人教版七年级上册数学期末试卷及答案
2024年最新人教版初一数学(上册)期末试卷及答案(各版本)
2024年最新人教版初一数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列哪一个数是有理数()A. √2B. √3C. √5D. √94. 下列哪一个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 平行四边形5. 下列哪一个数是无理数()A. 0.333B. 0.666C. 0.121212D. 0.1010010001二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。
()2. 任何两个无理数的积都是无理数。
()3. 任何两个实数的和都是实数。
()4. 任何两个实数的积都是实数。
()5. 任何两个实数的差都是实数。
()三、填空题5道(每题1分,共5分)1. 两个数的和为10,其中一个数为x,另一个数为______。
2. 两个数的积为15,其中一个数为x,另一个数为______。
3. 两个数的差为8,其中一个数为x,另一个数为______。
4. 两个数的商为3,其中一个数为x,另一个数为______。
5. 两个数的和为6,其中一个数为x,另一个数为______。
四、简答题5道(每题2分,共10分)1. 请简要解释有理数的概念。
2. 请简要解释无理数的概念。
3. 请简要解释实数的概念。
4. 请简要解释平行四边形的性质。
5. 请简要解释矩形的性质。
五、应用题:5道(每题2分,共10分)1. 已知一个数为x,它的相反数为3,求x的值。
2. 已知一个数为x,它的倒数为2,求x的值。
3. 已知一个数为x,它的平方为9,求x的值。
4. 已知一个数为x,它的立方为27,求x的值。
5. 已知一个数为x,它的平方根为3,求x的值。
六、分析题:2道(每题5分,共10分)1. 请分析有理数和无理数的区别。
人教版七年级上册数学期末考试卷及答案解析
人教版七年级上册数学期末考试卷及答案解析一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是()A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为()A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是()A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解.【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.【解答】解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与己知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在()A.射线OA上B.射线OB上C.射线OD上D.射线OF上【考点】规律型:数字的变化类.【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)∵2016÷6=336,∴2016在射线OA上.故选A.【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣>﹣0.4.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣|=,|﹣0.4|=0.4,∵<0.4,∴﹣>﹣0.4.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.计算:=﹣.【考点】有理数的乘方.【分析】直接利用乘方的意义和计算方法计算得出答案即可.【解答】解:﹣(﹣)2=﹣.故答案为:﹣.【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.13.若∠α=34°36′,则∠α的余角为55°24′.【考点】余角和补角;度分秒的换算.【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°2 4′,故答案为:55°24′.【点评】此题主要考查了余角,关键是掌握余角定义.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=1.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|=0.【考点】实数与数轴.【专题】计算题.【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c<b<0<a,|a|<|b|<|c|,∴a+c<0、a﹣b>0、c+b<0,所以原式=﹣(a+c)+a﹣b+(c+b)=0.故答案为:0.【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1.【考点】代数式求值.【专题】计算题.【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.【解答】解:∵x+y=1,∴(x+y)2﹣x﹣y+1=(x+y)2﹣(x+y)+1=1﹣1+1=1.故答案为1.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为2.【考点】同解方程.【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.【解答】解:由2(2x﹣1)=3x+1,解得x=3,把x=3代入m=x﹣1,得m=3﹣1=2,故答案为:2.【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,则AM= 13或7cm.【考点】两点间的距离.【专题】计算题.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB 的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM=AC=13cm;②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC的中点,则AM=AC=7cm.故答案为:13或7.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:330×80%﹣x=10%x,解得:x=240,则这种商品每件的进价为240元.故答案为:240【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为2.5cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【考点】展开图折叠成几何体.【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5cm,故答案为:2.5.【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.【考点】有理数的混合运算.【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣××6=﹣1﹣1=﹣2.【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.解方程:(1)4﹣x=3(2﹣x);(2)﹣=1.【考点】解一元一次方程.【分析】去分母,去括号,移项,合并同类项,系数化一.【解答】解:(1)4﹣x=3(2﹣x),去括号,得4﹣x=6﹣3x,移项合并同类项2x=2,化系数为1,得x=1;(2),去分母,得3(x+1)﹣(2﹣3x)=6去括号,得3x+3﹣2+3x=6,移项合并同类项6x=5,化系数为1,得x=.【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x一次项与二次项系数为0求出a与b的值即可;(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;(2)原式=(a﹣b)2=42=16.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到直线OA的距离,线段PC的长是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段P C、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.