纳米相变材料PPT课件

合集下载

几种典型纳米材料 ppt课件

几种典型纳米材料 ppt课件

三、制备
(一)、制备方法 ——化学还原法
柠檬酸三钠法 柠檬酸三钠-鞣酸法 枸橼酸钠法 鞣酸-枸橼酸钠法 白磷法 抗坏血酸法 乙醇-超声波法 硼酸钠法
1、柠檬酸三钠法
1)取0、01%氯金酸(HAuCl4)水溶液100ml 加热至 沸,搅动下准确加入1%柠檬酸三 钠 (Na3C6H5O7.2H2O)水溶液 0.7ml,金黄色的氯金 酸水溶液在2分钟内变为紫红色,
改变鞣酸的加入量,制得的胶体颗粒大小不同。
3、枸橼酸三钠法
(1)10nm胶体金粒的制备:取0.01%HAuCl4水溶液100ml, 加入1%枸橼酸三钠水溶液3ml,加热煮沸30min,冷却至4℃, 溶液呈红色。
(2)15nm胶体金颗粒的制备:取0.01%HAuCl4水溶液100ml, 加入1%枸橼酸三钠水溶液2ml,加热煮沸15min~30min,直 至颜色变红。冷却后加入0.1Mol/L K2CO30.5ml,混匀即可。
胶金垫(Conjugate pad):
玻璃纤维、聚酯膜、纤维素滤纸、无纺布等多种材 质,多种规格,批间稳定。
结合垫的作用主要为:
- 吸附一定量的金标结合物颗粒; - 吸附并持续不断的将样品转移到NC膜上; - 保持金标结合物颗粒的稳定性; - 保证金标结合物颗粒定量完全释放等。
硝酸纤维素膜( Nitrocellulose):
硝酸纤维素膜与蛋白结合的原理 主要有两种假说:
1)首先两者靠静电作用力结合,然后靠H键和疏水作用来维持长 时间结合。 2)首先两者靠疏水作用结合,然后靠静电作用来维持长时间结合。 两条假说,都表明其结合过程分为两步,首先结合和后面长时间 结合。由于结合原理的不明确性,导致在这方面的工作非常依赖 实践经验。
4、枸橼酸三钠-鞣酸法

第十四章 纳米材料优秀PPT文档

第十四章 纳米材料优秀PPT文档

随着粒径减小,表面原子数迅速增加。这是由于粒径小,表面 积急剧变大所致.例如,粒径为10nm时,比表面积为90m2/g, 粒径为5nm时,比表面积为180m2/g,粒径下降到2nm,比表 面积猛增到450m2/g.这样高的比表面,使处于表面的原子数 越来越多,同时,表面能迅速增加,
• 由于表面原子数增多,原子配位不足及高的表面能,使这 些表面原子具有高的活性,极不稳定,很容易与其他原子结合
STM恒电流扫描模式示意图
原子操纵术
(Atomic manipulation)
通过STM针尖,除了能帮助我们了解物质表面的几何构 造、电子性质外,更有一些应用,原子操纵术便是其一。原 子操纵术的原理是在形成隧道电流时,由于针尖和样品表面 距离很近(约1 nm),针尖跟表面的偏压虽不大,但所产生 的电场(偏压/距离)却由于距离很小而变得很大。因此原 子在受到针头电场的吸引而被略拉离表面,此时即可将原子 沿表面移到想要的位置,再将针尖缩回,则原子便可留在新 的位置。
(2) 特殊的热学性质
固态物质在其形态为大尺寸时,其熔点是固定的;超细 微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时 尤为显著。
例如,金的常规熔点为1064 ℃,当颗粒尺寸减小到10纳 米尺寸时,则降低27℃,减小到2纳米尺寸时的熔点为327℃ 左右。
金属纳米颗粒表面上的原子十分活泼。可用纳米颗粒的 粉体作为火箭的固体燃料、催化剂。例如, 在火箭发射的固体 燃料推进剂中添加l%重量比的超微铝或镍颗粒,每克燃料的 燃烧热可增加 l 倍。
第十四章 纳米材料
14.1 概述
1、引言 •21世纪是高新技术的世纪,信息、生物和新 材料代表了高新技术发展的方向。在信息产 业如火如荼的今天,新材料领域有一项技术 引起了世界各国政府和科技界的高度关注, 这就是纳米科技。

