传感器原理7 磁电式传感器

合集下载

磁电式传感器测量转速原理

磁电式传感器测量转速原理

磁电式传感器测量转速原理1.介绍磁电式传感器是一种常用于测量转速的传感器,通过检测磁场的变化来计算物体的转速。

它具有结构简单、精度高、响应快等优点,在许多领域都得到广泛应用。

2.磁电式传感器的工作原理磁电式传感器通过利用磁场感应现象来测量转速。

当传感器与被测物体相互作用时,磁场的变化会产生电压信号,从而实现转速的测量。

3.磁电式传感器的结构3.1 磁敏元件磁电式传感器的核心部件是磁敏元件,它可以将磁场变化转换为电压信号。

常用的磁敏元件包括霍尔元件和磁致伸缩(Magnetostrictive)元件。

3.2 信号调理电路信号调理电路用于放大和整形由磁敏元件产生的微弱电压信号,以便后续的处理和分析。

它可以提高传感器的灵敏度和稳定性。

3.3 输出接口输出接口将处理后的电压信号转换为转速值或其他形式的信息输出,便于用户进行监测和控制。

4.磁电式传感器测量转速的步骤4.1 确定测量位置在安装磁电式传感器之前,需要确定被测物体上用来测量转速的位置。

通常选择物体上的凸起或特定的标记点作为测量点,以确保测量的准确性和稳定性。

4.2 安装磁电式传感器根据测量位置确定的要求,正确安装磁电式传感器。

通常需要将传感器固定在物体上,并保持一定的距离,以便磁场的变化能够被传感器准确地检测到。

4.3 连接电路将磁电式传感器的输出端口与信号调理电路相连接,确保信号能够被正确的接收和处理。

4.4 校准和调试在使用磁电式传感器进行转速测量之前,需要进行校准和调试,以确保测量结果的准确性和可靠性。

校准过程中,可以通过与其他精密测量设备进行对比,来调整传感器的灵敏度和输出。

5.磁电式传感器测量转速的应用5.1 汽车工业在汽车工业中,磁电式传感器被广泛用于测量车辆引擎的转速。

它可以帮助监测引擎的工作状态,提高车辆的性能和燃油利用率。

5.2 机械制造磁电式传感器在机械制造过程中也有很多应用。

它可以用于测量机器工作部件的转速,以监测和控制机器的运行状态。

磁电式传感器工作原理

磁电式传感器工作原理

磁电式传感器工作原理
磁电式传感器是一种通过测量磁场变化来检测物体位置或运动的传感器。

它基于磁电效应,利用材料在外加磁场下产生的电势差来实现测量。

磁电式传感器通常由磁敏元件和测量电路组成。

磁敏元件可以是磁电材料,如铁电材料、铁磁材料或半导体材料,也可以是磁敏效应材料,例如霍尔元件。

磁敏元件的特性是在磁场的作用下,会产生电势差。

当磁敏元件处于一个磁场中时,磁场的变化会导致磁敏元件内部的电荷重新分布,从而产生电势差。

通常情况下,磁敏元件的两端接有电极,形成一个电势差的输出。

这个输出电势差可以被测量电路检测并转换为相应的电信号,用于表示磁场的强度或物体的位置。

根据磁场变化的方式,磁电式传感器可以分为两种类型:绝对值传感器和增量式传感器。

绝对值传感器可以直接测量磁场的强度,从而确定物体的绝对位置或角度。

常见的绝对值传感器有霍尔传感器和磁电传感器。

霍尔传感器利用霍尔效应测量磁场的强度,可以检测物体的位置、角度或磁场的方向。

磁电传感器则利用磁电效应测量磁场的强度,常用于测量物体的位移或线性位置。

增量式传感器则通过测量磁场的变化来确定物体的运动或相对位置。

常见的增量式传感器有磁电编码器和霍尔增量传感器。

磁电编码器利用磁场的变化来确定物体的运动方向、距离和速度,广泛应用于机械运动控制领域。

霍尔增量传感器则利用霍尔效应测量磁场的变化,可以检测物体的相对位移或角度变化。

总的来说,磁电式传感器通过利用磁电效应测量磁场的变化,实现了对物体位置或运动的检测。

不同类型的磁电式传感器可以应用于不同的场合,实现准确、可靠的测量。

磁电式传感器的工作原理

磁电式传感器的工作原理

磁电式传感器的工作原理
磁电式传感器是一种常用的用于测量和检测磁场的传感器。

其工作原理基于磁性材料在外加磁场作用下产生的磁电势。

磁电式传感器通常由两个主要部分组成:磁敏感元件和信号处理电路。

磁敏感元件是通常由铁磁材料制成的,比如镍、铁、钴等。

这些材料在外加磁场的作用下会发生剩余磁化现象,即使在磁场消失后,仍能保持一定的磁性。

当外加磁场作用在磁敏感元件上时,磁性材料内部的磁矩会发生改变。

这种磁矩的改变会导致磁敏感元件两端产生电势差,即磁电势。

这个电势差与外加磁场的强度成正比,可以通过测量电势差来间接测量磁场的强度。

信号处理电路用于放大和处理由磁敏感元件产生的微弱电势差。

通常,这些电路会对输入的电势差进行放大和滤波,以提高测量的准确性和稳定性。

然后,信号处理电路将处理后的电信号转换为数字信号或模拟信号,供其他设备使用或进行进一步的数据处理。

总而言之,磁电式传感器通过利用磁敏感元件在外加磁场作用下产生的磁电势,实现对磁场强度的测量和检测。

其工作原理简单可靠,广泛应用于各种领域,比如工业控制、汽车电子、电力系统等。

常用传感器工作原理(磁电式)

