毕业课程设计报告数字秒表的设计
数字秒表课程设计报告

数字秒表课程设计报告湖北汽车工业学院课程设计( 说明书)数字秒表的设计班级/ 学号学生姓名指导教师一、概述数字式秒表是一种常用的计时工具,以其价格低廉、走时准确、使用方便、功能多而广泛用于体育比赛中,本文介绍了如何利用中小规模集成电路和半导体器件进行数字式秒表的设计。
本设计中数字秒表的最大计时是00.00——99.99s,也就是说分辨率是0.01秒,最后计数结果用数码管显示,需要实现清零、启动计时、暂停计时、继续计时等功能。
在本次设计中由四片74LS161构成计数器来实现秒表的计数功能。
由于需要比较稳定的信号,用555定时器与电阻和电容组成的多谐振荡器产生0.01HZ的信号,用四个数码管显示计时,最后在电路中加入了两个控制开关一个控制电路的启动和暂停;另一个控制电路的清零。
二、工作原理要实现数字秒表的控制,则要求数字信号控制系统由555脉冲时钟输出信号,且计数器具有开关实现启动计时、暂停计时、继续计时、实现清零等功能,而且需要数码管能够显示出数字。
图1 数字秒表电路的原理框图三、电路设计1.555多谐振荡器脉冲时钟信号电路图3 脉冲时钟信号电路图当555定时器接成多谐振荡器时可以知道电路的振荡周期为T=(R1+R2)Cln2,振荡频率为f=1/T=1/(R1+R2)Cln2,通过改变R和C的参数即可以改变振荡频率,同时多谐振荡器的占空比为q=T1/T=R1+R2/R1+2R2,而且多谐振荡器只有当高电平内部才是导通的,所以应该使占空比q非常高,假定q=98%,根据计算R1=4.7kΩ,R2=4.7k Ω,C1=1μF,此时的T大约也为0.01s。
2.计数显示电路图5 计数显示电路图74LS161集成芯片为集成4位二进制同步加法计数器,具有异步置0、同步并行置数、计数及保持功能。
它有同步置数控制端LOAD,异步清零控制端CLR,工作模式控制端ENP、ENT,时钟输入端CLK,进位输出端RCO,并行数据输入端D~A,计数输出端QD~QA。
数字秒表设计实验报告(一)

数字秒表设计实验报告(一)数字秒表设计实验报告Introduction•实验目的:设计并实现一个数字秒表•实验时间:2021年10月10日至2021年10月15日•实验对象:本科计算机专业学生•实验设备:计算机、编程软件Experiment Procedure1.寻找合适的编程语言和开发工具2.设计秒表的用户界面3.编写代码实现秒表的计时功能4.测试并调试代码5.完善用户界面,添加重置和暂停功能6.进行性能测试,并分析结果Experimental Findings•选用Python编程语言和PyQt图形库进行开发•按照用户界面设计,实现了秒表的计时功能•通过测试,发现秒表计时准确性较高,误差范围小于0.1秒•添加了重置和暂停功能,提高了秒表的实用性•性能测试表明,在处理大数据量时,秒表的响应速度仍然较快Conclusion通过本次实验,我们成功设计并实现了一个功能完善的数字秒表。
通过合理的编程语言选择和用户界面设计,实验结果表明,我们的秒表具有准确的计时功能、良好的用户体验和较高的性能。
这对于计算机专业学生来说,具有较高的实用价值。
Future Work尽管我们已经取得了较好的实验结果,但仍有一些改进的空间。
在未来的工作中,我们计划:•进一步提高秒表的计时准确性,减小误差范围•探索更多的用户界面设计方案,增加更多便利的功能•优化性能,提高秒表在处理大数据量时的响应速度•结合云服务,实现秒表数据的备份和同步功能Acknowledgements感谢实验组的所有成员共同努力,以及指导老师的支持和指导,使得本次实验取得了圆满成功。
Reference无抱歉,关于数字秒表设计实验报告的文章已经终止。
数字逻辑课程设计_秒表

数字逻辑课程设计_秒表一、教学目标本课程旨在让学生掌握秒表的基本原理和使用方法,培养学生的数字逻辑思维和实际操作能力。
具体目标如下:1.知识目标:学生能够理解秒表的工作原理,包括时间计算、计数器等基本概念。
2.技能目标:学生能够熟练使用秒表进行时间测量和计数,并能进行简单的故障排查和维修。