第二讲纳米材料及其应用PPT课件

第二讲纳米材料及其应用PPT课件

宽频带强吸收
大块金属具有不同颜色的光泽,表明它们对可
见光范围各种颜色(波长)的反射和吸收能力不同, 而当尺寸减小到纳米级时各种金属纳米微粒几乎都 呈黑色,它们对可见光的反射率极低,例如铂金纳 米粒子的反射率为l%,金纳米粒子的反射率小于 10%。这种对可见光低反射率,强吸收率导致粒子 变黑。
纳米氮化硅、SiC及A12O3粉对红外有一个宽频 带强吸收谱。这是由于纳米粒子大的比表面导致了 平均配位数下降,不饱和键和悬键增多。
例:
• 常规 A12O3 烧结温度在2073—2l73K,在一定条 件下纳米A12O3 ,可在1423K至1773K烧结,致密 度可达99.7%。 • 常规Si3N4烧结温度高于2272K,纳米氮化硅烧 结温度降低673-773K。
• 纳米TiO2在773K时加热,呈现出明显的致密 化,而晶粒仅有微小的增加,致使纳米微粒 TiO2在比大晶粒样品低873K的温度下烧结就能 达到类似的硬度。
I
2434NV2 nn1122
n22 n22
I0
乳光强度与入射光的波长的四次方成反比。
故入射光的波长愈短,散射愈强。例如照射在溶
胶上的是白光,则其中蓝光与紫光的散射较强。
故白光照射溶胶时,侧面的散射光呈现淡蓝色,
而透射光呈现橙红色。
光学性能
纳米粒子的一个最重要的标志是尺寸与物理 的特征量相差不多,例如,当纳米粒子的粒径与 超导相干波长、玻尔半径以及电子的德布罗意波 长相当时,小颗粒的量子尺寸效应十分显著。与 此同时,大的比表面使处于表面态的原子、电子 与处于小颗粒内部的原子、电子的行为有很大的 差别,这种表面效应和量子尺寸效应对纳米微粒 的光学特性有很大的影响。甚至使纳米微粒具有 同样材质的宏观大块物体不具备的新的光学特性。 主要表现为以下几方面。

纳米相变材料

纳米相变材料
通过调节纳米相变材料的组成和制备 工艺,可以调控其相变温度,以满足 不同应用需求。
纳米相变材料的制备方法
溶胶-凝胶法
将原料溶液通过溶胶-凝胶反应 转化为凝胶,再经过干燥、热处 理等工序制备出纳米相变材料。
微乳液法
利用两种互不相溶的溶剂在表面 活性剂的作用下形成微乳液,通 过控制反应条件制备出纳米相变
• 纳米相变材料在智能调温纺织品中的应用研究:智能调温纺织品能够根据外界 环境温度自动调节纤维内部的热量流动,为穿着者提供舒适的温度环境。纳米 相变材料作为智能调温纺织品的理想材料之一,具有优异的热储存和释放性能 。科研人员针对纳米相变材料在智能调温纺织品中的应用进行了大量研究,开 发出了多种高性能的智能调温纺织品。
04 纳米相变材料的研究进展 与挑战
研究进展与成果
• 纳米相变材料在储能领域的应用研究:随着能源需求的增长,储能技术越来越 受到重视。纳米相变材料因其高能量密度和良好的循环性能,在储能领域具有 广阔的应用前景。近年来,科研人员对纳米相变材料的制备技术、性能优化以 及储能系统设计等方面进行了深入研究,取得了一系列重要的研究成果。
感谢您的观看
纳米相变材料的优势
01
02
03
高储能密度
纳米相变材料具有较高的 储能密度,能够在较小的 体积内储存大量的热量。
长寿命
相较于传统相变材料,纳 米相变材料的寿命更长, 能够保证长期使用的稳定 性和可靠性。
可控性强
通过改变纳米相变材料的 制备工艺和组分,可以实 现对相变温度和相变焓的 精确调控。
02 纳米相变材料的种类与特 性
相变材料的重要性
节能环保
相变材料在储能和温度调控方面 具有广泛应用,能够提高能源利 用效率,减少能源浪费和环境污

第9章 纳米材料的相变(2学时)

第9章  纳米材料的相变(2学时)