常用传感器工作原理(磁电式)

在永久磁铁产生的恒定磁场内,放置一个可动线圈, 在永久磁铁产生的恒定磁场内,放置一个可动线圈,当线 圈在磁场中作直线运动或旋转运动时, 圈在磁场中作直线运动或旋转运动时,所产生的感应电动 势 e为 :
e = −NBlvsinθ e = −kNBSω
这类传感器的基本形式是 速度传感器,能直接测量 速度传感器, 因此, 线速度或角速度 。因此, 磁电感应式传感器只适用 于动态测量。 于动态测量。
磁电式传感器直接输出感应电势, 磁电式传感器直接输出感应电势,且传感器通常有较高 的灵敏度,所以一般不需要高增益放大器。 的灵敏度,所以一般不需要高增益放大器。但磁电式传 感器是速度传感器,若要获取被测位移或角速度, 感器是速度传感器,若要获取被测位移或角速度,则要 配用积分或微分电路。 配用积分或微分电路。其中虚线框内整形及微分部分电 路仅用于以频率作为输出时。 路仅用于以频率作为输出时。
62磁阻式磁电传感器测量齿轮由导磁材料制成安装在被测旋转体上随之一起转动每转过一个齿传感器磁路磁阻变化一次线圈产生的感应电动势的变化频率rs等于测量齿轮上齿轮的齿数n和转速的nrmin乘积
第3章 常用传感器的工作原理
3.7 磁电式传感器
将被测物理量转换为感应电动势的一种传感器。 将被测物理量转换为感应电动势的一种传感器。 当一个N匝线圈相对处于随时间变化的磁场中, 当一个 匝线圈相对处于随时间变化的磁场中,当穿过 匝线圈相对处于随时间变化的磁场中 它的磁通量φ发生变化时, 它的磁通量φ发生变化时,线圈产生的感应电动势 dφ
e = −N dt
磁电式传感器是利用电磁感应原理,将运动速度、 磁电式传感器是利用电磁感应原理,将运动速度、位移等物理 量转换成线圈中的感应电动势输出。 量转换成线圈中的感应电动势输出。 工作时不需要外加电源, 工作时不需要外加电源,可直接将被测物体的机械能转换为电 量输出。是典型的有源传感器。 量输出。是典型的有源传感器。 特点:输出功率大,稳定可靠,可简化二次仪表, 特点:输出功率大,稳定可靠,可简化二次仪表,但频率响 应低。通常在10— 适合作机械振动测量、 应低。通常在 —100HZ适合作机械振动测量、转速测量。 适合作机械振动测量 转速测量。 传感器尺寸大、 传感器尺寸大、重。 2

磁电式传感器原理及应用

磁电式传感器原理及应用

磁电式传感器原理及应用磁电式传感器是一种基于磁效应的传感器,能够通过测量电流和磁场之间的关系来检测和测量电流、位移、速度、角度等物理量。

该传感器通过电流和磁场之间的相互作用,将物理量转化为电信号,从而实现对物理量的测量和控制。

磁电式传感器具有高精度、高分辨率、高灵敏度、可靠性高等优点,因此在许多领域得到广泛应用。

磁电式传感器的工作原理主要是基于磁电效应,即通过磁场作用于磁电材料产生的电势差来测量物理量。

常用的磁电材料有铁磁材料、反铁磁材料和压电材料等。

当磁电材料受到外界磁场的影响时,内部的电荷分布状态发生改变,从而在材料的两侧产生电势差。

根据外加电场的方向,可以将磁电材料分为电压系数和电流系数两种类型。

磁电式传感器的应用非常广泛,主要包括以下几个方面:1. 电流测量:磁电式传感器可以通过测量电流所产生的磁场来实现对电流的测量。

在电力系统中,磁电式传感器被广泛用于测量电流,用于电能计量、故障检测和保护等。

2. 位移测量:通过将磁电材料与磁场探头相结合,可以实现对位移的测量。

在工业自动化领域,磁电式传感器被广泛应用于位移传感器、液位传感器、角度传感器等领域。

例如,在机械加工中,可以通过位移传感器来监测工件的位移,从而实现对机械加工的控制和调整。

3. 速度测量:磁电式传感器可以通过测量旋转物体所产生的磁场来实现对速度的测量。

在汽车行业中,磁电式传感器被广泛用于测量车速,用于车速表和巡航控制系统等。

4. 角度测量:通过将磁电材料与磁场探头结合,磁电式传感器可以实现对角度的测量。

在航空航天、机器人、自动化控制等领域,磁电式传感器被广泛应用于角度传感器、导航传感器、姿态传感器等领域。

5. 磁场测量:磁电式传感器可以通过测量磁场对磁电材料产生的电势差来实现对磁场的测量。

在地理勘测、地震监测等领域,磁电式传感器被用于测量地球磁场和地震活动等。

总之,磁电式传感器作为一种重要的传感器技术,具有广泛的应用前景。

随着科技的不断发展和进步,磁电式传感器将更加精确、灵敏地测量和控制物理量,为各个领域的发展做出更大的贡献。

磁电式传感器

磁电式传感器

图7.2.4 霍尔元件的等效电路
7.2 霍尔式传感器
此时可根据A、B两点电位的高低,判断应在某 一桥臂上并联一定的电阻,使电桥达到平衡,从而 使不等位电势为零。几种补偿线路如图7.2.5所示。
RP
RP RP (a) (b) (c) R (d)