3.情感态度价值观目标:通过学习秒表,培养学生对科学技术的兴趣和好奇心,提高学生的问题解决能力和团队合作意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.秒表的基本原理:介绍秒表的工作原理,包括时间计算、计数器等基本概念。
2.秒表的使用方法:教授学生如何正确使用秒表进行时间测量和计数,包括操作步骤和注意事项。
3.秒表的故障排查和维修:培养学生对秒表故障的识别和解决能力,包括常见故障的原因和维修方法。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法:1.讲授法:教师通过讲解秒表的基本原理和使用方法,让学生掌握相关知识。
2.讨论法:学生分组讨论秒表的使用心得和故障解决经验,促进学生之间的交流和合作。
3.案例分析法:教师提供一些实际的案例,让学生分析并解决秒表的使用问题,培养学生的实际操作能力。
4.实验法:学生在实验室进行秒表的操作和实践,加深对秒表的理解和掌握。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选择合适的秒表教材,为学生提供系统的学习资料。
2.参考书:提供一些相关的参考书籍,供学生进一步深入学习。
3.多媒体资料:制作一些教学视频和演示文稿,帮助学生更好地理解秒表的工作原理和使用方法。
4.实验设备:准备一些秒表和相关实验设备,让学生进行实际操作和实验。
五、教学评估为了全面、客观、公正地评估学生的学习成果,本课程将采用以下评估方式:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估其学习态度和理解能力。
数字电路课程设计报告数字秒表

数字电路课程设计报告——数字秒表一、设计任务与技术指标:设计数字秒表,以实现暂停、清零、存储等功能。
设计精度为0.01秒。
二、设计使用器件:74LS00 多片74163 4片4511 4片NE555 1片二极管1枚LED 共阴极七段译码器 4 个导线、电阻若干三、数字秒表的构成:利用555 设计一个多谐振荡器,其产生的毫秒脉冲触发74LS163计数,计时部分的计数器由0.01s 位、0.1s 位、s 个位、和s 十位共四个计数器组成,最后通过CD4511 译码在数码管上显示输出。
由“启动和停止电路”控制启动和停止秒表。
由“接地”控制四个计数器的清零。
图1 电子秒表的组成框图四、实现功能及功能特点:(1)、在接通电源后秒表显示00:00,当接通计时开关时秒表开始计时。
(2)、清零可在计时条件下也可在暂停条件下进行。
(3)、解决了在使用163清零端和保持端时由于163默认的清零端优先级高于保持端造成的0.01秒位上无法保持到0.09的技术问题。
(4)、增加了数据溢出功能,由于是4位秒表,最多计到一分钟,当秒表到达一分钟时,秒表自动暂停显示在60:00秒处,此时二极管发亮,起警示灯作用。
清零后则可继续计时。
(5)、由于条件有限,我们自己用导线制作了电源、清零、暂停等开关以减少导线的拔插造成的面板的不美观。
下图为完整课程设计的实物图:五、课程设计原理:本课程设计由模6000计数器和其控制电路组成,模6000计数器功能由同步加法计数器74163和与非门74LS00组成。
74163的功能及用法:74163同步加法计数器具有以下功能:(1)、同步清零功能。
当清零端输入低电平,还必须有时钟脉冲CP的上升沿作用才能使各触发器清零,此过程为同步清零。
(2)、同步并行置数功能。
(3)、同步二进制加计数功能。
(4)、保持功能。
综上所述,74163是具有同步清零、同步置数功能的4位二进制同步计数器。
74163的应用:(1)、构成任意模的计数器将74163与少量门电路结合可构成任意模计数器。
数字秒表课程设计报告

一、设计任务与要求①能实现自动计数、进位和清零。
②能实现手动复位。
③能实现秒表的暂停和回复。
二、方案论证与选择(1)脉冲的接法1-1555定时器的管脚接法(c )直观图1-2 555定时器的工作功能表(2)计数器有了时间标准“秒”信号后,就可以根据设计要求设定时、分、秒计数器:分和秒计数器都采用60进制计数器,时采用24进制的计数器,都可采用74LS160来实现。