UJS—Dai QX
9.2 纳米材料的扩散型相变
对纳米材料中扩散性相变的研究,目前还很少。 以磁控溅射法制备了Al-Cu(0.3%Cu和1%Cu,摩尔分数) 厚度为500nm的薄膜,有衬底的晶粒为60-250nm,无衬底的 晶粒为30-120nm. 研究其经过323-773K温度间热循环后的相 变, 发现经过加热至773K,慢冷后都发生脱溶沉淀,大多是 沉淀在三角晶界上。冷却至室温后,大量的Cu(0.2%mol)不 在第二相内。EDS试验证明,Cu偏聚在晶界和位错上。和大 块Al-Cu中脱溶沉淀不同,在薄膜Al-Cu中,第二相粒子为非 共格的Al2Cu,无中间相形成。这工作揭示了薄膜材料中主 要是晶界的溶质偏聚使其脱溶沉淀出现一些异常现象.
ujsdaiqx左图纳米金粒子的熔点与粒子尺寸的关系纳米粒子表面原子与粒径的关系ujsdaiqx根据粒子直径计算的球状粒子表面积变化规律纳米级密度67gcm的平均密度ujsdaiqx例91纳米技术与材料发展将难以想象显微镜下拍摄由williammclellan研制的微型电机上方物体是一个针头上左图剑桥大学利用电子束将碳纳米管排成图案上右图用101个原子组成了目前最小的汉字原子下右图ujsdaiqx世界上目前最小的文字25个原子被移动成了著名的ibm的商标ujsdaiqx例92纳米管机电开关第一个纳米管机电开关nanoscaleelectromechanicalswitchnems在剑桥大学研究成功
UJS—Dai QX
(5)纳米晶内体积小,实验显示单颗粒的Cu-7.5Fe 及Cu-1.5Fe-0.5Ni(质量分数)在20-60nm时形成单一变 体马氏体。可能在纳米晶粒很难呈变体间的协调,使其 相变应变能较高。按照相变驱动力与马氏体界面移动速 率的方程推断,纳米晶内马氏体会很快长大;

纳米材料及纳米技术应用PPT课件

纳米材料及纳米技术应用PPT课件

02
03
生物检测
纳米材料可以作为药物的载体, 实现药物的精准传输和定向释放, 提高治疗效果并降低副作用。
纳米材料可以增强医学成像的效 果,提高诊断的准确性和可靠性。
纳米材料可以用于检测生物标志 物和病原体,快速、准确地诊断 疾病。
环境领域
空气净化
纳米材料可以用于空气过滤和净化,去除空气中的有 害物质和异味。
感谢您的观看
03 纳米技术的应用领域
能源领域
高效电池
01
纳米技术可以改善电池的能量密度和充电速度,提高电池的效
率和寿命。
太阳能利用
02
纳米结构可以增强太阳能电池的光吸收和光电转换效率,降低
成本并提高发电量。
燃料电池
03
纳米材料可以提高燃料电池的效率和稳定性,降低燃料电池的
重量和体积。
医疗领域
01
药物传输
医学成像
水处理
纳米技术可以用于水处理,去除水中的有害物质和杂 质,提高水质和安全性。
土壤修复
纳米材料可以用于土壤修复,去除土壤中的重金属和 有害物质,降低土壤污染的风险。
04 纳米材料的安全与伦理问 题
纳米材料对环境和生态系统的影响
纳米材料在环境中的迁移 和转化
纳米材料在土壤、水体和大气中的分布、转 化和归趋,可能对生态系统产生影响。
2000年代以后,随着技术的不 断进步和应用领域的扩大,纳 米科技逐渐成为全球科技领域 的研究热点。
02 纳米材料的基本特性
小尺寸效应
总结词
随着纳米材料尺寸的减小,其物理、化学和机械性能发生变化的现象。
详细描述
当物质尺寸减小到纳米量级时,由于量子尺寸效应和表面效应的影响,纳米材 料的物理、化学和机械性能会发生显著变化,表现出不同于常规材料的特性。