RP
图7.2.5 不等位电势补偿电路
7.2 霍尔式传感器
第7章 磁电式传感器
7.1 磁电感应式传感器 7.2 霍尔式传感器
7.1 磁电感应式传感器
磁电式传感器——通过电磁感应原理将被测量 (如振动、转速、扭矩)转换成电势信号。
利用导体和磁场发生相对运动而在导体两端输出 感应电势;属于机-电能量变换型传感器
优点: 不需要供电电源,电路简单, 性能稳定,输出阻抗小
此时电荷不再向两侧面积累,达到平衡状态。
7.2 霍尔式传感器
若金属导电板单位体积内电子数为n,电子定 向运动平均速度为v,则激励电流I=nevbd,即
I v nebd
代入上两式得
IB EH nebd IB UH ned
7.2 霍尔式传感器
式中令RH=1/ne,称之为霍尔系数(反映霍尔效 应强弱),其大小取决于导体载流子密度, 则
等 效 机 械 系 统 Vo为传感器外壳的运动速度,即被测物体运动速度; Vm为传感器惯性质量块的运动速度。
7.1 磁电感应式传感器
若V(t)为惯性质量块相对外壳的运动速度 运动方程
dV0 (t ) dV (t ) m cV (t ) K V (t )dt m dt dt
Av ( ) ( / n ) 2 1 ( / n ) 2 [ 2 ( / n ) 2 ]
7.1 磁电感应式传感器

磁电感应式传感器工作原理

磁电感应式传感器工作原理
1.
图 7 - 5 是动圈式振动速度传感器结构示意图。 其结构主 要由钢制圆形外壳制成, 里面用铝支架将圆柱形永久磁铁与外 壳固定成一体, 永久磁铁中间有一小孔, 穿过小孔的芯轴两端 架起线圈和阻尼环, 芯轴两端通过圆形膜片支撑架空且与外壳 相连。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
(7 - 13)
EH=
IB bdae
(7 -14)
第7章 磁电式传感器将上源自代入式(7 - 10)得UH =
IB ned
(7 -15)
式中令RH =1/(ne), 称之为霍尔常数, 其大小取决于导
体载流子密度,则
UH =RH
IB d
K
HIB
(7 - 16)
式中KH=RH/d称为霍尔片的灵敏度。由式(7 - 16)可见, 霍尔
第7章 磁电式传感器
第7章 磁电式传感器
7.1
磁电感应式传感器又称磁电式传感器, 是利用电磁感应 原理将被测量(如振动、位移、转速等)转换成电信号的 一种传感器。 它不需要辅助电源就能把被测对象的机械量 转换成易于测量的电信号, 是有源传感器。由于它输出功率 大且性能稳定, 具有一定的工作带宽(10~1000 Hz), 所以 得到普遍应用。
但在室温时其霍尔系数较大。砷化铟的霍尔系数较小, 温 度系数也较小, 输出特性线性度好。 表 7 - 1 为常用国产霍尔 元件的技术参数。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
2. 霍尔元件基本结构
霍尔元件的结构很简单, 它由霍尔片、 引线和壳体组成, 如图 7 - 9(a)所示。 霍尔片是一块矩形半导体单晶薄片, 引出四个引线。1、1′两根引线加激励电压或电流,称为激 励电极;2、2′引线为霍尔输出引线,称为霍尔电极。 霍尔 元件壳体由非导磁金属、陶瓷或环氧树脂封装而成。 在电 路中霍尔元件可用两种符号表示,如图7- 9(b)所示。

磁电式传感器的工作原理

磁电式传感器的工作原理

一、引言磁电式传感器(magnetic-electric sensor)是一种常见的传感器类型,广泛应用于各个领域中,包括工业自动化、交通运输、机器人、医疗设备等。