74LS160是十进制同步加法计数器。
1-3 74LS160逻辑功能由逻辑图与功能表知,在74LS160中LD为预置数控制端,D0-D3为数据输入端,C为进位输出端,RD为异步置零端,Q0-Q3位数据输出端,EP和ET为工作状态控制端。
当RC=0时所有触发器将同时被置零,而且置零操作不受其他输入端状态的影响。
当RC=1、LD=0时,电路工作在预置数状态。
这时门G16-G19的输出始终是1,所以FF0-FF1输入端J、K的状态由D0-D3的状态决定。
当RC=LD=1而EP=0、ET=1时,由于这时门G16-G19的输出均为0,亦即FF0-FF3均处在J=K=0的状态,所以CP信号到达时它们保持原来的状态不变。
同时C的状态也得到保持。
如果ET=0、则EP不论为何状态,计数器的状态也保持不变,但这时进位输出C等于0。
当RC=LD=EP=ET=1时,电路工作在计数状态。
从电路的0000状态开始连续输入16个计数脉冲时,电路将从1111的状态返回0000的状态,C端从高电平跳变至低电平。
利用C端输出的高电平或下降沿作为进位输出信号。
(3)输出及显示模块(数码管及74LS47和电阻构成)两个74LS47分别连接成十进制计数器,一个输出十分之一秒,一个输出秒,并通过两个译码器显示00-59秒的秒表数值。
图1-4 显示模块的接线图(4)计数的暂停和手动复位的控制所谓的暂停就是停止脉冲的输出,没有脉冲显示数码管的示数就会停止,再接入脉冲则数码管的示数继续走动。
数字秒表课程设计及仿真

数字秒表课程设计及仿真一、课程目标知识目标:1. 学生能理解数字秒表的基本原理,掌握其计时功能的工作机制。
2. 学生能描述数字秒表电路的组成,包括时钟电路、触发器、计数器等关键元件。
3. 学生能够运用所学知识,分析并解释数字秒表中时间测量的精度和误差来源。
技能目标:1. 学生能够运用仿真软件设计并搭建一个简单的数字秒表电路模型。
2. 学生通过实际操作,学会设置数字秒表,进行时间的测量和记录,掌握基本的时间计算方法。
3. 学生能够利用仿真工具对数字秒表电路进行调试,解决简单的故障问题。
情感态度价值观目标:1. 学生通过课程学习,培养对电子科技的兴趣,增强对科学探究的热情。
2. 学生能够在小组合作中发展团队协作精神,学会相互尊重和交流分享。
3. 学生通过实际操作和问题解决,培养面对挑战的积极态度和解决实际问题的自信心。
课程性质:本课程属于电子技术实践课程,结合理论教学与实际操作,强调知识的应用与创新。
学生特点:考虑到学生年级特点,课程设计将结合学生的好奇心和动手能力,通过形象直观的仿真实验,激发学生的学习兴趣。
教学要求:教学过程中应注重理论与实践相结合,强调知识的应用和技能的培养,通过课程学习,使学生能将所学知识内化为解决实际问题的能力。
教学评估将基于学生在课程中的具体学习成果进行。
二、教学内容本课程教学内容主要包括以下几部分:1. 数字秒表基本原理:介绍数字秒表的计时原理,分析时钟电路、触发器、计数器等关键元件的工作原理。
2. 数字秒表电路组成:详细讲解数字秒表的电路结构,包括时钟电路、控制电路、显示电路等组成部分。
3. 仿真软件应用:教授学生如何使用仿真软件,搭建数字秒表电路模型,并进行调试。
4. 实践操作:指导学生进行数字秒表的设置、时间测量和记录,以及基本的时间计算方法。
5. 故障分析与解决:教授学生如何分析数字秒表电路中的常见故障,并运用所学知识解决问题。
教学内容安排如下:第一课时:数字秒表基本原理及电路组成1. 介绍计时原理和关键元件2. 分析电路结构及工作原理第二课时:仿真软件应用与实践操作1. 搭建数字秒表电路模型2. 进行仿真调试和实际操作第三课时:故障分析与解决1. 分析常见故障及其原因2. 解决实际问题,提高操作技能教学内容与教材关联性:本课程内容紧密联系教材中关于数字电路、计时器等方面的知识,确保学生所学内容的科学性和系统性。
数字秒表课程设计报告