《纳米材料》PPT课件

《纳米材料》PPT课件
第二阶段(1994年以前) ▪ 如何利用纳米材料已挖掘出来的奇特物理、化学和
力学性能,设计纳米复合材料。
第三阶段(1994至现在) ▪ 纳米组装体系。
9
第一节纳米科技及纳米材料应用进展
6.1.1 纳米科技
纳米科学技术(Nano-ST)是20世纪80年代末 期诞生并正在崛起的新科技,它的基本涵义是在 纳米尺寸(10-10∽10-7m)范围内认识和改造自 然,通过直接操作和安排原子、分子创造新物质。 纳米科技是研究由尺寸0.1∽100nm之间的物质组 成的体系的运动规律和相互作用以及可能的实际 应用中的技术问题的科学技术。
-
108 有一定的
体效应 体效应
105 显著
小尺寸效应
103
表面原子占优势 表面效应 量子效应
一个颗粒中的原子数和表面原子所占的比例
粒径 ( nm)
1000
总原子数 ∞
表面原子(%)
0
100
600000
6
10
30000
20
5
4000
40
2
250
80
1
30
99
第一节纳米科技及纳米材料应用进展
2.表面效应
30
量子效应
4 宏观量子隧道效应 Macroscopic quantum tunnelling effect
▪ 量子隧道效应是量子力学中的微观粒子所有的 特性,即在电子能量低于它要穿过的势垒高度 的时候,由于电子具有波动性而具有穿过势垒 的几率。
▪ 宏观物理量,例如微颗粒的磁化强度,量子相 干器件中的磁通量等也显示隧道效应,称为宏 观量子隧道效应。
处在纳米数量级的薄膜。
• 属于二维纳米材料 • 纳米薄膜与纳米涂层主要是指含有纳米粒子和原子团

3.-纳米功能材料理论基础PPT课件

3.-纳米功能材料理论基础PPT课件
局限性在于能够处理的系统的大小有限,计算所需要的CPU时间 和存储器容量随着系统中电子数的增加而急剧增加,能够处理的 原子数量一般在1000个原子以内。
只能研究尺寸较小的纳米结构,或得到局部性质,如表面/界面等。
7
-
泛函密度理论的框架
物质的电子结构由多粒子体系哈密顿函数和薛定格方程 描述
通过Born-Oppenheimer 近似,实现离子和电子自由度的 分离
ZnO纳米线激子束缚能与半径的关系(a) L=0轻空穴 (b) L=±1重空穴。
1s,2s和3s分别对应于基态,第一激发态和第二激发态的结合能。
32
-
Z方向波函数的平方在Z方向的分布
33
-
• 沿Z方向的波函数的平方 在Z方向的分布,其中的 实线代表考虑了介电失 配的结果,而虚线代表 没有考虑介电失配的结 果。
26
-
缺陷对ZnO纳米线能带结构的影响
存在VZn, Pi, Oi, PZn-2VZn, VO和 Zni缺陷时ZnO纳米线的 27 - 电子能带结构图。费米能级设定为零。
掺杂对电子结构的影响(费米面处态密度分布)
用SIESTA软件计算的Na、Ga和N掺杂ZnO纳米线在费米面附近的态 密度分布的等高面
带隙与表面原子比
近似线性关系表明带隙随纳米线直径的变化是由表面原子引 21 - 起的。Eg~d的关系可以用来调控发光波长。
Eg与纳米带度/厚度的关系
ZnO纳米带的LDA带隙宽度(EgLDA)随纳米带截面积的尺寸相关变化。 (a)点线连接具有相同宽度不同厚度的纳米带 ,A、B、C代表具有相近
截面积,但不同禁带宽度的情况
(b) 点线连接具有相同厚度不同宽度的纳米带
22
-