磁电式传感器利用磁力与电磁感应的原理,将磁场的变化转化为电信号,从而实现对磁场强度、方向或位置的检测。

本文将详细解释磁电式传感器的工作原理,包括其基本原理、结构、工作方式以及应用领域。

二、磁电式传感器的原理1. 电磁感应原理磁电式传感器的工作原理基于电磁感应的原理。

根据法拉第电磁感应定律,当一个导体在磁力线穿过时,会在导体中产生电动势。

这种现象可以用以下公式表示:EMF = -dΦ/dt其中EMF表示电动势,Φ表示磁场通量,dt表示时间的微小变化。

根据该定律可知,当磁场强度或磁场方向发生变化时,会在导体中产生电动势。

2. 磁电效应原理磁电式传感器的核心部件是磁电材料,如铁电材料或磁电材料。

磁电材料具有磁电效应,即在外加磁场的作用下,会产生磁感应强度与电场强度之间的线性关系。

磁电效应可以通过以下公式表示:E = k * H其中E表示电场强度,k表示磁电系数,H表示磁场强度。

根据该公式可知,当磁场强度发生变化时,磁电材料会产生相应的电场强度变化。

3. 磁电式传感器的构成磁电式传感器通常由磁电材料、电极、封装以及相关电路组成。

磁电材料:磁电材料是磁电式传感器的核心部件,它通过磁电效应将磁场的变化转化为电场的变化。

常见的磁电材料包括铁电材料和磁电材料。

电极:电极用于连接磁电材料和外部电路,将磁电材料产生的电场信号引出。

封装:封装是保护磁电材料和电极的外壳,通常采用环氧树脂或金属外壳进行封装。

相关电路:相关电路包括放大电路、滤波电路和输出电路等,用于放大和处理磁电材料产生的电场信号,提供给外部电路使用。

4. 磁电式传感器的工作原理磁电式传感器的工作原理基于磁电效应和电磁感应的原理。

当存在磁场时,磁电材料会产生相应的电场变化。

根据电磁感应原理,当磁场的强度或方向发生变化时,会在磁电材料中产生电动势。

磁电式传感器工作原理

磁电式传感器工作原理

磁电式传感器工作原理
磁电式传感器,又称磁电效应式传感器,是利用电磁效应进行信
号转换的一种传感器。

它将物理量转换为电信号,其运行原理如下:
当受到外力作用时,磁电式传感器内的磁性结构会相应的形变发生变化,从而导致胶体囊泡内部电荷的变化,使得囊泡内部电位发生变化,变化的电位会将胶体囊泡中的电荷通过引线传送到电路中,在电路中
采集这些变化信号,控制电路对变化信号进行处理和恢复,将变化信
号转换成模拟电压或数字信号,以给控制系统提供输入信号。

磁电式传感器的结构简单、重量轻、原理容易理解,在测试过程
中不受外界条件的影响,能够稳定强烈的信号输出,具有非常好的鲁
棒性和可靠性,而且受力后反应极快,可以提供精确的信号采集,可
以较好的满足用户对高精度和高灵敏度测量要求,所以磁电式传感器
在测量、控制、检测等领域都有广泛的应用。

磁电式传感器原理

磁电式传感器原理

磁电式传感器原理
磁电式传感器是一种常用的物理量测量装置,它利用磁电效应实现对磁场的测量。

磁电效应是指当磁场作用于特定的材料时,会在材料中产生电势差或电流。

磁电式传感器的工作原理可以分为两个步骤:磁场的感应和电信号的转换。

首先,当磁场作用于磁电式传感器中的磁敏材料时,磁敏材料内部的自由电子会受到力的作用,从而形成一个电势差或电流。

这是由于磁场会改变电子的运动轨迹,导致电荷在材料中的分布发生变化。

这个电势差或电流的大小与磁场的强度成正比。

然后,磁电式传感器会将产生的电势差或电流信号转换成可用的测量信号。

这通常通过将电势差转换成电压信号或通过电流信号经过放大和滤波后得到。

这样的测量信号可以用来表示磁场的强度或与其他物理量的关系。

磁电式传感器有许多应用领域,包括磁场测量、运动传感、接近开关等。

它们通常具有灵敏度高、响应速度快、稳定性好等特点,可以实现对磁场的准确测量。

同时,磁电式传感器还可以通过改变磁敏材料的性质或结构,实现对不同范围和分辨率的测量需求。

磁电式传感器原理及应用

磁电式传感器原理及应用
扭转0角 与感应电动势相位差的关
系为
式中:z为传感0 器z定子、转子的齿
数。
2 霍尔式传感器
霍尔式传感器是基于霍尔效应而将被测量转换成电动势输出的一 种传感器。霍尔器件是一种磁传感器,用它们可以检测磁场及其 变化,可在各种与磁场有关的场合中使用。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿 命长,安装方便,功耗小,频率高(可达1 MHz),耐振动,不怕 灰尘、油污、水汽及盐雾等的污染或腐蚀。
f Zn/ 60
式中:Z为齿轮齿数;n为被测轴转速(v/min);f为感应电 动势频率(Hz)。这样当已知Z,测得f就知道n了。
开磁路式转速传感器结构比较简单,但输出信号小,另外当被 测轴振动比较大时,传感器输出波形失真较大。在振动强的场 合往往采用闭磁路式转速传感器。
被测转轴带动椭圆形测量轮5在磁场气隙中等速转动,使气隙 平均长度周期性地变化,因而磁路磁阻和磁通也同样周期性地 变化,则在线圈3中产生感应电动势,其频率f与测量轮5的转 速n(r/min)成正比,即f = n/30。在这种结构中,也可以用齿轮 代替椭圆形测量轮5,软铁(极掌)制成内齿轮形式,这时输出 信号频率f 同前式。
1.霍尔效应
半导体薄片置于磁感应强度为B 的磁场中,磁场方向垂直于薄 片,当有电流I 流过薄片时,在垂直于电流和磁场的方向上将 产生电动势EH,这种现象称为霍尔效应。
B
C
D
A
磁感应强度B为零时的情况
作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高。 霍尔电势EH可用下式表示:
EH=KH IB
当有图示方向磁场B作用时
数料R中H=的1电/(n子q)浓,度由。材料为物磁理场性和质薄所片决
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。