目录数字秒表设计实验任务书 (1)一、设计实验目的: (1)二、设计实验说明及要求: (1)三、数字秒表组成及功能: (1)四、系统硬件要求: (1)五、设计内容及步骤: (2)六、硬件实现 (2)实验报告 (2)一、数字秒表顶层设计 (2)二、数字秒表内部设计 (3)1、分频器 (3)2、十进制计数器 (4)3、六进制计数器 (5)4、二十四进制计数器 (7)5、数据选择和数码管选择模块 (8)6、数码管驱动模块: (9)三、数字秒表仿真波形 (11)四、硬件验证 (11)五、实验总结 (11)数字秒表设计实验任务书一、设计实验目的:在MAX+plusII软件平台上,熟练运用VHDL语言,完成数字时钟设计的软件编程、编译、综合、仿真,使用EDA实验箱,实现数字秒表的硬件功能。
二、设计实验说明及要求:1、数字秒表主要由:分频器、扫描显示译码器、一百进制计数器、六十进制计数器(或十进制计数器与6进制计数器)、十二进制计数器(或二十四进制计数器)电路组成。
在整个秒表中最关键的是如何获得一个精确的100H Z 计时脉冲,除此之外,数字秒表需有清零控制端,以及启动控制端、保持保持,以便数字时钟能随意停止及启动。
2、数字秒表显示由时(12或24进制任选)、分(60进制)、秒(60进制)、百分之一秒(一百进制)组成,利用扫描显示译码电路在八个数码管显示。
3、能够完成清零、启动、保持(可以使用键盘或拨码开关置数)功能。
4、时、分、秒、百分之一秒显示准确。
三、数字秒表组成及功能:1、分频率器:用来产生100H Z计时脉冲;2、二十四进制计数器:对时进行计数;3、六进制计数器:分别对秒十位和分十位进行计数;4、十进制计数器:分别对秒个位和分个位进行计数;5、扫描显示译码器:完成对7字段数码管显示的控制;四、系统硬件要求:1、时钟信号为10MHz;2、FPGA芯片型号EPM7128LC84—15、EP1K30TC144—3或EP1K100QC208—3(根据实验箱上FPGA芯片具体选择);3、8个7段扫描共阴级数码显示管;4、按键开关(清零、启动、保持);五、设计内容及步骤:1、根据电路持点,用层次设计概念。
数字秒表设计报告

吉林建筑工程学院电气与电子信息工程学院微机原理课程设计报告设计题目:数字秒表的设计专业班级:学生姓名:学号:指导教师:设计时间:数字秒表设计报告一、课程设计目的通过该设计,掌握8255并行接口芯片、8253定时计数芯片的使用和数码管的使用,并掌握相应的程序设计和电路设计的技能。
是对8255并行接口芯片章节理论学习的总结和补充,为后续的硬件课程的学习打下基础。
二、课程设计的内容及要求利用8253计数器2和计数器1,实现1Hz信号的产生,然后计数器采用硬件触发选通方式计数,CPU读取计数结果,并转换为读秒计数,并把读秒计数的结果用数码管显示出来(2位)。
三、总体设计方案设计一个利用微机原理与接口技术完成秒表的设计方案, 该方案主要是选择8253A的计数器2与计数器1产生一个1Hz的中断脉冲,其输出端与不可屏蔽中断请求信号端相连接。
利用1.19318MHz脉冲方波输入CLK2,设置CLK2的初值为59659,将CLK2的输出端连接到CLK1,设置CLK1的初值为20,将OUT1连接到8086CPU 的NMI端。
将NMI端有一个低电平信号输入时,8086CPU将产生中断进行秒计数。
8086通过8255A将PA口作为段选信号输出端,将PB口作为片选信号输出端。
图3.1 方案设计框图此方案的核心内容是利用微机原理与接口技术完成秒表的设计方案,该方案主要是选择8253A的计数器2和计数器1进行1s的定时,其输出于OUT1与8086的NMI相连,当定时到1s的时候产生一个中断信号,在中断服务程序进行秒的计数,并送入相应的存储单元;8255的A口接七段数码管的段选信号,B口接七段数码管的位选信号,秒的数值通过对8255的编程可以显示在七段数码管上面。
该方案是利用微机接口技术的典范案例,就可行性而言,也是行之有效的。
