器拉动另一个传感器朝一个方向运动 2.观察分析计算机中反映的图表及数据,你得到什么结论?
三、牛顿第三定律
5 牛顿第三定律
两个物体间的作用力与反作用力总是大 小相等,方向相反,作用在同一条直线上。
关键词“两个物体”、 “总是”想一想:拔河比赛到 Nhomakorabea比什么?
5 牛顿第三定律
以卵击石,鸡蛋“粉身碎骨” 石头却“安然无恙”是不是因 为鸡蛋对石头的作用力小,而 石头对鸡蛋的作用力大呢?
5 牛顿第三定律
FN2
结论2.摩擦力的反作用力一定是摩擦力
5 牛顿第三定律
请利用给出的实例说明力的作用是相互的
实例分析3
F F′


F和F′是一对作用力和反作用力
结论3:磁力的反作用力一定是磁力
5 牛顿第三定律
二、实验探究:作用力反作用力的关系
实验探究1:弹簧测力计
条件
1、A弹簧不动,用B弹簧拉A 2、B弹簧不动,用A弹簧拉B 3、A、B同时对拉
5 牛顿第三定律
对象 关系
作用力和反作用力
一对平衡力


大小相等、方向相反、作用在一条直线上

作用对象 两个物体
一个物体
不 作用效果 两力不能抵消
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习3 牛顿运动定律关于力的概念与受力分析3. 1 你是怎样理解力的?并讨论:( 1) 说明弹性力及摩擦力的作用机理;( 2) 讨论场力的作用机理;( 3) 算一算你的体重是多少牛顿, 以加深对力的单位的数量概念;( 4) 当你乘坐在一枚巨型火箭中, 竖直加速上升, 其加速度为98.0m/2s (即a = 10 g) , 则坐椅对你的支承力(即推力)是你体重的多少倍?[分析与解答](4)由N-mg=ma可知, N=ma+mg=11mg3. 2 判断下述说法的正误。

( 1) 物体的速度越大, 表明其受力越大;( 2) 物体的速率不变, 合外力必为零;( 3) 支承力必与支撑面垂直;( 4) 物体受力不为零, 速度必越来越大;( 5) 绳子一端系一小球, 绕绳子的另一端在水平面上作圆周运动, 不计一切摩擦。

在绳子断了以后, 小球在离心力作用下飞去。

[分析与解答] (1)错误。

因为外力是产生加速度的原因,且力的大小与加速度成正比,与速度无关。

(2)错误。

因为速度不变只说明切向加速度为零,但反映速度方向变化的法向加速度可能不为零,因而和外力不一定为零。

(3)正确。

支承力沿法线方向,即与支承面垂直。

(4)错误。

因为当受力与速度方向垂直,或与速度方向相反时,会保持速率不变,或速率越来越小。

(5)错误。

因为小球在作圆周运动时,是受绳子的张力作用,该力指向圆心,提供小球作圆周运动的向心力。

在绳子断了以后,小球不再受力,小球因惯性沿原来圆周运动的切线方向(既速度方向)向外飞去。

3. 3 讨论、分析下列物体的受力情况, 并画出隔离体图:( 1) 质量为m的物体静止在某一坡度的斜面上时, 受哪几个力? 有无“下滑力”?( 2) 一卡车, 在牵引力F 作用下做匀速直线运动, 其上载有质量为m 的木箱, 两者相对静止。

该木箱受哪几个力作用?( 3) 歼击机驾驶员作翻转特技飞行表演, 当他处于头向下的位置时( 相当于圆轨道的顶点) , 受哪几个力作用?( 4) 上题中, 驾驶员受不受向心力作用? 如有, 是哪个物体为他提供的向心力?( 5) 讨论骑行中的自行车前后轮所受的摩擦力的方向。

( 6) 试总结一下分析摩擦力方向的方法。

牛顿运动定律3. 4 力是物体运动状态变化的原因, 其间符合怎样的规律?( 1) 列出牛顿第二定律的表达式, 并说明其意义。

( 2) F = ma 在什么条件下成立? 它与F = ma 有什么区别?( 3) F = mdv/dt 与F =R mv /2各表示什么意义?( 4) 何谓惯性? 为什么把牛顿第一定律称为惯性定律?( 5) 2000 年物理学界的第1 件重大事件是, 经过历时4 年, 耗资数10 万美元的计算, 得到了地球质量的最新数据为5.972×2410kg , 比原先公认的5.976×2410 kg 要轻得多,“大大出乎物理学家们的预料”。