磁电式转速传感器的原理

磁电式转速传感器的原理

磁电式转速传感器的原理一、引言磁电式转速传感器是一种常用的测量设备,用于测量旋转物体的转速。

它通过感应磁场的变化来测量转速,具有精度高、可靠性好等优点。

本文将详细介绍磁电式转速传感器的原理和工作机制。

二、磁电式转速传感器的结构磁电式转速传感器通常由磁电式传感器和信号处理电路两部分组成。

2.1 磁电式传感器磁电式传感器由磁敏感元件和磁场产生元件组成。

磁敏感元件通常是由铁氧体或硅钢片制成的磁致伸缩材料,具有磁致伸缩效应。

磁场产生元件通常是由永磁体或电磁线圈组成,用于产生磁场。

2.2 信号处理电路信号处理电路主要用于放大、滤波和处理磁电式传感器输出的信号。

它通常由放大器、滤波器、比较器和计数器等组成。

三、磁电式转速传感器的原理磁电式转速传感器的原理基于磁致伸缩效应和霍尔效应。

3.1 磁致伸缩效应磁致伸缩效应是指在磁场作用下,磁敏感元件的尺寸会发生微小的变化。

当转子上的齿轮通过磁电式传感器时,磁敏感元件会受到磁场的影响,发生尺寸变化,从而产生电压信号。

3.2 霍尔效应霍尔效应是指当导体中有电流通过时,垂直于电流方向的磁场会在导体两侧产生电势差。

磁电式转速传感器中的磁敏感元件通常会产生一个垂直于磁场方向的电势差,该电势差与转速成正比。

四、磁电式转速传感器的工作原理磁电式转速传感器的工作原理如下:1.磁场产生元件产生一个恒定的磁场。

2.当转子上的齿轮通过磁电式传感器时,磁致伸缩效应使磁敏感元件的尺寸发生微小变化。

3.磁致伸缩效应引起磁敏感元件两侧产生电势差,即霍尔效应。

4.信号处理电路对电势差进行放大、滤波和处理。

5.最终输出一个与转速成正比的电压信号。

五、磁电式转速传感器的应用磁电式转速传感器广泛应用于各个领域,如汽车、航空航天、工业自动化等。

它可以用于测量发动机转速、风扇转速、电机转速等。

六、总结磁电式转速传感器是一种测量旋转物体转速的重要设备。

本文详细介绍了磁电式转速传感器的原理和工作机制,包括磁致伸缩效应和霍尔效应。

磁敏式传感器中的磁电式和霍尔式原理及应用

磁敏式传感器中的磁电式和霍尔式原理及应用

磁敏式传感器中的磁电式和霍尔式原理及应用磁敏式传感器在许多电子设备中发挥着关键作用,其中磁电式和霍尔式是两种常见的类型。

这两种传感器利用磁感应原理,将磁场强度转换为电信号,从而实现对各种物理量的测量。

本篇文章将详细介绍磁电式传感器和霍尔传感器的原理、应用以及注意事项。

一、磁电式传感器原理及应用磁电式传感器基于磁感应原理,即磁场的变化能够产生电压。

当磁场穿过金属片时,金属片会发生相应的电位差,即电磁感应。

这种传感器通常用于测量速度、长度、位移等物理量。

其工作原理如下:1.结构:磁电式传感器通常由永久磁铁和金属感应片组成。

金属感应片固定在壳体上,通过连接线连接到测量电路。

2.工作原理:当磁场穿过金属感应片时,会产生电动势,其大小与磁场强度成正比。

因此,通过测量电动势,可以确定磁场强度或相应的物理量。

3.应用:磁电式传感器广泛应用于流量计、测速仪、转速表等领域,用于测量流体的流量和速度。

此外,在汽车电子控制系统如ABS防抱死系统、TCS牵引力控制系统等中也发挥着重要作用。

二、霍尔传感器原理及应用霍尔传感器是基于霍尔效应制成的传感器。

当电流通过一个置于磁场中的半导体时,会在电子层面上产生电压,即霍尔电压。

这种传感器能够将磁场强度转换为电信号,从而实现对各种物理量的测量。

1.结构:霍尔传感器通常由半导体、固定磁场和连接线组成。

半导体通常被夹在两个导电片之间,形成一个霍尔电场。

2.工作原理:当电流通过霍尔传感器时,会在霍尔电场上产生电压,即霍尔输出。

霍尔输出的大小与磁场强度成正比,因此通过测量霍尔输出,可以确定磁场强度或相应的物理量。

3.应用:霍尔传感器在各种电子设备中广泛应用,如电流检测、位置测量、转速表、安全气囊控制等。

此外,霍尔传感器还被用于汽车电子控制系统如发动机控制、ABS防抱死系统等。

三、注意事项使用磁敏式传感器时,需要注意以下几点:1.磁场强度:确保磁敏元件工作在适当的磁场强度范围内,以免损坏传感器。

简述磁电式传感器的工作原理

简述磁电式传感器的工作原理

简述磁电式传感器的工作原理磁电式传感器是一种将磁场信息转化为电信号的传感器,广泛应用在仪器仪表、自动控制、计算机信息处理、航空航天等领域。

其主要工作原理是基于磁电效应和霍尔效应。

磁电效应是指当磁性材料受到外界磁场的作用时,其中的自由电子将受到力的作用,从而在材料内部形成电势差。

这个电势差可以用来测量外部磁场的大小和方向。

磁电效应可以用来将机械运动转换为电信号,从而实现物理量的测量和控制。

霍尔效应是指电流通过横跨磁场的导体时,将在导体的两侧出现电势差。

这个现象的原理是基于洛伦兹力,即受到磁场作用的电荷将受到力的作用而被分离。

霍尔效应与磁电效应相似,也是将磁场信息转换为电信号的一种机制。

磁电式传感器通常通过霍尔效应测量磁场的强度和方向。

磁电式传感器一般由磁性材料、霍尔元件和信号处理电路组成。

在测量时,磁性材料将接收到外界的磁场,从而在其内部产生电势差。

电势差随后被传递给霍尔元件,经过元件内部的放大、滤波等信号处理,最终转换为可用的电信号。

这个电信号的大小和方向分别对应着外界磁场的强度和方向。

磁电式传感器有多种类型,包括线性磁电效应传感器、非线性磁电效应传感器、霍尔电流传感器、霍尔电压传感器等。

线性磁电效应传感器是一种用于测量弱磁场的传感器,可用于检测磁场的方向、大小和分布情况。

而非线性磁电效应传感器则适用于测量强磁场,如磁体在加热过程中的磁场分布。

霍尔电流传感器和霍尔电压传感器是基于霍尔效应进行测量的传感器,分别适用于测量电流和电压。

霍尔电流传感器将电流通过磁场,并测量电势差来计算电流大小,而霍尔电压传感器则通过测量霍尔元件两侧的电势差来计算电压大小。

这些传感器广泛应用在电力系统中,用于测量电流和电压,从而保障设备的安全运行。

磁电式传感器是一种重要的测量和控制元件,广泛应用于工业控制、科学研究、医疗设备等领域。

其工作原理基于磁电效应和霍尔效应,能够将磁场信息转化为电信号,实现对物理量的测量和控制。

磁电式传感器的优点在于具有高度的灵敏度和精度,且不会对被测物体产生影响。

磁电式传感器工作原理

磁电式传感器工作原理

磁电式传感器工作原理
磁电式传感器是一种广泛应用于检测目标物体材料是否为磁性材料的传感器。

它由一种磁芯组成,磁芯上绕有多条细导线,在磁芯两端接有灵敏电阻机构,它是一种磁电转换传感器,是运用原理物理现象包括:磁场-电流、电磁感应以及磁电
耦合等物理现象相互作用、耦合的变换传感器类型。

磁电式传感器的通用原理是:当物体被一磁场刺激时,它会产生一定的磁感应强度,这种强度取决于物体本身的物理性质;在磁芯两端设置的灵敏电阻机构,能够检测穿过磁芯两端的电流和电压,从而计算出物体的磁感应强度;所以,磁电式传感器的工作基本原理是:先由外部设备产生磁场给待检测的物体,然后通过磁芯和灵敏电阻机构的放大变换作用检测物体的磁感应强度,从而判断出目标物体的材料是否为磁性材料。