四、硬件系统设计8086简介Intel 8086拥有四个16位的通用寄存器,也能够当作八个8位寄存器来存取,以及四个16位索引寄存器(包含了堆栈指标)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(此文档为word格式,下载后您可任意编辑修改!)目录1 引言 (1)1.1 课程设计的目的 (1)1.2 课程设计的内容 (1)2 EDA、VHDL简介 (1)2.1 EDA技术 (1)2.2 硬件描述语言——VHDL (2)3设计过程 (4)3.1 设计规划 (4)3.2 各模块的原理及其程序 (4)3.2.1控制模块 (5)3.2.2时基分频模块 (5)3.2.3计时模块 (6)3.2.4显示模块 (7)4系统仿真 (9)结束语 (13)致谢 (14)参考文献 (15)附录 (16)1 引言在科技高度发展的今天,集成电路和计算机应用得到了高速发展。
尤其是计算机应用的发展。
它在人们日常生活已逐渐崭露头角。
大多数电子产品多是由计算机电路组成,如:手机、mp3等。
而且将来的不久他们的身影将会更频繁的出现在我们身边。
各种家用电器多会实现微电脑技术。
电脑各部分在工作时多是一时间为基准的。
本文就是基于计算机电路的时钟脉冲信号、状态控制等原理设计出的数字秒表。
秒表在很多领域充当一个重要的角色。
在各种比赛中对秒表的精确度要求很高,尤其是一些科学实验。
他们对时间精确度达到了几纳秒级别。
1.1 课程设计的目的本次设计的目的就是在掌握EDA实验开发系统的初步使用基础上,了解EDA技术,对计算机系统中时钟控制系统进一步了解,掌握状态机工作原理,同时了解计算机时钟脉冲是怎么产生和工作的。
在掌握所学的计算机组成与结构课程理论知识时。
通过对数字秒表的设计,进行理论与实际的结合,提高与计算机有关设计能力,提高分析、解决计算机技术实际问题的能力。
通过课程设计深入理解计算机结构与控制实现的技术,达到课程设计的目标。
1.2 课程设计的内容利用VHDL语言设计基于计算机电路中时钟脉冲原理的数字秒表。
该数字秒表能对0秒~59分59.99秒范围进行计时,显示最长时间是59分59秒。
计时精度达到10ms。
设计了复位开关和启停开关。
复位开关可以在任何情况下使用,使用以后计时器清零,并做好下一次计时的准备。
2 EDA、VHDL简介2.1 EDA技术EDA是指以计算机为工作平台,融合了应用电子技术、计算机技术、智能化技术的最新成果而开发出的电子CAD通用软件包,它根据硬件描述语言HDL完成的设计文件,自动完成逻辑编译、化简、分割、综合、优化、布局布线及仿真,直至完成对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。
目前EDA主要辅助进行三个方面的设计工作:IC设计、电子电路设计和PCB设计。
没有EDA技术的支持,想要完成超大规模集成电路的设计制造是不可想象的;反过来,生产制造技术的不断进步又必将对EDA 技术提出新的要求。
2.2 硬件描述语言——VHDL★ VHDL的简介VHDL语言是一种用于电路设计的高级语言。
它在80年代的后期出现。
最初是由美国国防部开发出来供美军用来提高设计的可靠性和缩减开发周期的一种使用范围较小的设计语言。
但是,由于它在一定程度上满足了当时的设计需求,于是他在1987年成为A IIEEE的标准(IEEE STD)。
1993年更进一步修订,变得更加完备,成为A IIEEE 的A IIEEE STD标准。
目前,大多数的CAD厂商出品的EDA软件都兼容了这种标准。
自IEEE公布了VHDL的标准版本,IEEE-1076(简称87版)之后,各EDA公司相继推出了自己的VHDL设计环境,或宣布自己的设计工具可以和VHDL接口。
此后VHDL在电子设计领域得到了广泛的接受,并逐步取代了原有的非标准的硬件描述语言。
1993年,IEEE 对VHDL进行了修订,从更高的抽象层次和系统描述能力上扩展VHDL的内容,公布了新版本的VHDL,即IEEE标准的版本,(简称93版)。
现在,VHDL和Verilog作为IEEE 的工业标准硬件描述语言,又得到众多EDA公司的支持,在电子工程领域,已成为事实上的通用硬件描述语言。
有专家认为,在新的世纪中,VHDL于Verilog语言将承担起大部分的数字系统设计任务。
★ VHDL语言的特点VHDL的程序结构特点是将一项工程设计,关于用VHDL和原理图输入进行CPLDFPGA 设计的粗略比较:在设计中,如果采用原理图输入的设计方式是比较直观的。