【分析】(1)(2)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段O P的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH, CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图:(2)如图:(3)直线0A、PC的长.(4)PH<PC<OC.【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间)豪华(元/间)三人间160400双人间140300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?【考点】一元一次方程的应用.【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为.根据题意,得160x+300×=4020.解得:x=12.从而=7.答:该旅游团入住三人普通间12间、双人豪华间7间.(注:若用二元一次方程组解答,可参照给分)【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外)∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45°,∠COD 和∠AOB互余.【考点】余角和补角.【分析】(1)①根据同角的余角相等解答;②表示出∠AOD,再求出∠COD,然后整理即可得解;(2)根据(1)的求解思路解答即可.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA=8cmOB=4cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设CO的长是xcm,依题意有8﹣x=x+4+x,解得x=.故CO的长是cm;(3)①当0≤t<4时,依题意有2(8﹣2t)﹣(4+t)=4,解得t=1.6;当4≤t<6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8(不合题意舍去);当t≥6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8.故当t为1.6s或8s时,2OP﹣OQ=4;②[4+(8÷2)×1]÷(2﹣1)=[4+4]÷1=8(s),3×8=24(cm).答:点M行驶的总路程是24cm.【点评】本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.注意(3)①需要分类讨论.。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.-2的倒数是( )A .-2B .12- C .12 D .22.数据6950000用科学记数法表示为( ) A .469510⨯B .66.9510⨯C .669.510⨯D .70.69510⨯3.如图,点A 位于点O 的( )A .北偏西 65°方向上B .南偏西 65°方向上C .北偏西 35°方向上D .南偏西 35°方向上4.如果向北走50m ,记作+50m ,那么-10m 表示( ) A .向东走10mB .向西走10mC .向南走10mD .向北走10m5.下列运用等式性质进行的变形,其中不正确的为( ) A .如果a b =,那么a c b c +=+ B .如果a b =,那么1122a b -=- C .如果a b =,那么ac bc =D .如果a b =,那么a b c c= 6.如图所示的是三通管的立体图,则这个几何体的俯视图是( )A .B .C .D .7.下午2时30分,钟表中时针与分针的夹角为( ) A .90︒B .105︒C .120︒D .135︒8.已知方程()130mm x ++=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或169.某志愿者团队承担整理校园图书馆一批图书的任务,由一个人做要40h 完成,现计划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作.假设志愿者的工作效率相同,具体应先安排多少人工作?如果设安排x 人先做4h ,下列四个方程中正确的是( ). A .4(2)814040x x++= B .48(2)14040x x ++= C .48(2)14040x x -+= D .4814040x x += 10.如图是一个正方体的平面展开图,若将展开图折叠成正方体后,相对面上所标的两个数相等,则a 的值为( )A .2B .5-C .1D .1-二、填空题11.一只蚂蚁由数轴上表示2-的点先向右爬3个单位长度,再向左爬5个单位长度,则此蚂蚁所在的位置表示的数是________. 12.7--=__________. 13.单项式2335π-x y 的系数是__________. 14.已知∠A=67°,则∠A 的余角等于______度.15.用四舍五入法将3.1416精确到0.01后,得到的近似数是____________ 16.已知2|1|(2)0a b -++=,则2011)a b (+的值是___________. 17.若关于x 的方程2x+a=6的解是x=1,则a 的值等于__________. 18.13.26°=_____°_____′_______″19.若2x 3yn 与﹣5xmy 2的和是单项式,则m+n=________.20.一组按规律排列的式子:25811234,,,,(0)b b b b ab a a a a--≠,其中第7个式子是_______,第n 个式子是_______(n 为正整数). 三、解答题 21.计算(1)713620-+-+(2)22323(2)-⨯+⨯-(3)232(21)x x x ---+(4)180483940︒︒'''-22.解方程 (1)5x+12=2x ﹣9 (2)211236x x +--=23.化简求值:22223y x (2x y)(x 3y )-+--+,其中1,2x y ==.24.如图,已知点 A ,B ,C 不在同一条直线上,根据要求画图.(1)作直线 AB . (2)作射线 CA .(3)作线段 BC ,并延长 BC 到 D ,使 CD =CB .25.一个角的补角比它的余角的5倍少10︒,求这个角的度数.26.如图.OE 平分BOC ∠,OD 平分AOC ∠,20,40BOE AOD ∠=︒∠=︒,求DOE ∠的度数.27.如图,点C 在线段AB 上,AC =8cm ,CB =6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长.(2)若C 为线段AB 上任一点,如果AB=14cm ,求MN 的长.28.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?29.从数轴上看:|a|表示数 a 的点到原点之间的距离,类似地|3|a -表示数 a 的点到表示数3的点之间的距离,|7||(7)|a a +=--表示数 a 的点到表示数–7的点之间的距离.一般地||-a b 表示数 a 的点到表示数 b 的点之间的距离.(1)在数轴上,若表示数x 的点与表示数–2 的点之间的距离为 3 个单位长度,则 x =_______. (2)利用数轴,求方程|5||4|9x x ++-=的所有整数解.参考答案1.B【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12, 故选:B . 2.B【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:6950000=6.95×106, 故选:B .【点睛】题目主要考查科学记数法的变换方法,熟练掌握科学记数法的变换方法是解题关键. 3.A【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断. 【详解】解:点A 位于点O 的北偏西65°的方向上. 故选:A .【点睛】本题考查了方位角的定义,正确确定基准点是关键. 4.C【分析】根据正负数的意义判断即可. 【详解】解:∠向北走50m, 记作+50m , ∠向北走为正,则向南走为负, ∠-10m 表示向南走10m , 故选C .【点睛】此题考查的是正负数的意义,掌握正负数表示具有相反意义的量是解决此题的关键. 5.D【分析】由等式的基本性质直接判断各选项的正误,进而可得到答案.【详解】解:由等式的基本性质1:等式左右两边同时加上同一个数或式子,等式不变; 可得选项A 、B 正确,不符合题意.由等式的基本性质2:等式左右两边同时乘以或除以一个不为零的数或式子; 可知选项C 正确,不符合题意,选项D 错误,符合题意. 故选:D .【点睛】本题考查等式的基本性质,熟练掌握等式的基本性质是解题的关键. 