与其他传感器相比,磁电式传感器具有许多独有的特点,一是操作灵敏;二是构造简单;三是运行温度范围较广。

能够在低温环境和长时间工作;四是抗干扰能力较强;五是价格相对较低。

由此可见,磁电式传感器是一种优越的传感器,可用于检测铁、钢、铝等物体以及高熔融金属熔体,被广泛应用于制造工业磁检测中。

其对于快速、准确、经济、安全的物体检测扮演着重要的角色,应用范围非常广泛,可用于工业控制、环境控制、电气控制、测量与铁路。

磁电式传感器的工作原理

磁电式传感器的工作原理

磁电式传感器的工作原理
磁电式传感器是一种常见的电磁感应传感器,其工作原理利用磁场对电流产生作用力的特性。

磁电式传感器通常由磁铁和线圈组成。

当磁铁靠近或远离线圈时,会在线圈中产生一个变化的磁场。

根据法拉第电磁感应定律,当磁场的变化通过线圈时,会在线圈两端产生感应电动势。

这个感应电动势会导致线圈两端产生电流。

同时,根据安培力定律,磁场对电流也会产生作用力。

因此,磁电式传感器通过测量线圈中的电流大小或产生的磁场变化来检测外部磁场的变化。

具体来说,当磁铁靠近线圈时,线圈中的磁场会增强,导致感应电动势增大,进而产生更大的电流。

当磁铁远离线圈时,线圈中的磁场会减弱,感应电动势减小,导致电流变小。

因此,通过测量线圈中的电流大小或磁场的变化,可以对外部磁场的强度或位置进行检测。

磁电式传感器广泛应用于工业自动化、交通运输、医疗设备等领域。

常见的应用包括位置传感、速度检测、角度测量等。

这些应用都是基于传感器对外部磁场变化的高灵敏度和快速响应能力。

磁电式传感器原理

磁电式传感器原理

磁电式传感器原理磁电式传感器是一种常用的电磁传感器,用于检测和测量磁场的强度和方向。

它基于磁电效应,即当磁场通过磁电材料时,会在材料上产生电势差,并且该电势差与磁场的强度及其方向成正比。

磁电材料通常是具有较高电阻率和磁性的材料,如铁氧体、镍锌铁氧体等。

这些材料可以通过磁电效应将磁场转化为电信号,从而实现对磁场的检测和测量。

磁电式传感器通常由磁电材料、导电材料以及电极组成。

磁电材料通常呈薄片或膜状,可以用来感知磁场。

导电材料负责将磁电材料上产生的电信号传递到电极上,并将其转化为电流或电压信号。

电极连接到外部电路上,可以对产生的电信号进行放大、处理和分析。

磁电式传感器的工作原理是基于以下几个步骤:1. 磁场感知:当磁场作用于磁电材料时,材料内部的磁性结构会发生变化,导致材料上产生电势差。

2. 电势差产生:在磁电材料中存在自旋磁矩和轨道磁矩,当磁场作用于磁电材料时,这些磁矩会受到磁场力的作用而发生偏转,进而改变材料电荷分布,从而产生电势差。

3. 电信号传递:产生的电势差经过导电材料传递到电极上,将其转化为电流或电压信号。

4. 信号处理:电极连接到外部电路上,可以对产生的电信号进行放大、处理和分析,从而得到磁场的强度和方向信息。

磁电式传感器的特点包括灵敏度高、响应速度快、频率范围广、温度稳定性好等。

它广泛应用于工业、军事、医疗、航天等领域,用于测量磁场、磁力、位移、速度、加速度等物理量。

总结起来,磁电式传感器是利用磁电材料的磁电效应将磁场转化为电信号的传感器。

它的工作原理是基于磁电效应,在磁场作用下,磁电材料上会产生电势差,进而产生电信号。

这种传感器具有灵敏度高、响应速度快等优点,被广泛应用于各个领域。

磁电式传感器

磁电式传感器

洛伦兹力FB为
FB evB
v —半导体电子运动的速度;
e —电子的电荷量。
霍尔电场产生的电场力FH为
FH
eE H
eU H w
电流密度 j n,env 是单位体积中的载流子数。则流经 载流体的电流
I jwd nevwd
将电子速度 v 代I 入式(7-20), 则霍IB ned
由上可见:当传感器的结构确定后,B.S、W、 均l为定值,