这主要是对影响每个星球的引力常数, 得出了迄今最精确的计算结果。

你能就此事对未来的影响做些预测吗?牛顿运动定律的应用3. 5 (1) 一质量为m 的人, 站在升降机中的磅秤上(见图) , 当升降机①以速度v 匀速上升; ②以加速度a 匀加速上升; ③以加速度a 匀加速下降; ④ 在高为h 处, 吊索断了, 磅秤上指示的读数各为多少? 并讨论下列问题:① 磅秤指示的是什么?② 超重和失重是怎么回事?③ 你在求解时所列出的方程, 是对哪个参考系而言的?(2) 飞船发射升空时有一个加速过程, 其间宇航员处于超重状态, 在航天技术中, 把宇航员在超重状 题3.5图 态下对座椅的压力N F 与他在地球表面的重力p = mg 的比值称为耐受力值k, 选拔宇航员时要求4≤ k ≤12 , 杨利伟的k 值约为8。

试估算设计飞船发射时加速度值的选取范围。

[分析与解答] (1)人受两个力,重力g m P =和磅秤的支承力NF ' 。

秤的指示数就是N 的反作用力N ' ,即人对秤的正压力。

对地面参考系而言:①升降机匀速上升时,有N F =mg 即N F ' =-mg 式中负号表示方向向下。

②以a 上升时,有 ma mg F ma mg F N N +==-, (超重现象)则 )(ma mg F F N N +-=-=' (方向向下)③以a 下降时,有 ma mg F ma F mg N N -==-,则 )(ma mg F F N N --=-=' (方向向下)④以g 自由下落时,有 0,==-N N F mg F mg (失重现象)则 0='N F(2)由上问②可知,kmg ma mg F ma mg F N N =+==-,,由题意可知,发射加速度a 的取值范围为 3g ≤a ≤11g3. 6 如图所示,m m m ==21 , 用轻绳相连, 现作用一水平恒力F , 试求绳子的张力N F 和系统的加速度。

[分析与解答] 在不计摩擦力的情况下,两物体水平方向受力如图所示。

对1m 有: a m F T 1=对2m 有: a m F F T 2='-解得 mF a 2= 题3.6 图?? 则 2F ma F T == 3. 7 质量为m= 3 kg 的物体置于θ= 30°的斜面上(见图) , 静摩擦因数330=μ。

可知, 当F = 10N 和F = 25N 时, 物体所受摩擦力的方向指向如何?[分析与解答] 物体受力情况如图所示。

当外力→F 大小 不同时,摩擦力的方向可能不同。

题3.7 图??按题设条件,重力沿斜面方向的分量为 N mg 7.1430sin 8.93sin =⨯⨯= θ 斜面提供的最大静摩擦力为 N mg f r 7.14238.9333cos 0=⨯⨯⨯==θμ当推力)sin (10θmg N F <=时,物体有下滑趋势,摩擦力方向应为沿斜面向上,此时静摩擦力大小为 N f 7.4107.141=-=当推力)sin (25θmg N F >=时,物体有向上运动趋势,摩擦力方向应为沿斜面向下,此时静摩擦力大小为 N f 3.107.14252=-=3. 8 试述处理滑轮问题的一般方法。

见图( a ) , m 2 > m 1 , 不计绳子和滑轮质量以及一切摩擦, 试求:( 1) 绳子的张力F T 和系统的加速度a 。

( 2) 欲把该装置移到以加速度a ′上升的电梯中, 则T F 和a 为多少?( 3) 欲将图(a)改为图(b)所示的情况, 其他条件不变, 再求T F 和a 。