6.A【详解】解:俯视图是从上往下看得到的视图,从上往下看是一个矩形,中间有一个与长边相切的圆. 故选A . 7.B【分析】根据钟表上12个数字,每相邻两个数字之间的夹角为30°,数出时针与分针之间的空格进行求解即可得.【详解】解:∠钟表上12个数字,每相邻两个数字之间的夹角为30°,下午2时30分时,时针的分针与时针之间有3.5个空格, ∠所成夹角为30°×3.5=105°, 故选:B .【点睛】题目主要考查钟面角的计算,熟练掌握钟面角的基础知识点是解题关键. 8.B【分析】直接利用一元一次方程的定义进而分析得出答案. 【详解】解:∠方程(+1)30+=mm x 是关于x 的一元一次方程,∠1m =,+10≠m , 解得:1m =. 故选:B .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 9.B【分析】由一个人做要40h 完成,即一个人一小时能完成全部工作的140,就是已知工作的速度.本题中存在的相等关系是:先安排的一部分人4h 的工作+增加2人后8h 的工作=全部工作.设安排x 人先做4h ,就可以列出方程. 【详解】解:设安排x 人先做4h ,根据题意可得:48(2)14040x x ++=故选:B.【点睛】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的140,这一个关系是解题的关键.10.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字相等,求出a.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“1-”是相对面,相对面上的两个数相等,1a∴=-,故选:D.【点睛】本题考查了正方体的表面展开图,熟知正方体的表面展开图中相对的面之间一定相隔一个正方形式解决问题的关键.11.-4【分析】数轴上点的移动规律是“左减右加”,所以此蚂蚁所在的位置表示的数是-2+3-5=-4.【详解】解:蚂蚁所在的位置为:-2+3-5=-4.故答案为:-4.【点睛】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.-7【分析】根据题干信息,利用负数的绝对值等于它的相反数进行分析解答.【详解】解:负数的绝对值等于它的相反数,-l-7|=-7.故答案为:-7.【点睛】本题考查绝对值的性质以及相反数的定义,熟练掌握绝对值的性质以及相反数的定义是解题的关键.13.3 5π-【分析】根据单项式中的数字因数叫做单项式的系数,即可得出答案.【详解】解:单项式2335π-x y 的系数是35π-,故答案为35π-. 【点睛】本题是对单项式系数的考查,熟练掌握单项式的系数知识是解决本题的关键,难度较小. 14.23【详解】∠∠A=67°, ∠∠A 的余角=90°﹣67°=23°, 故答案为23. 15.3.14【分析】近似数精确到哪一位,应当看末位数字实际在哪一位. 【详解】3.1416精确到0.01为3.14. 故答案为3.14.【点睛】本题考查了近似数和有效数字,解题的关键是熟练掌握近似数与有效数字的知识点. 16.1-【详解】试题解析:根据题意得,a -1=0,b+2=0, 解得a=1,b=-2,所以,(a+b )2011=(1-2)2011=-1. 17.4【分析】把x=1代入方程计算即可求出a 的值. 【详解】解:把x =1代入方程得: 2+a ﹣6=0, 解得:a =4, 故答案为:4. 18. 13 15 36【分析】根据角度制的转换规律,乘以60即可解题. 【详解】解:0.26︒⨯60=15.6′, 0.6′⨯60=36″, ∠13.26°= 13°15′36″. 故答案为:13、15、3619.5【详解】解:根据题意:和是单项式,可知它们是同类项,因此根据同类项的概念,可得m=3,n=2,代入m+n=5. 故答案为5.20. 207b a - 31(1)n n n b a-- 【分析】根据分子的变化得出分子变化的规律,根据分母的变化得出分母变化的规律,根据分数符号的变化规律得出分数符号的变化规律,即可得到该组式子的变化规律. 【详解】分子为b ,指数为2,5,8,11,..., ∴分子指数的规律为3n – 1,分母为a ,指数为1,2,3,4,..., ∴分母指数的规律为n ,分数符号为-,+,-,+,…., ∴其规律为()1n-,于是,第7个式子为207b a-,第n 个式子为31(1)n nnb a--, 故答案为:207b a-,31(1)n n nb a --. 21.(1)20 (2)6-(3)253x x -+- (4)1312020'''︒【分析】(1)按照有理数的混合运算法则计算即可; (2)按照有理数的混合运算法则计算即可; (3)按照整式的加减运算法则计算即可; (4)按照角度的运算法则计算即可. (1)解:原式=6620-+ =20, (2)解:原式=9234-⨯+⨯ =1812-+ =6-, (3)解:原式=23221x x x --+- =253x x -+-, (4)解:原式=1795960483940''''''︒-︒ =1312020'''︒. 22.(1)x=-7 (2)x=3【分析】(1)根据移项合并同类项,系数化为1,求出方程的解;(2)根据去分母,去括号,移项合并同类项,系数化为1,求出方程的解. (1)解:5x+12=2x -9, 移项得5x -2x=-9-12, 合并同类项,得3x=-21, 系数化为1,得x=-7; (2) 解:211236x x +--= 去分母,得2(2x+1)-(x -1)=12, 去括号,得4x+2-x+1=12, 移项合并同类项,得3x=9, 系数化为1,得x=3. 23.222x x y -+-;-2【分析】根据整式的加减混合运算法则计算将原式化简,再代值计算即可.【详解】解:原式2222323y x x y x y =-+---222x x y =-+-.当1x =,2y =时,原式221212=-⨯+⨯-2=-.24.(1)见解析(2)见解析(3)见解析【分析】(1)连接AB 并双向延长即可;(2)连接CA 并延长即可得;(3)连接BC 并延长,使用刻度尺测得CD=CB ,即可确定点D 的位置.(1)如图所示:直线AB 即为所作;(2)如图所示:射线CA 即为所作;(3)如图所示:线段BC=CD 即为所作.【点睛】题目主要考查了作直线、射线和线段,熟练掌握这三个基本图形的性质及作法是解题关键.25.这个角的度数为65︒【分析】设这个角为x ︒,根据题意列方程求解即可.【详解】解:设这个角为x ︒,则余角为(90)x -︒,补角为(180)x -︒,由题意得:()18059010-=--x x ,解得:65x =.答:这个角的度数是65︒.【点睛】本题考查了一元一次方程的应用,以及余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角,根据题意列出方程是解题关键.26.60度【分析】根据角平分线定义求出∠COD和∠COE,代入∠DOE=∠COD+∠COE求出即可.【详解】解:∠OE平分∠BOC,∠BOE=20°,∠∠BOE=∠COE=20°,∠OD平分∠AOC,∠AOD=40°,∠∠COD=∠AOD=40°,∠∠DOE=∠COD+∠COE=40°+20°=60°.【点睛】本题考查角平分线的定义,解题关键是角平分线的定义的运用.27.(1)7cm(2)7cm【分析】(1)根据线段中点的性质,可得CM、CN的长,根据线段的和差,可得答案;(2)根据线段中点的性质及线段的和差,可得答案.(1)解:∠点M,N分别是AC,BC的中点,AC=8,CB=6,∠CM=12AC=12×8=4,CN=12BC=12×6=3,∠MN=CM+CN=4+3=7cm;(2)解:∠点M,N分别是AC,BC的中点,AC+CB=AB=14cm,∠CM=12AC,CN=12BC,∠MN=CM+CN=12AC +12BC =12(AC+BC)=7cm.【点睛】本题考查了两点间的距离及线段中点的性质,熟练掌握运用线段中点的性质进行计算是解题关键.28.生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.【分析】设生产螺栓的工人有x名,则生产螺母的工人有(28﹣x)名,根据题意等量关系:“螺栓数量×2=螺母数量”列出方程,求出方程的解即可得到结果.【详解】设生产螺栓的工人有x 名,则生产螺母的工人有(28﹣x )名,根据题意得: 12x×2=18(28﹣x )解得:x=12.当x=12时,28﹣x=16.答:生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.【点睛】本题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解答本题的关键.29.(1)1或-5(2)x=-5,-4,-3,-2,-1,0,1,2,3,4.【分析】(1)根据数轴表示数的方法分两种情况进行求解即可;(2)根据54x x ++-所表示的意义,结合数轴表示数的意义求解即可.(1)解:根据题意可得:()23x --=,∠x -(-2)=±3,x=(-2) ±3,解得:x 1=1,x 2=-5,故答案为:1或-5;(2)解:如图所示,设点C 在数轴上所表示的数为x ,当C 在线段AB (含端点A 、B )上时,()55x x CA +=--=,4x CB -=,∠CA+CB=AB=9,即x 是549x x ++-=的解,∠x是整数,∠x=-5,-4,-3,-2,-1,0,1,2,3,4.。