纳米材料简介ppt课件

纳米材料简介ppt课件
13
2 在磁性材料中的应用 纳米磁性材料包括纳米磁粉材料、纳米磁膜材料和纳米磁性液体。
在铁磁质纳米磁性材料中,存在磁单畴结构,具有超顺磁性,即纳 米结构的尺寸小于磁单畴的临界尺寸时,纳米结构中的原子磁矩有 序化,具有顺磁质的特性,而在无外场时,对任何一个方向都不显 磁性。加外磁场后,形成磁矩有序化,形成过程不是瞬时的,而有 一个驰豫时间。超顺磁性材料,矫顽力远比普通材料大,对高密度 磁记录元件十分重要。 3 在催化剂领域应用
纳米粒子表面积大、表面活性中心多,为催化剂提供了必要条件。 目前纳米粉材如铂黑、银、氧化铝和氧化铁等广泛用于高分子聚合 物氧化、还原及合成反应的催化剂。如用纳米镍粉作为火箭固体燃 料反应催化剂,燃烧效率提高100倍;以粒度小于100nm的镍和铜锌合金的纳米材料为主要成分制成加氢催化剂,可使有机物的氢化 率达到传统镍催化剂的10倍;用纳米TiO2制成光催化剂具有很强的 氧化还原能力,可分解废水中的卤代烃、有机酸、酚、硝基芳烃、 取代苯胺及空气中的甲醇、甲醛、丙酮等污染物。
1
CONTENTS
1
什么是纳米
2
什么是纳米材料
3 纳米材料的纳米效应
4
纳米材料的分类
5
纳米材料的应用
6 纳米材料与未来社会
2
1 什么是纳米
纳米(nanometer):长度单位,即10-9m。 纳米有多大?
3
2 什么是纳米材料
纳米级结构材料简称为纳米材料(nanometer material),是指其结 构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经 接近电子的相干长度,它的性质因为强相干所带来的自组织使得 性质发生很大变化。并且,其尺度已接近光的波长,加上其具有 大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光 学、导热、导电特性等等,往往不同于该物质在整体状态时所表 现的性质。 纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组 成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子, 是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和 宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观 系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和 宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级) 后,它将显示出许多奇异的特性,即它的稀土纳米材料 光学、热学、电学、磁学、力学以及化学方面的性质和大块固体 时相比将会有显著的不同。

《纳米材料》PPT课件 (2)

《纳米材料》PPT课件 (2)
• 纳米半导体微粒存在不连续最高被 占分子轨道能级和最低未被占分子 轨道导致能隙带变宽(画图说明)
34
Quantum siБайду номын сангаасe effect
Bulk Metal
Nanoscale metal
Unoccupied states
Decreasing the size…
occupied states
Close lying bands
21
纳米材料的独特效应
※小尺寸效应 ※表面效应和边界效应 ※量子尺寸效应 ※宏观隧道效应
22
小尺寸效应
• 当超细微粒的尺寸和光波波长,传 导电子的德布罗意波长,超导态的 相干长度或者透射深度等物理尺寸 相当或者比它们更小时,一般固体 材料的周期性边界条件被破坏,声 光电磁,热力学等特性均会呈现新 的尺寸效应
纳米科技。
1
神奇的纳米材料
走近纳米材料.rm
2
纳米材料的发展过程
• 1959年Feynman提出许多设想:在原子或分子的 尺度上加工制造材料和器件,制造几千百纳米的 电路和10~100纳米的导线。
• 1962年Kubo理论提出:金属的超微粒子将出现量 子效应,显示出与块体金属显著不同的性能。
• 1969年Esaki和Tsu提出了超晶格的概念。
15
碳纳米管
由石墨的片状结构上运 用激光手段剥离下来 ,形成的石墨烯卷成 的无缝中空管体
直径虽只有头发丝的十 万分之一,可是导电 性为铜的一万倍。强 度是钢的100倍,质量 却只有其七分之一。 硬似金刚石,却可以 拉伸
16
超晶格材料
• 由两种不同组元以几个纳米至几十个纳米 的薄层交替生长。并保持严格周期性的多 层膜