因此,感应电势e与相对速度 (或 v)成正比。
根据上述基本原理,磁电式传感器可分为两种基本 类型 : 变磁通式;恒定磁通式。
1. 变磁通式
永久磁铁与线圈均不动, 感应电势是由变化的磁通产生的。 如图7-1所示的转速传感器。
●结构特点:
永久磁铁、线圈和外壳均固定不 动,齿轮安装在被测旋转体轴上。当 齿轮转动时,齿轮与软铁磁轭之间的 气隙距离随之变化,从而导致气隙磁 阻和穿过气隙的主磁通发生变化。
一、工作原理:
根据电磁感应定律, 线圈两端的感应电势e正比于 匝链线圈的磁通的变化率, 即
e W d
dt
Φ—匝链线圈的磁通;W—线圈匝数。
★若线圈在恒定磁场中作直线运动并切割磁力线 时, 则线圈两端产生的感应电势e为
e WBl dx sin WBlvsin
dt
B—磁场的磁感应强度;x—线圈与磁场相对运动的位移; v—线圈与磁场相对 运动的速度;θ—线圈运动方向与磁场方向之间的夹角; W—线圈的有效匝 数; l—每匝线圈的平均长度。
霍尔转速表的其他安装方法 霍尔元件
磁铁
只要黑色金属旋转体的表面存在缺口或突 起, 就可产生磁场强度的脉动, 从而引起霍 尔电势的变化, 产生转速信号。
霍尔式无触点汽车电子点火装置
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无解。
1.05 1 0.95
xt/x0
f/f0
21
解续:0.95
第 七 章 磁 电 式 传 感 器
(
2 ) 0
2 2
2 ( ) 2( ) 1 0 0
0.91 2 0
0
2
xt 当>> 0时, 1 x0
<0.707,会出现共振峰。
20
解续:
第 七 章 磁 电 式 传 感 器
1.05
2 ( ) 0
2 ( ) 2( ) 1 0 0
2 2
2 4 2 4 1 2 1.1025 1.5876 0 0 0 0
30
直接式振动传感器
第 七 章 磁 电 式 传 感 器
用途:用来测量振动 系统中两部件之间的相 对振动速度。
连接方式:壳体固定于一 部件上,线圈与顶杆相对固 定,而顶杆与另一部件相接 触,依靠弹簧片回复原位。 当两部件相对运动时,使线 圈与磁钢产生相对运动,产 生相应的电动势。 1—顶杆 2—弹簧片 3—磁钢 4—线圈 5—引出线 6—壳体
26
动圈式
第 七 章 磁 电 式 传 感 器
N
永久磁铁 S 弹簧
线圈
27
动圈式演示
第 七 章 磁 电 式 传 感 器
28
动圈式振动传感器结构
第 七 章 磁 电 式 传 感 器
引线 线圈 壳体 芯轴 磁钢
阻尼杯
弹簧片
29
动圈式传感器结构:
第 七 章 磁 电 式 传 感 器
1—弹簧 ; 2—壳体; 3—阻 尼环; 4—磁钢;5—线圈; 6—芯轴 在测振时,传感器固定 或紧压于被测物体,磁 钢4与壳体2一起随被测 系统的振动而振动。 装在芯轴6上的线圈5和 阻尼环3组成惯性系统的 质量块并在磁场中运动。
l
36
永久磁铁的尺寸
第 七 章
磁路工作点的正切角为:
Bm t an Hm Hm kl H lm
磁 电 式 t an k B S lm , l kl S m t an m 传 kl H S m k S 0 感 器 在确定好磁铁的截面积后,可以确定磁铁
第 七 章 磁 电 式 传 感 器
17
第 七 章 磁 电 2.0 式 传 感 1.0 器
0.1 0 0.1 1.0 4.0
18
0.5 5 =10 2 0.7
0.2
测振动 测力传感器
讨 论
第 七 章 磁 电 式 传 感 器
当>> 0( >3 0 )时,xt/x01 xt x0,m近似看作静止不动 φ=-1800 关于工作频段: 阻尼比的影响: 增大 (0.7左右),可 以减小共振峰,改善低频响应。 固有频率 0的影响:降低 0 ,扩大低频 段。 理想情况,当 >> 0 线圈中的感应电势: e=WBlv 灵敏度:s=WBl