人教版数学七年级上册期末考试试卷含答案
人教版数学七年级上册期末考试试题一、选择题(每小题 3 分,共 30 分)1. a 、b ,在数轴上表示如图 1,下列判断正确的是()A. a + b > 0B .b + 1 > 0 C .- b - 1 < 0 D .a + 1 > 0 2. 如图 2,在下列说法中错误的是( )A. 射线OA 的方向是正西方向B. 射线OB 的方向是东北方向C. 射线OC 的方向是南偏东 60°D. 射线OD 的方向是南偏西 55°3. 下列运算正确的是( )A. 5x - 3x = 2B. 2a + 3b = 5abC. 2ab - ba = abD. - (a - b ) = b + a4. 如果有理数a , b 满足ab > 0 , a + b < 0 ,则下列说法正确的是()A. a > 0, b > 0B. a < 0, b > 0C. a < 0, b < 0D. a > 0, b < 05.若(1 - m ) 2+ | n + 2 |= 0 ,如m + n 的值为()A. -1B. - 3C.3D.不确定6.7. 平面内有三个点,过任意两点画一条直线,则可以画直线的条数是()A.2 条B.3 条C.4 条D.1 条或 3 条8.将长方形的纸ABCD 沿 AE 折叠,得到如图 3 所示的图形,已知∠CED ′=60.则∠AED 的是( ) A.60º B.50º C.75ºD.55º9.在正方体的表面上画有如图4 a 所示的粗线,图4 b 是其展开图的示意图,但只在A 面上有粗线,那么将图 4 a 中剩余两个面中的粗线画入图4 b 中,画法正确的是()若| a |> 0 ,那么() A. a > 0 B. a < 0 C. a ≠ 0D. a 为任意有理数10. 一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优4惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价 5收费。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
人教版七年级上册数学期末考试试卷及答案
人教版七年级上册数学期末考试试题一、单选题1.15-的倒数是( )A .﹣5B .5C .15- D .152.单项式2a 的系数是( )A .2B .2aC .1D .a 3.一元一次方程4x+1=0的解是( ) A .x 14=B .x 14=- C .x =4 D .x =﹣4 4.若一个角为45°,则它的补角的度数为( )A .55°B .45°C .135°D .125° 5.下列图形中,是圆锥的侧面展开图的是( )A .B .C .D .6.已知关于x 的方程3x 2a 2+=的解是a 1-,则a 的值是( ) A .1 B .35 C .15D .1-7.把2.36°用度、分、秒表示,正确的是( )A .2°18′36″B .2°21′36″C .2°30′60″D .2°3′6″8.将方程3x+6=2x ﹣8移项后,四位同学的结果分别是(1)3x+2x =6﹣8;(2)3x ﹣2x =﹣8+6;(3)3x ﹣2x =8﹣6;(4)3x ﹣2x =﹣6﹣8,其中正确的有( ) A .0个 B .1个 C .2个 D .3个9.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A.10cm B.8cm C.8cm或10cm D.2cm或4cm10.代数式2ax+5b的值会随x的取值不同而不同,下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=4的解是()A.12B.4C.-2D.0二、填空题11.计算:6﹣(3﹣5)=_____.12.一个多项式减去﹣x2+x﹣2得x2﹣1,则此多项式应为_______.13.如图,OA表示南偏东32°,OB表示北偏东57°,那么∠AOB=_____°.14.今年妈妈26岁,儿子2岁,_______年后,妈妈的年龄是儿子年龄的5倍.15.将一副三角板和一个直尺按如图所示的位置摆放,则1∠的度数为____________度.16.下列四个数中:∠0;∠12020-;∠5;∠﹣1.最小的数是_______.17.若关于x,y的单项式xm﹣1y2n与单项式13x2yn+1是同类项,则这两个单项式的和为_______.18.如图,在数轴上有A、B两个动点,O为坐标原点.点A、B从图中所示位置同时向数轴的负方向运动,A点运动速度为每秒1个单位长度,B点运动速度为每秒3个单位长度,当运动_____秒时,点O恰好为线段AB中点.三、解答题19.计算:6×(﹣14)﹣(﹣14)+(﹣1)2022.20.解方程:4x﹣3(20﹣x)=6x﹣7(9﹣x).21.如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.AB.再反向延长AC至点D,使得22.已知线段AB=2cm,延长AB至C,使BC=12AD=AC.(1)准确画出图形,并标出相应字母.(2)求出线段BD的长度.23.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?24.如图,直线ED上有一点O,∠AOC=∠BOD=90°,射线OP是∠AOD的平分线,(1)说明射线OP是∠COB的平分线;(2)写出图中与∠COD互为余角的角.25.老师写出一个整式(ax2+bx﹣1)﹣(4x2+3x)(其中a,b为常数),然后让同学们给a,b 赋予不同的数值进行化简.(1)甲同学给出了a=5,b=﹣1,请按照甲同学给出的数值化简整式;(2)乙同学给出了一组数据,最后化简的结果为2x2﹣3x﹣1,求a,b的值.26.已知关于x的方程2(x+1)﹣m=﹣22m的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.27.如图,将两个直角三角板的顶点叠放在一起进行探究.(1)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CE恰好是∠ACB的平分线,请你猜想此时CB是不是∠ECD的平分线,并简述理由;(2)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CB始终在∠DCE的内部,请猜想∠ACE与∠DCB是否相等,并简述理由;(3)如图∠,若将两个同样的三角板中60°锐角的顶点A叠放在一起,请你猜想∠DAB与∠CAE有何关系,并说明理由.参考答案1.A【分析】根据乘积为1的两个数互为倒数,求解即可.【详解】解:∠(15-)×(-5)=1,∠15-的倒数是-5.故选:A.【点睛】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2.A【详解】试题分析:对于一个单项式而言,它的系数是指字母前面的常数,本题中2a 的系数为2.考点:单项式的系数.3.B【分析】先移项,再把系数化为1,即可求解.【详解】解:4x+1=0,移项得:41x=-,解得:14x=-.故选:B【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的基本步骤是解题的关键.4.C【分析】根据补角的性质,即可求解.【详解】解:∠一个角为45°,︒-︒=︒.∠它的补角的度数为18045135故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.5.A【分析】根据圆锥的侧面展开图的特点作答.【详解】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.观察四个选项,只有A符合;故选A.【点睛】考查了几何体的展开图,解题关键是掌握圆锥的侧面展开图是扇形.6.A【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【详解】根据题意得:3(a-1)+2a=2,解得a=1故选A.【点睛】考查了方程解的定义,已知a-1是方程的解实际就是得到了一个关于a的方程.7.B【分析】根据大单位化小单位除以进率,可得答案.