相变材料纳米胶囊ppt课件

相变材料纳米胶囊ppt课件

• 利用相变材料的吸热和放热现象, 可以制成含有微 纳米胶囊相变材料的调温纤维以调节服装及周边的 温度, 减少皮肤温度的变化 ,延长穿着的舒适感。
• 将制得的聚脲型相变微胶囊和海藻酸钠共混纺丝 , 制备出相变调温海藻纤维。把海藻纤维制成透气且 随外界温度变化的调温医用敷料等。
• 相变材料特有的大潜热以及在相变点附近近似恒温的 特性 ,使其可用于调控目标的温度 ,以改变目标的热 红外辐射强度 。
• 纳米胶囊作为介于宏观物体和原子之间的介观体系, 它与宏观物体和原子既有共同的地方,又有其很多 独特的性质和用途。
• 它集合了由壳核结构所带来的特性和纳米体系由尺 寸变化引起的效应。
• 纳米胶囊的外壳具有许多功能,如:保护内核免受 环境的破坏;增加纳米团簇的稳定性以避免其长大; 促进纳米颗粒在不同介质中的分散性;增加物质的 活性;改变内核的光学、电学、磁学性质等。
2 研究背景
• 随着世界人口的不断增加 ,能源紧缺的形势严峻 。 能源的可持续发展是当今世界的一大难题 。解决 这个问题的基本途径有两个 : 一是依靠科技进步 , 发明或者开发当前能源的替代品;二是研究新型节 能技术,减少能源消耗。
• 相变储能就是其中一项非常重要的节能技术 ,它是 利用相变材料的相变潜热来实现能量的储存和利用, 这有助于提高能效和开发可再生能源, 是近年来能 源科学和材料科学领域中一个十分活跃的前沿研究 方向。
• 已有研究表明 ,相变材料具有一定的热红外伪装能力, 因此可以将相变微胶囊制成涂料 ,作为热屏障材料在 红外隐身领域中应用 。
7 结语
• 纳米胶囊相变材料作为一种新型相变材料,其最大的 优点是尺寸小、导热系数高 ,因而热效率更高,可以 应用到精密仪器设备领域 ,比如电子器件等。同时 , 由于尺寸很小,其过冷现象可能也会增大 ,尤其是无 机相变材料的纳米胶囊, 但是对于有机型相变材料 影响较小 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米相变材料的研究进展
一、相变及相变材料 二、纳米相变材料 三、纳米材料的表征方法 四、纳米相变材料的制备方法 五、纳米相变材料的应用 六、纳米相变材料的研究展望
一、相变及相变材料
• 物质从一种相转变为另一种相的过程称之 为相变。
• 相变材料是指材料在相变温度范围内,虽 然发生相态的变化,但是在相变过程中, 体积的变化很小,以潜热形式从周围环境 吸收或者释放大量热量,而自身的温度保
可以很好地保护内部的相变材料芯材。
• 以上四种表征方法是从不同角度来表征纳 米胶囊的,并无优劣之分。
• 各种表征手段需要综合使用,才能充分的表 征一种物质,只用单一的某种手段是不能充分
表征的。
• 比如上例中,红外谱图只能给出官能团, 并不能给出具体形状,这就要结合透射电镜 图来表征,而它的热性能就要进行热分析。
• 原位聚合法是一种与界面聚合法密切相关 的纳米胶囊化技术。
将单体与引发剂全部加 入到分散相或连续相中
聚合反应在芯材液滴的表 面上发生,聚合单体产生
相对低分子量的预聚体
交联及聚合反应的 不断进行,最终形 成固体的胶囊外壳
预聚体尺寸逐步增大后, 沉积在芯材物质的表面
四、纳米材料的表征方法
常规材料的制备方法
3.1 界面聚合法
• 界面聚合法是建立在合成高聚物界面缩聚 反应的基础上的。
两种发生聚合反应的单体 分别溶于水和分散相中
把两种不相混溶的液体 加入乳化剂以形成水包
油或油包水乳液
迅速在相界面上反应生 成聚合物将囊心包覆形
成胶囊
两种聚合反应单体分别 从两相内部向界面移动
3.2 原位聚合法
• 美国的研究人员将开发出的新型纳米相变材料研 磨成粉末,应用到电子器件制造行业对精密电子 器件的制造工艺氛围进行保护,提高了产品的质 量和精密度。
• 纳米相变材料具有独特的蓄热调温性能,使其在 大规模灭火,如森林灭火和油田灭火中得到广泛 应用。
• 俄罗斯将吸附蓄热技术与无机相变材料相结合, 研制出一种纳米吸湿防寒鞋垫。该鞋垫利用纳米 孔硅胶和氯化钙对水汽的吸附达到吸湿的效果, 使鞋垫始终保持凉爽干燥;氯化钙吸水后转变为 六水氯化钙,它能根据环境温度进行吸热/放热, 达到调温的效果。
微胶囊
纳米胶囊
多种有机物和无机物材料,其中 主要为可生物降解的高分子物质,
高分子材料最为常用
如聚乳酸
粒径为5-400微米,分散于水中 粒径为1-1000纳米,易分散于水
为悬浮液
中形成透明的胶体溶液
主要用于口服
主要用于静脉注射
缓释药,为长期制剂
主要作为载药靶向
包括机械、物理、化学等各种方 原位聚合法、界面聚合法等 法
六、纳米相变材料研究展望
纳米相变材料不论是从纳米复合相变材料 还是普通纳米相变材料来说,现阶段人们对 于它的研究主要还是从实验方面来入手,这 就导致人们不能根据自身的需要来定向的制 作纳米相变材料,很多事情并不能过得到理 论的解释。我认为,以后的研究重点应该放 在理论方面,从理论方面入手去充分研究纳 米相变材料。
持不变或恒定的一种功能性材料。
人口的不断增加,能源紧缺的形式严峻。需要研究新型节 能技术,减少能源消耗。相变储能技术就是其中一个。
有机
液态 导热系数低
传统相变材料
无机
腐蚀性
纳米相变材料
纳米相变材料解决泄露问题 纳米相变材料解决导热系数低的问题
二、纳米相变材料 纳米技术 + 相变材料 = 纳米相变材料
第五章 纳米材料的相变
5.1 纳米材料的马氏体相变
1、 纳米材料的特殊效应
纳米材料是1~100nm超细微材料。纳米效应有 :
小尺寸效应、量子效应、 表面效应和界面效应
纳米材料具有一系列优异的力学、 磁性、光学和化学等宏观特性
五、纳米相变材料的应用
• 在热交换器行业中的应用
相变蓄能岩棉复合板
相变蓄能板
• 在纺织业中的应用
相变材料在纺织品中的应用主 要是通过微胶囊对织物进行涂 覆或将微胶囊混入纺丝液中进 行纺丝来实现。包封有相变微 胶囊材料的服装可以根据环境 温度的变化在一定温度范围内,
自由调节服装内部温度。
在其他行业中的应用
对照图中的a、b和c的红外光谱图只是两个的加合, 并没有出现新的吸收峰表明正十八烷和聚苯乙烯只是
物理上的嵌合。
纳米胶囊的耐热性分析
纳米聚苯乙烯球、纯正十八烷和纳米胶囊的热重分析图
纳米胶囊相变材料的分解主要集中在两个阶 段:105.1-316.4摄氏度,失重比为49.54%; 386.7-443.7摄氏度,失重比为44.63%。分析 表明:作为壳层的聚苯乙烯有很好的耐热性,
普通纳米 相变材料
纳米相变材料
纳米复合 相变材料
纳米金属 等
纳米胶囊 相变材料
纳米吸附 相变材料
其他复合 相变材料
胶囊法
吸附法 其他 方法
2.1 纳米胶囊相变材料
微胶囊
纳米尺寸
纳米胶囊
导 热 系 数