( 4) 三种情况下的弹簧伸长量。

[分析与解答] 设21,m m 开始运动时,弹簧有一定伸长,使得滑轮中心保持静止不动,处于平衡状态。

(1)分别取21,m m 为隔离体,分析它们的受力情况(如图c )。

并分别列出牛顿运动方程a m g m F T 11=- ①a m F g m T 22=- ②解得 g m m m m F g m m m m a T 212121122,+=+-= ③ 题3.8 图(2) 将图(a)装置移到电梯中,式① ②变为)()(2211a a m F g m a a m g m F T T '-=-'+=-解得 )(2),(21212112a g m m m m F a g m m m m a T '++='++-= ④ (3)在图(b)装置中,有对12,m g m F F T == a m g m F T 11=-得 g m m m a 112-= (4)取滑轮为隔离体,如图(d )所示,可知T F ky 20=则(1)中情况下的弹簧伸长为km m g m m k F y T )(4221210+== 在(2)中情况下km m a g m m k F y T )()(4221210+'+==在(3)中情况下 kg m k F y T 2022== 3.9 假使地球自转速度加快到能使赤道上的物体处于失重状态,一昼夜的时间有多长?3. 10 在一只半径为R 的半球形碗内, 有一粒质量为m 的小钢球, 沿碗的内壁作匀速圆周运动。

试求: 当小钢球的角速度为ω时, 它距碗底的高度h 为多少?[分析与解答] 取小球为隔离体,受重力→p 和支承力→N F (如图??)。

其中,→N F 沿x 轴方向的分力提供小球作圆周运动的向心力。

有 θωωθsin sin 22mR mr ma F n N === ①mg F N =θcos ②且 Rh R -=θcos ③ 解得 2ωg R h -= 可见,h 随ω的增大而增大。

3. 11 星体自转的最大转速发生在其赤道上的物体所受向心力正好全部由引力提供之时。

( 1) 行星密度一般约为33/100.3m kg ⨯, 求其可能的最小自转周期T 。

( 2) 有一中子星的自转周期为1.6ms , 若它的半径为10km , 则该中子星的质量至少有多大? 若太阳质量301099.1⨯=s m kg , 则中子星的质量是太阳质量的多少倍?[分析与解答] (1)行星赤道上的物质所受的向心力全部由引力提供时,行星自转转速最大,由ωπ2=T 可知,此时周期T 为最小。

设行星的半径为R ,质量为M ,且ρπ334R M =。

其赤道上有一物体,质量为m 。

由引力定律和牛顿第二定律可得R Tm R Mm G 22)2(π= 式中G 为引力常数,等于)/(1067.62311s kg m ⋅⨯- 将ρπ334R M =代入式①,得可能的最小周期为 s G T 3311109.6100.31067.633⨯=⨯⨯⨯==-πρπ ② (2)由式②可知 23GT πρ=则中子星的质量为Sn M kg GT R R M 12.01031.2)106.1(1067.6)10(44342923113422323=⨯=⨯⨯⨯⨯===--ππρπ变力问题和两类问题3. 12 质量为m 的质点沿x 轴运动, 其运动方程为t x x ωcos 0=, 试证明质点受到的合力为mx F x 2ω-=[分析与解答] 由t x x .cos 0ω=可得t x dtdv a t x dt dx v .cos .sin 020ωωωω-==-== 则 x m t x m ma F 202.cos ωωω-=-==得证。

3. 13质量为m 的物体在黏性介质中由静止开始下落, 介质阻力与速度成正比, 即r F = βv,β为常量。

试( 1) 写出物体的牛顿运动方程。

( 2) 求速度随时间的变化关系。

( 3) 其最大下落速度为多少?( 4) 分析物体全程的运动情况。

[分析与解答] (1)物体受向下的重力mg 和向上的阻力F ,则牛顿运动方程为 ma v mg =-.β(2)由 v mg dt dv a β-==分离变量并积分 ⎰⎰=-t v dt v m g dv 00β 得 -t gv m g m =-ββln 整理后得 )1(t me mg v ββ--=(3)当∞→t 时,有最大下落速度βm g v =max (4)由)1(t m e mg dt dx v ββ--== 有 dt e mg dx t m t x )1(00ββ--=⎰⎰得 ⎥⎥⎦⎤⎢⎢⎣⎡--=-)1(t m e m t m g x βββ 物体由静止开始向下作加速运动,并逐渐趋近于最大速度为βm g v =max ,此后趋于做匀速运动,物体在任意时刻开起点的距离由上式表示。

相关文档
最新文档