【详解】解:2.36°=2°+0.36×60′=2°21′+0.6×60″=2°21′36″,故选:B.【点睛】此题主要考查度、分、秒的转化运算,进行度、分、秒的转化运算,注意以60为进制.8.B【分析】根据移项要变号,进行判断即可.【详解】∠3x+2x=6﹣8没有变号,∠(1)错误;∠3x﹣2x=﹣8+6,6没有变号,∠(2)错误;∠3x﹣2x=8﹣6;-8没有移项,却变号,∠(3)错误;∠(4)3x﹣2x=﹣6﹣8,,∠(4)正确;故选B.【点睛】本题考查了移项,注意移项必须改变符号是解题的关键.9.C【分析】根据题意作图,由线段之间的关系即可求解.【详解】如图,∠点C是线段AB的中点,∠AC=BC=12AB=6cm当AD=23AC=4cm时,CD=AC-AD=2cm∠BD=BC+CD=6+2=8cm;当AD=13AC=2cm时,CD=AC-AD=4cm∠BD=BC+CD=6+4=10cm;故选C.【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.10.C【分析】根据表格中的数据确定出a与b的值,代入方程计算即可求出解.【详解】解:根据题意得:-2a+5b=0,5b=-4,解得:a=-2,b=4-5,代入方程得:-4x-4=4,解得:x=-2,故选:C.11.8【详解】【分析】先计算括号内的,然后再利用有理数的减法法则进行计算即可得出答案.【详解】6﹣(3﹣5)=6﹣(﹣2)=8,故答案为8.12.x-3 【分析】根据被减数=差+减数列式求解.【详解】解:由题意得x2﹣1+(﹣x2+x﹣2)= x2﹣1﹣x2+x﹣2=x ﹣3,故答案为:x-3.13.91【分析】根据方位角的定义求解即可.【详解】∠OA 表示南偏东32°,OB 表示北偏东57°, ∠∠AOB =(90°﹣32°)+(90°﹣57°)=58°+33°=91°, 故答案为91.【点睛】本题考查了方向角,熟练掌握方向角的意义是解答本题的关键.在观测物体时,地球南北方向与观测者观测物体视线的夹角叫做方向角.14.4【分析】设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意列出方程,即可求解. 【详解】解:设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意得:()2652x x +=+ ,解得:4x =答:4年后,妈妈的年龄是儿子年龄的5倍. 故答案为:415.75【分析】首先计算4∠的度数,再根据平行线的性质可得14∠=∠,进而可得答案. 【详解】解:∠260∠=︒,345∠=︒, ∠4180604575∠=︒-︒-︒=︒, ∠//a b , ∠1475∠=∠=︒, 故答案为:75.【点睛】此题主要考查了平行线的性质,掌握平行线的性质并能灵活应用是解题关键. 16.-1【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】解:1120202020-=,11-=, ∠112020<, ∠12020->-1, ∠-1<12020-<0<5, 故答案为:-1.【点睛】本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键. 17.2243x y 【分析】先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)求出,m n 的值,再计算合并同类项即可得.【详解】解:由题意得:12,21m n n -==+, 解得3,1m n ==,则这两个单项式的和为2222221433x y x y x y +=, 故答案为:2243x y . 【点睛】本题考查了同类项、合并同类项、一元一次方程的应用,熟记同类项的定义是解题关键.18.1【分析】设经过t 秒,点O 恰好是线段AB 的中点,因为点B 不能超过点O ,所以0<t <2,经过t 秒,点A ,B 表示的数为﹣2﹣t ,6﹣3t ,根据题意可知﹣2﹣t <0,6﹣3t >0,化简|﹣2﹣t|=|6﹣3t|,即可得出答案.【详解】解:设经过t 秒,点O 恰好为线段AB 中点.根据题意可得:经过t 秒,点A 表示的数为﹣2﹣t ,AO 的长度为|﹣2﹣t|,点B 表示的数为6﹣3t ,BO 的长度为|6﹣3t|.因为点B 不能超过点O ,所以0<t <2,则|﹣2﹣t|=|6﹣3t|. 因为﹣2﹣t <0,6﹣3t >0, 所以﹣(﹣2﹣t )=6﹣3t , 解得:t=1. 故答案为:1.【点睛】本题考查了绝对值的意义以及解一元一次方程,根据题意列出等式应用绝对值的意义化简是解答本题的关键.19.-69【详解】解:原式=(-14)×(6-1)+1 =-70+1 =-69.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.有时也可以根据运算律改变运算的顺序.20.x=12【分析】方程去括号,移项、合并同类项,把x 系数化为1,即可求出解.【详解】解:去括号得:4x−60+3x =6x−63+7x , 移项,得4x +3x−6x−7x =60−63, 合并同类项,得:−6x =−3, 系数化为1,得x=12.【点睛】本题考查解一元一次方程.解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,注意移项要变号.21.130°.【分析】根据角平分线的定义可知,∠AOC=2∠AOD ,∠BOC=2∠BOE ,根据角的和差可知,∠AOB=∠AOC+∠BOC ,计算得出∠AOB 的度数.【详解】因为OD 、OE 分别是∠AOC 和∠BOC 的平分线,∠AOD =40°,∠BOE =25°, 所以∠AOC=2∠AOD=40°×2=80°,∠BOC=2∠BOE=25°×2=50°, 因为∠AOB=∠AOC+∠BOC , 所以∠AOB=80°+50°=130°.22.(1)见解析;(2)5cm 【分析】(1)根据题意,做出图形,并且标出相应字母即可; (2)先计算出BC 的长度,然后求出AD 的长度,用AD+AB 可求得BD 的长度. 【详解】解:(1)如图:;(2)∠12BC AB = ∠1BC cm =∠213AC AB BC cm =+=+=∠AD =AC∠3AD cm =∠BD AB AD =+∠()235BD cm =+=【点睛】关于线段的延长,要注意分清方向,关于线段的长度的计算,搞清楚是哪些线段的和差即可进行计算23.(1)这个小组男生百米测试的达标率是62.5%;(2)这个小组8名男生的平均成绩是13.9秒.【分析】(1)根据非正数是达标数,解得达标数,再将达标数除以总人数即可解题;(2)计算数据的总和,再除以8即可解题.【详解】解:(1)达标人数为5,达标率为58×100%=62.5%. 答:这个小组男生百米测试的达标率是62.5%;(2) 1.20.7010.30.20.30.58-++--+++=﹣0.1(秒), 14﹣0.1=13.9(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】本题考查正数、负数的实际应用,掌握非正数是达标数是解题关键. 24.(1)见解析;(2)∠BOC 和∠AOE .【分析】(1)根据题意可得∠COD =∠AOB ,根据角平分线的定义及角的和差关系可得∠POB =∠POC ,进而得出射线OP 是∠COB 的平分线;(2)根据互余的两角之和为90°求解即可.【详解】解:(1)∠∠AOC =∠BOD =90°,∠∠AOD ﹣∠AOC =∠AOD ﹣90°=∠AOD ﹣∠BOD ,∠∠COD =∠AOB ,∠射线OP 是∠AOD 的平分线;∠∠POA =∠POD ,∠∠POA ﹣∠AOB =∠POD ﹣∠COD ,∠∠POB =∠POC ,∠射线OP 是∠COB 的平分线;(2)∠∠COD =∠AOB ,∠AOC =∠BOD =90°,∠∠AOE =∠BOC ,∠∠COD+∠BOC =90°,∠图中与∠COD 互为余角的角有∠BOC 和∠AOE .【点睛】本题考查了余角和补角以及角平分线,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.25.(1)x 2-4x-1(2)6,0a b ==【分析】(1)先将原式化简,再将a =5,b =﹣1代入,即可求解;(2)先将原式化简,可得42,33a b -=-=-,即可求解.(1)解:原式=ax 2+bx-1-4x 2-3x=(a-4)x 2+(b-3)x-1,当a=5,b=-1时原式=x 2-4x-1(2)根据题意得:(a-4)x 2+(b-3)x-1=2x 2-3x-1得42,33a b -=-=-,解得:6,0a b == .【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.26.