输电线路的防雷技术措施通用版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解决方案编号:YTO-FS-PD892
输电线路的防雷技术措施通用版
The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation.
标准/ 权威/ 规范/ 实用
Authoritative And Practical Standards
输电线路的防雷技术措施通用版
使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。
随着经济的发展,对输电线路供电可靠性的要求越来越高。同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。
1雷害原因分析
输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。
输电线路感应雷过电压最大可达到400kV左右,它对
35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重危害线路安全运行。在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。
反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。目前对绕击雷过电压采取的主要措施是减少避雷线保护角,安装避雷器等。
实际运行经验表明:山区线路由于地形因素的影响和有效高度的增加,绕击率较高;平原,丘陵地区的线路则以反击为主。山区线路选择良好的防雷走廊,减小避雷线保护角,加强绝缘是最有效的防雷措施。对于平原,丘陵地区的线路降低按地电阻是最有效的防雷措施。
影响雷害的因素有很多,通过对输电线路雷击故障分析,准确判断雷害故障的性质,必须掌握线路的运行状
况,结合现场地理情况进行综合分析。
2防雷措施
输电线路防雷设计的目的是提高线路的防雷性能,降低线路的雷击跳闸率。在确定线路防雷的方式时,应综合考虑系统的运行方式、线路电压等级和重要程度、线路经过地区雷电活动的强弱、地形地貌特点、土壤电阻率等自然条件,并参考当地原有线路的运行经验,经过技术经济比较,采取合理的保护措施。除架设避雷线措施之外,还应注意做好以下几项措施。
2.1接地装置的处理
(1)高压输电线路耐雷水平随杆塔接地电阻的增加而降低。电压等级越高,降低杆塔接地电阻的作用将变得更加重要。对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。在雷击多发区域,主网线路杆塔接地电阻应保证小于10Ω,山区也应小于15Ω。在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量。
(2)接地装置埋深,要求大干0.6 m,采用增大截面的接地引下线,引下线(热镀锌)表面要进行防腐处理。严格按照规程执行接地装置的开挖检查制度。重点检查接地装置的埋深、接头和截面的测量,对不合格的及时进行处理。
(3)降低杆塔接地电阻,还需要确保架空地线、接地引下
线、地网相互之间的良好连接。
2.2减小外边相避雷线的保护角或者采用负角保护
在以往进行防雷设计时,只要求遵照规程规定满足杆塔避雷线保护角的要求就行了,忽略了山坡对防雷保护角的影响,则造成了杆塔防雷保护角不能满足防雷设计的实际要求,增加了线路闪络次数,影响了电网安全运行。针对山区运行线路容易受绕击的情况,建议采用有效屏蔽角公式计算校验杆塔有效保护角,以便设计时针对保护角偏大情况采取相应措施减少雷电绕击概率。
2.3加强绝缘和采用不平衡绝缘方式
在雷电活动强烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。因为这些地方落雷机会较多,塔顶电位高,感应过电压大,受绕击的概率也较大,通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。规程规定:全高超过40m的有地线杆塔,每增高10m应增加一片绝缘子。随着同杆塔架设双回线路的不断出现,当普通的防雷措施不能满足要求时,采用不平衡绝缘方式可避免双回线路在遭受雷击时同时跳闸。其原理是两回路的绝缘子片数不同,遇到雷击情况时,绝缘子片数少的一回路先闪络,闪络后的导线相当于避雷线,增加了对另一回路导线的耦合作用,提高了另一回路的耐雷水平,使之不发生闪络,保持连续供电。
2.4安装避雷器
避雷线的架设在一定程度上降低了导线上的感应过电压,但不是完全消除,这就要求安装避雷器来将雷电流泄放到大地,从而限制过电压,保障输电线路及设备的安全。未沿全线架设避雷线的35kV~110kV架空输电线路,应在变电所1km~2km的进线段架设避雷线。此外,发电厂、变电所的35kV及以上电缆进线段,在电缆与架空线的连接处应装设阀型避雷器,连接电缆段的1km架空线路应架设避雷线。
2.5装设自动重合闸装置
由于线路绝缘具有自恢复性能,大多数雷击造成的闪络事故在线路跳闸后能够自行消除。因此,安装自动重合闸装置对于降低线路的雷击事故率具有较好的效果。据统计,我国110kV及以上的高压线路重合闸成功率达75%~95%,35kV及以下的线路成功率约为50%~80%。因此,各级电压等级的线路均应尽量安装自动重合闸装置。
2.6加强雷电监测,消除设备隐患
雷击闪络中单相闪络机会最多,闪络地点也是一基杆塔比较多见,但有时也有连续几基同时闪络,或相隔几基闪络的。所以,故障巡查时,不能只查到一个故障点就结束故障巡视,而应把全区段查完。对110kV及以上输电线路可以应用雷电定位系统,雷电定位系统是一种全自动实