磨 损 破 裂
堵 塞 管 道
很好的解决了微胶囊的问题
微胶囊与纳米胶囊的对比
项目 壳材料 分散性 医学用途 作用 制备方法
透射电镜法
化学表征法
仪器表征法
扫描电镜法 隧道扫描电镜法
粒度分析法
滴定分析法 重量分析法 光谱分析 质谱分析 能谱分析
比表面积法
纳米胶囊表征举例
• 纳米胶囊的囊心为正十八烷壳材为聚苯乙 烯。
• 用粒度分析仪对样品进行粒径分布分析。 • 用透射电镜对样品进行表面形貌分析。 • 用红外光谱仪对样品进行结构组成分析。 • 用热分析仪对样品进行热失重分析。
纳米胶囊粒径分析
纳米胶囊的粒径分析
结果显示纳米胶囊的粒径分布相对集 中,主要分布在50-200纳米范围内
纳米胶囊表面形态分析
半月形
纳米胶囊透射电镜照片
可以看出纳米胶囊呈球形,囊心(浅色部 分)和囊壁(深色部分)之间存在明显的 界线,只有极少部分的胶囊形貌呈半月形
纳米胶囊的红外光谱分析
波数/cm 2958 2924 2855 1378 721
官能团 甲基、亚甲基不对称伸缩振动峰 亚甲基对称伸缩振动峰 亚甲基面内、面外振动峰 a曲线
正十八烷(a)、聚苯乙烯(b)、纳米胶囊的 红外光谱图(c)
波数/cm 3060 3026 2923 1601 1490 756 700
官能团 芳香族C-H伸缩振动峰 脂肪族C-H伸缩振动峰 苯环C=C伸缩振动峰 苯环变形振动峰 b曲线
相关文档
最新文档