(1)x=3;(2)m=22.【分析】(1)按去括号、移项、合并同类项的步骤进行求解即可;(2)根据(1)中求得的x 的值,由题意可得关于x 的方程2(x+1)﹣m=﹣m 22-的解,然后代入可得关于m 的方程,通过解该方程求得m 值即可.【详解】(1)5(x ﹣1)﹣1=4(x ﹣1)+1,5x ﹣5﹣1=4x ﹣4+1,5x ﹣4x=﹣4+1+1+5,x=3;(2)由题意得:方程2(x+1)﹣m=﹣m22-的解为x=3+2=5,把x=5代入方程2(x+1)﹣m=﹣m22-,得:2×(5+1)﹣m=﹣m22-,12﹣m=﹣m22-,解得:m=22.【点睛】本题考查了一元一次方程的解、解一元一次方程.熟练掌握解解一元一次方程的一般步骤是解题的关键.27.(1)CB是∠ECD的平分线,理由见解析(2)∠ACE=∠DCB,理由见解析(3)∠DAB+∠EAC=120°,理由见解析【分析】(1)根据角平分线的定义求得∠ECB=45°,进而求得∠BCD=45°,证得∠ECB=∠DCB即可解答;(2)根据等角的余角相等解答即可;(3)根据角的运算求解即可.(1)解:CB是∠ECD的平分线.理由:∠∠ACB=90°,CE恰好是∠ACB的平分线,∠∠ECB=45°,∠∠DCE=90°,∠∠DCB=90°-45°=45°,∠∠ECB=∠DCB,∠CB是∠ECD的平分线;(2)解:∠ACE=∠DCB.理由:∠∠ACB=∠DCB=90°,∠∠ACE+∠ECB=90°,∠DCB+∠ECB=90°,∠∠ACE=∠DCB;(3)解:∠DAB+∠EAC=120°.理由:∠∠BAE=∠CAD=60°,∠∠DAE+∠EAC=60°,∠EAC+∠CAB=60°,∠∠DAE+∠EAC+∠EAC+∠CAB=120°,∠∠DAE+∠EAC+∠CAB=∠DAB,∠∠DAB+∠CAE=120°.【点睛】本题考查三角板中角的运算、等角的余角相等、角平分线的定义,熟练掌握图形中的角的运算是解答的关键.。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.﹣3的相反数是()A .13-B .13C .3-D .32.单项式﹣2ab 2的系数是()A .﹣2B .2C .3D .43.下列各组单项式是同类项的是()A .4x 和4yB .xy 2和4xyC .4xy 2和﹣x 2yD .﹣4xy 2和y 2x4.下列图形通过折叠能围成一个三棱柱的是()A .B .C .D .5.若∠α与∠β互余,且∠α:∠β=3:2,那么∠α的度数是()A .54°B .36°C .72°D .60°6.下列等式变形正确的是()A .由7x =5得x =75B .由10.2x=得2x=10C .由2﹣x =1得x =1﹣2D .由3x﹣2=1得x ﹣6=37.下列比较大小,正确的是()A .﹣|﹣5|>0B .(﹣2)2<(﹣2)3C .﹣34>﹣45D .﹣1﹣(﹣2)<08.如图,几何体的左视图是()A .B .C .D .9.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为()A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+10.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒()A .2+7nB .8+7nC .4+7nD .7n+1二、填空题11.某县2018年元旦的最高气温为5℃,最低气温为﹣2℃,那么这天的最高气温比最低气温高_____℃.12.将数12000000科学记数法表示为_____.13.把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列为_____.14.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =_____.15.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测小岛A 在它北偏东63°49′8″的方向上,观测小岛B 在南偏东38°35′42″的方向上,则∠AOB 的度数是_____.16.与原点的距离为3个单位的点所表示的有理数是_____.三、解答题17.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+318.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.19.先化简,再求值:(1)(4a2﹣3a)﹣(2a2+a﹣1),其中a=4.(2)已知m、n互为倒数,求:﹣2(mn﹣3m2)﹣m2+5(mn﹣m2)的值.20.解方程:(1)2121136x x+--=;(2)1(35)2(5)2x x x--=+.21.如图,点A、O、B在一直线上,已知∠AOC=50°,OD是∠COB的平分的角平分线,求∠AOD的度数.22.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AB上,且EA=2cm,求BE的长.23.某地宽带上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.06元/分;第二种是包月制,72元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通讯费0.01元/分.(1)若小明家一个月上网的时间为x小时,用含x的代数式分别表示出两种收费方式下,小明家一个月应该支付的费用;(2)若小明估计自家一个月内上网的时间为25小时,你认为他家采用哪种方式较为合算?(3)小明的姑姑也准备给家里安装宽带,请为她选择一种合算的方式(直接写出方案即可)参考答案1.D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.A【分析】直接利用单项式的系数确定方法得出答案.【详解】单项式﹣2ab2的系数是:-2.故答案选:A.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式.3.D【解析】【分析】利用同类项的定义判定即可.【详解】解:A.4x和4y所含字母不同,不是同类项;B.xy2和4xy所含相同字母的指数不同,不是同类项;C.4xy2和﹣x2y所含相同字母的指数不同,不是同类项;D.﹣4xy2和y2x符合同类项的定义,故本选项正确.故选:D.【点睛】本题主要考查了同类项,解题的关键是熟记同类项的定义.4.C【解析】【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【详解】A、通过折叠能围成一个三棱锥,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.【点睛】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.5.A【解析】【分析】由∠α与∠β互余可得两角之和为90°,再由角度比例关系即可求解角度.【详解】解:设∠α,∠β的度数分别为3x°,2x°,则3x+2x=90,解得x=18.∴∠α=3x°=54°,故选A.【点睛】本题考查了余角的概念.6.D【分析】分别利用等式的基本性质判断得出即可.性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式【详解】解:A、等式的两边同时除以7,得到:x=57,故本选项错误;B、原方程可变形为1012x,故本选项错误;C、在等式的两边同时减去2,得到:-x=1-2,故本选项错误;D、在等式的两边同时乘以3,得到:x-6=3,故本选项正确;故选D.【点睛】此题主要考查了等式的基本性质,熟练掌握性质是解题关键.7.C【分析】先把各数化简,再根据有理数的大小比较方法比较即可.【详解】A.∵﹣|﹣5|=-5,∴﹣|﹣5|<0,故不正确;B.∵(﹣2)2=4,(﹣2)3=-8,∴(﹣2)2>(﹣2)3,故不正确;C.∵3445-<-,∴﹣34>﹣45,故正确;D.∵﹣1﹣(﹣2)=1,∴﹣1﹣(﹣2)>0,故不正确;故选C.【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.本题也考查了绝对值的意义、有理数的乘方、有理数的减法等知识点. 8.A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.9.C【分析】她家到游乐场的路程为xkm,根据时间=路程÷速度结合“若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟”,即可得出关于x的一元一次方程,此题得解.