你要设计的是什么,你就直接从库中调出来用就行了。
这样比较符合人们的习惯。
在对一个设计实体定义了外部界面后,一旦其内部开发完成后,其他的设计就可以直接调用这个实体。
这种将设计实体分成内外部分的概念是VHDL系统设计的基本点。
应用VHDL进行工程设计的优点是多方面的。
(1)与其他的硬件描述语言相比,VHDL具有更强的行为描述能力,从而决定了他成为系统设计领域最佳的硬件描述语言。
强大的行为描述能力是避开具体的器件结构,从逻辑行为上描述和设计大规模电子系统的重要保证。
(2)VHDL丰富的仿真语句和库函数,使得在任何大系统的设计早期就能查验设计系统的功能可行性,随时可对设计进行仿真模拟。
(3)VHDL语句的行为描述能力和程序结构决定了他具有支持大规模设计的分解和已有设计的再利用功能。
符合市场需求的大规模系统高效,高速的完成必须有多人甚至多个代发组共同并行工作才能实现。
(4)对于用VHDL完成的一个确定的设计,可以利用EDA工具进行逻辑综合和优化,并自动的把VHDL描述设计转变成门级网表。
(5)VHDL对设计的描述具有相对独立性,设计者可以不懂硬件的结构,也不必管理最终设计实现的目标器件是什么,而进行独立的设计。
★ VHDL的设计流程它主要包括以下几个步骤:1.文本编辑:用任何文本编辑器都可以进行,也可以用专用的HDL编辑环境。
通常VHDL文件保存为.vhd文件,Verilog文件保存为.v文件2.功能仿真:将文件调入HDL仿真软件进行功能仿真,检查逻辑功能是否正确(也叫前仿真,对简单的设计可以跳过这一步,只在布线完成以后,进行时序仿真)3.逻辑综合:将源文件调入逻辑综合软件进行综合,即把语言综合成最简的布尔表达式。
逻辑综合软件会生成.edf或.edif 的EDA工业标准文件。
4.布局布线:将.edf文件调入PLD厂家提供的软件中进行布线,即把设计好的逻辑安放PLDFPGA 内。
5.时序仿真:需要利用在布局布线中获得的精确参数,用仿真软件验证电路的时序。
(也叫后仿真)通常以上过程可以都在PLDFPGA厂家提供的开发工具。
6.器件编程3设计过程3.1 设计规划本系统设计采用自顶向下的设计方案,系统的整体组装设计原理图如图3-1所示,它主要由控制模块、时基分频模块,计时模块和显示模块四部分组成。
各模块分别完成计时过程的控制功能、计时功能与显示功能。
3.2各模块的原理及其程序本系统设计由控制模块、时基分频模块,计时模块和显示模块四部分组成。
各模块实现秒表不同的功能。
图3-2就是整个系统原理图。
3.2.1控制模块计时模块的作用是针对计时过程进行控制。
计时控制模块可用俩个按钮来完成秒表的启动、停止和复位。
部分源程序如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CTRL ISPORT( CLR,CLK,SP:IN STD_LOGIC;EN :OUT STD_LOGIC);……………………………………………COM:PROCESS(SP,CURRENT_STATE)BEGINEND IF;END PROCESS;END BEHAVE;3.2.2时基分频模块时基分频模块的作用把输入时钟信号变为分频输出信号。
源程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CB10 ISPORT( CLK: IN STD_LOGIC;CO : OUT STD_LOGIC);END CB10;ARCHITECTURE ART OF CB10 ISSIGNAL COUNT:STD_LOGIC_VECTOR (3 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF RISING_EDGE(CLK)THENIF COUNT="1001"THENCOUNT<="0000";CO<='1';ELSECOUNT<=COUNT+1;CO<='0';END IF;END IF;END PROCESS;END ART;3.2.3计时模块计时模块执行计时功能,计时方法和计算机一样是对标准时钟脉冲计数。
