最新物理牛顿运动定律练习题20篇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新物理牛顿运动定律练习题20篇
一、高中物理精讲专题测试牛顿运动定律
1.利用弹簧弹射和传送带可以将工件运送至高处。如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。B 、C 分别是传送带与两轮的切点,相距L =6.4m 。倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:
(1)弹簧压缩至A 点时的弹性势能;
(2)工件沿传送带由B 点上滑到C 点所用的时间;
(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J
【解析】
【详解】
(1)由能量守恒定律得,弹簧的最大弹性势能为:
2P 01sin 37cos372
E mgx mgx mv μ︒︒=++ 解得:E p =42J
(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=
解得:a 1=10m/s 2 工件与传送带共速需要时间为:011
v v t a -=
解得:t 1=0.4s 工件滑行位移大小为:22
0112v v x a -= 解得:1 2.4x m L =<
因为tan 37μ︒
<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:
2sin 37cos37mg mg ma μ︒︒-=
解得:a 2=2m/s 2
假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:
22v
t a = 解得:t 2=2s
工件滑行位移大小为:2 3? 1
n n n n n 解得:x 2=4m
工件运动到C 点时速度恰好为零,故假设成立。
工作在传送带上上滑的总时间为:t =t 1+t 2=2.4s
(3)第一阶段:工件滑行位移为:x 1=2.4m 。
传送带位移'11 1.6m x vt ==,相对位移为:10.8m x =V 。
摩擦生热为:11cos37Q mg x V μ︒=
解得:Q 1=3.2J
第二阶段:工件滑行位移为:x 2=4m ,
传送带位移为:'228m x vt ==
相对位移为:24m x ∆=
摩擦生热为: 22cos37Q mg x μ︒=∆
解得:Q 2=16J
总热量为:Q =19.2J 。
2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s =,求:
()1小物块与长木板间动摩擦因数的值;
()2在整个运动过程中,系统所产生的热量.
【答案】(1)0.7(2)40.5J
【解析】
【分析】
()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值. ()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量.
【详解】
()1长木板加速过程中,由牛顿第二定律,得
1212mg mg ma μμ-=;
11m v a t =;
木板和物块相对静止,共同减速过程中,由牛顿第二定律得
2222mg ma μ⋅=;
220m v a t =-;
由图象可知,2/m v m s =,11t s =,20.8t s =
联立解得10.7μ=
()2小物块减速过程中,有:
13mg ma μ=;
031m v v a t =-;
在整个过程中,由系统的能量守恒得 2012
Q mv =
联立解得40.5Q J = 【点睛】
本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.
3.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:
(1)滑块A 的加速度大小a A ;
(2)相遇前瞬间,恒力F 2的功率P .
【答案】(1)2A 8m/s a =;(2)50W P =
【解析】
【详解】
(1)A 、B 受力如图所示:
A 、
B 分别向下、向上做匀加速直线运动,对A :
水平方向:N 1F F =
竖直方向:A A A m g f m a -=
且:N f F μ=
联立以上各式并代入数据解得:2A 8m/s a =
(2)对A 由位移公式得:212A A x a t =
对B 由位移公式得:212
B B x a t = 由位移关系得:B A x h x =-
由速度公式得B 的速度:B B v a t =
对B 由牛顿第二定律得:2B B B F m g m a -=
恒力F 2的功率:2B P F v =
联立解得:P =50W