【详解】她家到游乐场的路程为xkm,根据题意得:x8x5 1060860+=-,故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,弄清题意,找准等量关系,正确列出一元一次方程是解题的关键.10.D【解析】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n+1根;故选D .点睛:本题是一道规律题.分析图形得出从第2个图形开始每增加一个八边形需要7根火柴是解题的关键.11.7【分析】用最高气温减去最低气温列式计算即可.【详解】由题意得5-(-2)=7℃.故答案为7.【点睛】本题考查了有理数减法的实际应用,根据题意正确列出算式是解答本题的关键.12.1.2×107【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数12000000科学记数法表示为1.2×107,故答案是:1.2×107,【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.13.﹣x 3+5x 2+4x ﹣3【分析】一个多项式按照某个字母的降幂排列,即按照这个字母的指数从高到底排列即可.【详解】根据题意,得把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列是﹣x 3+5x 2+4x ﹣3故答案为﹣x 3+5x 2+4x ﹣3.【点睛】本题考查多项式.14.23【详解】∵x +5=7-2(x -2)∴x=2.把x=2代入6x +3k =14得,12+3k =14,∴k=23.15.77°35′10〃【分析】根据已知条件结合补角的定义可直接确定∠AOB 的度数.【详解】∵OA 是表示北偏东6349'8︒''方向的一条射线,OB 是表示南偏东383542'︒''方向的一条射线,∴∠AOB=180°-6349'8︒''-383542'︒''=77°35′10〃,故答案是:77°35′10〃.【点睛】本题考查了余角和补角、方向角及其计算,基础性较强16.±3【分析】根据数轴上两点间距离的定义进行解答即可.【详解】设数轴上,到原点的距离等于3个单位长度的点所表示的有理数是x ,则x =3,±.解得:x=3故本题答案为:3±.【点睛】本题考查了数轴,解决本题的关键突破口是知道原点距离为3的长度有两个,不要遗漏.17.(1)10;(2)﹣1;(3)0;(4)2.【解析】【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.18.(1)①如图所示,射线AC即为所求,见解析;②如图所示,线段AB,BC,BD即为所求,见解析;③如图所示,线段CF即为所求,见解析;(2)根据两点之间,线段最短.【解析】【分析】(1)①连接AC并延长即可;②连接AB,BC,BD即可;③以点A为圆心,BD长为半径画弧交AC于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.19.(1)2a2﹣4a+1,17;(2)3mn,3.【分析】(1)先去括号合并同类项,再把a=4代入计算即可;(2)由m、n互为倒数,可知mn=1,然后把所给代数式去括号合并同类项后代入计算即可.【详解】解:(1)原式=4a2﹣3a﹣2a2﹣a+1=2a2﹣4a+1,当a=4时,原式=32﹣16+1=17;(2)根据题意得:mn=1,则原式=﹣2mn+6m2﹣m2+5mn﹣5m2=3mn=3.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.本题主要利用去括号合并同类项的知识,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变. 20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=3 2;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.∠AOD=115°.【分析】根据补角的定义可求出∠COB的度数,利用角平分线的定义求出∠COD=65°,进而利用角的加法可求出∠AOD的度数.【详解】解:∵∠AOC=50°,∴∠COB=180°﹣50°=130°,∵OD是∠COB的角平分线,∴∠COD=65°,∴∠AOD=50°+65°=115°.【点睛】本题考查了补角的定义,角平分线的定义及角的和差从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线..22.(1)6(2)12cm(3)16cm或20cm【分析】(1)线段的个数为n n-12(),n为点的个数.(2)由题意易推出CD的长度,再算出AC=4CD即可.(3)E点可在A点的两边讨论即可.【详解】(1)图中有四个点,线段有=6.故答案为6;(2)由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=18,解得CD=3,AC=4CD=4×3=12cm;(3)①当点E在线段AB上时,由线段的和差,得BE=AB﹣AE=18﹣2=16cm,②当点E在线段BA的延长线上,由线段的和差,得BE=AB+AE=18+2=20cm.综上所述:BE的长为16cm或20cm.【点睛】本题考查的知识点是射线、直线、线段,解题的关键是熟练的掌握射线、直线、线段. 23.(1)计时制:4.2x元;包月制:(72+0.6x)元;(2)小明家采用包月制合算;(3)见解析.【解析】【分析】(1)记时制费用=上网时间费用+上网通讯费,包月制费用=包月费用+上网通讯费,把相关数值代入即可求解;(2)把x=25代入(1)得到的式子,计算结果比较即可;(3)设小明的姑姑家一个月内上网m小时,让两种费用相等,列出方程求出费用相等的时间,然后根据题意回答即可.【详解】解:(1)采用计时制应付的费用为:0.06x×60+0.01x×60=4.2x元;采用包月制应付的费用为:72+0.01x×60=(72+0.6x)元.(2)当x=25时,4.2x=4.2×25=105,72+0.6x=72+0.6×25=87.∵105>87,∴小明家采用包月制合算.(3)设小明的姑姑家一个月内上网m小时,两种方式收费相同,根据题意得:4.2m=72+0.6m,解得:m=20.由(2)可知,上网时间为25小时,即多于20小时时,选择包月制较合算.综上所述:一个月内上网时间少于20小时时,选择计时制较合算;一个月内上网时间等于20小时时,两种方式一样合算;一个月内上网时间多于20小时时,选择包月制较合算.【点睛】本题考查列代数式及一元一次方程的应用,得到两种付费方式的代数式是解决本题的关键.。
2024年人教版七年级数学(上册)期末试题及答案(各版本)
专业课原理概述部分一、选择题(每题1分,共5分)1.下列哪个数是质数?A.21B.23C.25D.272.一个等腰三角形的底边长为8厘米,腰长为10厘米,那么这个三角形的周长是?A.16厘米B.26厘米C.36厘米D.28厘米3.下列哪个数是偶数?A.101B.102C.103D.1044.一个正方形的边长为5厘米,那么这个正方形的面积是?A.5平方厘米B.10平方厘米C.25平方厘米D.50平方厘米5.下列哪个数是奇数?A.121B.122C.123D.124二、判断题(每题1分,共5分)1.2是最大的质数。
()2.一个等边三角形的三个角都是60度。
()3.0是偶数。
()4.一个长方形的长和宽相等,那么这个长方形就是正方形。
()5.5的倍数都是奇数。
()三、填空题(每题1分,共5分)1.2的倍数都是____数。
2.一个等腰三角形的两个腰长相等,底边长为8厘米,腰长为10厘米,那么这个三角形的周长是____厘米。
3.5的倍数的个位数只能是____或____。
4.一个正方形的边长为6厘米,那么这个正方形的面积是____平方厘米。
5.下列哪个数是合数?____四、简答题(每题2分,共10分)1.请写出前5个质数。
2.请解释等边三角形的特点。
3.请解释偶数和奇数的区别。
4.请解释正方形的周长和面积的计算方法。
5.请写出5的倍数的前5个数。
五、应用题(每题2分,共10分)1.一个长方形的长是10厘米,宽是5厘米,请计算这个长方形的周长和面积。
2.一个等腰三角形的底边长为8厘米,腰长为10厘米,请计算这个三角形的周长和面积。
3.请找出20以内的所有质数。
4.请找出50以内的所有5的倍数。
5.请计算一个正方形的边长为7厘米时,它的周长和面积。
六、分析题(每题5分,共10分)1.请分析一个等边三角形和一个等腰三角形的不同点。
2.请分析一个长方形和一个正方形的不同点。
七、实践操作题(每题5分,共10分)1.请画出一个等腰三角形,并标出它的底边和腰。
人教版七年级上册数学期末考试试题及答案