m
m
m
0
m
m
m
m
38
工作气隙设计
第 七 章 磁 电 式 传 感 器
1)保证线圈窗口面积容纳足够的线圈匝数; 2)保证均匀而较强的气隙磁场; 3)气隙深度lg大于4倍的气隙宽度δ。
B lg δ
39
三、线圈组件(骨架、线圈绕组)设计
保证线圈在气隙中活动自如,有:
第 七 章 磁 电 式 传 感 器
t h
ht
D3 D2 h 2
线圈
D 2 D1 t 2
L
L 1.3(lg lp )
骨架
lg:气隙深度; lp:振动位移的峰峰值。
D1 D2 D3
40
线圈组件(骨架、线圈绕组)设计
第 七 章 磁 电 式 传 感 器
Lf1 绕组每层匝数: W0 dw
久磁铁用柔软的弹簧支撑,又称惯性式。
动圈式:永久磁铁与传感器壳体固定,线圈 组件用柔软的弹簧支撑。 与动铁式相比,惯性质量小,增加阻尼 比。
直接式
壳体固定于惯性系统部件,其顶杆 与另一部件表面接触。
24
某型动铁式振动传感器结构
第 七 章 磁 电 式 传 感 器
25
实物:振动速度传感器

第 七 章 磁 电 式 传 感 器
2
第 七 章 磁 电 式 传 感 器
xm cD k 传递函数: ( D) 2 x0 m D cD k
xt xm x0 mD 即: ( D) 2 x0 x0 mD cD k
2
c 2 mk
0
2
k m
xt D ( D) 2 2 x0 D 20 D 0
k B S Bm Sm
的长度。
37
永久磁铁的尺寸
第 七 章 磁 电 式 传 感 器
k B S Bm Sm
k BS S B

m m

kH H l kH l H
l

m
m
l

m
m
磁铁的体积:
k kB S 1 V S l BH BH
2

l
当=0时: 当= 0时: 当>> 0时: xt xt 1 xt 0 1 x0 x0 2 x0
00
90
0
1800
14
第 七 章 磁 电 式 传 感 器
0
15
质量体受力(力传感器)
第 七 章 磁 电 式 传 感 器
16
基座受力(运动传感器)
7
第 七 章 磁 电 式 传 感 器
动圈式传感器用于振动测试
8
构成
永久磁铁:产生磁场 第 线圈:感生出电动势 七 章 弹簧:弹性恢复 阻尼器
磁 电 式 传 感 器 电磁阻尼:线圈金 属骨架在磁场中运 动,产生感应涡流, 而受到反方向的作 用力。 空气阻尼:
动态特性分析 —二阶系统表示
m x
22
实际输出特性
第 七 章 磁 电 式 传 感 器
输出电压
振动速度:
工作范围
实际特性
v A cos t
理想特性
vAvB
vC
振动速度
•速度太低(小于 vA) ,惯性力不足以克服摩擦力 •速度太高(大于 Vc ),惯性太大,超出弹簧弹性范围
23
二、结构特点
第 七 章 磁 电 式 传 感 器
动铁式:线圈组件与传感器壳体固定,永
33
二、磁路计算
第 七 章 磁 电 式 传 感 器
•矫顽力Hc: •剩余磁感应强度Br: Hc Br H B
•最大磁能积(BH) m:
34
永久磁铁的工作点
第 七 章 磁 电 式 传 感 器
磁导线
B
O’
A B D H 0
确定原则:使永久磁铁尽可能工作在最大磁能 积上,此时磁铁体积最小。
35
永久磁铁的尺寸
0
2
2 ( ) 2( ) 1 0 0
2
13
频率特性:
第 七 章 磁 电 式 传 感 器
xt x0
(
2 ) 0
2 2
2 ( ) 2( ) 1 0 0
2 ( ) 0 1 相位滞后: tg 2 1 ( ) 0
12
第 七 章
xt D ( D) 2 2 x0 D 20 D 0
2
若振动体作简谐振动,将D=j代入:
磁 xt 得: ( j ) 电 x 2 0 式 1 ( ) 2 j ( ) 0 0 传 振幅比: 感 2 器 ( )
xt x0
2 ( ) 0
电 式 传 感 器
d xm d m 2 c ( xm x0 ) k ( xm x0 ) dt dt
则: (mD cD k ) xm (cD k ) x0
2
11
d xm dxt m c k xt 2 dt dt
2
2
d 令D dt
则: (mD cD k ) xm (cD k ) x0
由工作点D(B、H)值计算磁铁尺寸:
第 七 章 磁 电 式 传 感 器
由磁通连续性定理:
δ N
Bm Sm k B S
k : 漏磁系数; ( 1)

m G GLou G k G G
磁路基尔霍夫第一定律:
S
H mlm kl H
k 1.2 : 修正系数
磁 电 式 传 感 器
d e W dt
2
线圈在恒定磁场中作直线运动,并切割磁力线,感 生电势为:
第 七 章
dx e WBl sin WBlv sin dt
B:磁场磁感应强度;l:每匝线圈的有效长度 θ:运动方向与磁场方向之间的夹角;
磁 v:线圈与磁场之间的相对运动速度,m/s 电 式 线圈相对磁场作旋转运动并切割磁力线,感生电 传 势为: d e WBS sin WBS sin 感 dt 器 S:每匝线圈的围成的面积
θ:线圈平面法线方向与磁场方向之间的夹角;
ω:线圈与磁场之间的相对运动角速度
3
两种基本类型
恒定磁通式:
第 七 章 磁 电 式 传 感 器
工作气隙中磁通不变,线圈中的感应电势由线 圈相对永久磁铁运动并切割磁力线产生。
变磁通式:
磁铁、线圈均不动,感应电势由变化的磁通产 生,如图示转速测量: 1一永久磁铁 2一软磁铁 3一感应线圈 4一测量齿轮
相关文档
最新文档