他是由四个十进制计数器和俩个六进制计数器构成,其中毫秒位、十毫秒位、秒位和分位采用十进制计数器,十秒位和十分位采用六进制计数器。
源程序:①.十进制计数器LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CDU10 ISPORT( CLK:IN STD_LOGIC;CLR,EN:IN STD_LOGIC;CN :OUT STD_LOGIC;COUNT10:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END CDU10;…………………………………………………………………………END IF;END IF;END PROCESS;END ART;②六进制计数器LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CDU6 IS……………………………………………………………………END IF;END IF;END PROCESS;END ART;③计数器LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY COUNT IS………………………………………………………………END ART;3.2.4显示模块计时显示电路的作用是将计时值在LED数码管上显示出来。
计时电路产生的值经过BCD七段译码后,驱动LED数码管。
计时显示电路的实现方案采用扫描显示。
部分源程序:①数据选择器LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY MULX ISPORT( CLK,CLR,EN:IN STD_LOGIC;S_1MS:IN STD_LOGIC_VECTOR(3 DOWNTO 0);S_10MS:IN STD_LOGIC_VECTOR(3 DOWNTO 0);S_100MS:IN STD_LOGIC_VECTOR(3 DOWNTO 0);S_1S:IN STD_LOGIC_VECTOR(3 DOWNTO 0);S_10S:IN STD_LOGIC_VECTOR(3 DOWNTO 0);M_1MIN:IN STD_LOGIC_VECTOR(3 DOWNTO 0);M_10MIN:IN STD_LOGIC_VECTOR(3 DOWNTO 0);HOUR:IN STD_LOGIC_VECTOR(3 DOWNTO 0);OUTBCD:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);SEG:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END MULX;ARCHITECTURE ART OF MULX ISSIGNAL COUNT:STD_LOGIC_VECTOR(3 DOWNTO 0);………………………………………………………………END CASE;END IF;END PROCESS;END ART;②BCD七段译码器LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY BCD7 ISPORT(BCD:IN STD_LOGIC_VECTOR(3 DOWNTO 0);LED:OUT STD_LOGIC_VECTOR(6 DOWNTO 0));END BCD7;ARCHITECTURE ART OF BCD7 ISBEGINLED<=""WHEN BCD ="0000" ELSE""WHEN BCD ="0001" ELSE""WHEN BCD ="0010" ELSE""WHEN BCD ="0011" ELSE""WHEN BCD ="0100" ELSE""WHEN BCD ="0101" ELSE""WHEN BCD ="0110" ELSE""WHEN BCD ="0111" ELSE""WHEN BCD ="1000" ELSE""WHEN BCD ="1001" ELSE"";END ART;4系统仿真(1)时基分频模块的仿真(如图 4-1所示)分析:CLK为时钟信号的输入,CO为分频输出信号。