人教版七年级上册数学期末考试试卷一、单选题1.12-的相反数是()A .2-B .2C .12-D .122.下列方程为一元一次方程的是()A .y +3=0B .x +2y =3C .x 2=2xD .12y y+=3.将3922亿用科学记数法表示为()A .8392210⨯B .93.92210⨯C .113.92210⨯D .123.92210⨯4.单项式xmy 3与4x 2yn 的和是单项式,则nm 的值是()A .3B .6C .8D .95.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A .两点之间,线段最短B .两点确定一条直线C .过一点,有无数条直线D .连接两点之间线段的长度叫做两点间的距离6.下列运算中,正确的是()A .-2-1=-1B .-2(x-3y )=-2x+3yC .3÷6×12=3÷3=1D .5x 2-2x 2=3x 27.某商品的标价为200元,8折销售仍赚60%,则商品进价为()元.A .140B .120C .160D .1008.一个角的补角是它的余角的三倍,则这个角为()A .45︒B .30°C .15︒D .60︒9.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是()A .B .C .D .10.已知方程216x y -+=,则整式3610x y --的值为A .5B .10C .12D .15二、填空题11.多项式3x 2y-7x 4y 2-xy 4的次数是______.12.计算77°53′26″+43°22′16″=_____.13.已知关于x 的方程(m+1)x |m |+2=0是一元一次方程,则m=______14.已知3a -4与-5互为相反数,则a 的值为______.15.|x-y|=y-x ,则x ___y .16.若2214x x -+=,则2247x x -+的值是______.17.如图,已知点C 为AB 上一点,AC =12cm ,CB =23AC ,D 、E 分别为AC 、AB 的中点;则DE 的长为_____cm .三、解答题18.计算:(1)(+15)+(-30)-(+14)-(-25)(2)-42+3×(-2)2×(13-1)÷(-113)19.解方程:2(x+8)=3(x-1)20.如图,平面上有A 、B 、C 、D 四个点,根据下列语句画图.(1)画直线AB ,作射线AD ,画线段BC ;(2)连接DC ,并将线段DC 延长至E ,使DE =2DC .21.先化简,再求值:(3a2b﹣ab2)﹣2(ab2﹣3a2b),其中a=13,b=﹣3.22.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?x x<的正方形拼成的图形.23.如图是由边长分别为4和3的长方形与边长为()3(1)用含有x的代数式表示图中阴影部分的面积并化简;(2)当2x=时,求这个阴影部分的面积.24.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?25.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.26.如图,点A,B,C在数轴上对应数为a,b,c.(1)化简|a﹣b|+|c﹣b|;(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P 以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.参考答案1.D【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.A 【分析】根据一元一次方程的定义,形如0ax b +=(0a ≠),含有一个未知数,且未知数的最高次数是一次的方程即为一元一次方程,逐项判断作答即可.【详解】A.y +3=0含有一个未知数,且未知数的最高次数是一次,是一元一次方程,故选项A 符合题意;B.x +2y =3含有两个未知数,不是一元一次方程,故选项B 与题意不符;C.x 2=2x 最高次数是二次,不是一元一次方程,故选项C 与题意不符;D.12y y+=不是整式方程,不是一元一次方程,故选项D 与题意不符.故选A .【点睛】本题主要考查了一元一次方程的定义,0ax b +=(0a ≠)的方程即为一元一次方程;含有一个未知数,且未知数的最高次数是一次,是判断是否是一元一次方程的依据.3.C 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:3922亿=392200000000=3.922×1011.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.D 【分析】同类项的定义:字母相同,并且相同字母的指数也相同的两个单项式叫同类项,据此求出m 、n ,代入求解即可.【详解】解:由两个单项式的和还是单项式可得xmy³与4x²yn 同类项∴m=2,n=3,∴nm=3²=9,故选:D .【点睛】本题考查代数式求值、同类项的定义、合并同类项,能得出两个单项式是同类项是解答的关键.5.B 【分析】依据直线基本事实两点确定一条直线来解答即可.【详解】在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据直线基本事实是两点确定一条直线.故选择:B .【点睛】本题考查了直线的性质,掌握直线的性质是解题的关键.6.D 【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【详解】A 、213--=-,故选项错误;B 、()2326x y x y --=-+,故选项错误;C 、11113632624÷⨯=⨯⨯=,故选项错误;D 、222523x x x -=,故选项正确.故选D .【点睛】本题考查有理数混合运算、合并同类项、去括号与添括号,解题的关键是明确它们各自的计算方法.7.D 【分析】设进价为x 元,根据售价=标价×打折数=进价×(1+利润率)列方程求解即可.【详解】解:设进价为x 元,则依题可得:200×0.8=(1+0.6)x ,解得:x=100,故选:D .【点睛】本题考查一元一次方程的应用,理解题意,熟知打折销售中的等量关系是解答的关键.8.A 【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列方程求出这个角的度数即可.【详解】设这个角是α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α),解得α=45°.故选:A .【点睛】本题考查了余角与补角,是基础题,熟记概念并列出方程是解题的关键.9.B 【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选:B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.10.A 【分析】根据题意求出x-2y ,利用添括号法则把原式变形,代入计算即可.【详解】解:∵x-2y+1=6,∴x-2y=5,∴3x-6y-10=3(x-2y)-10=3×5-10=5,故选A.【点睛】本题考查的是代数式求值,灵活运用整体思想是解题的关键.11.6次【分析】直接利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式3x2y-7x4y2-xy4次数最高的项为-7x4y2,次数是:6次.故答案为:6次.【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.12.121°15′42″【分析】把秒和秒相加,分和分相加,度和度相加,满60向上一位近1.【详解】解:77°53′26″+43°22′16″=(77°+43°)+(53′+22′)+(26″+16″)=120°+75′+42″=121°15′42″.故答案为121°15′42″.【点睛】本题考查了度分秒的加法,将度与度相加,分与分相加,秒与秒相加,满60向上一位近1.13.1【分析】直接利用一元一次方程的定义分析得出答案.【详解】∵关于x的方程(m+1)x|m|+2=0是一元一次方程,∴|m|=1,m+1≠0,解得:m=1.故答案为1.【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.14.3【分析】根据相反数的性质互为相反数的和为0列方程求解即可.【详解】解:由题意,得3a–4+(-5)=0,解得a=3,故答案为:3.【点睛】本题考查了一元一次方程,相反数的性质,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆,互为相反数的两个数的和为0是解题关键.15.≤【分析】利用绝对值的性质:|a|≥0,可以先去掉绝对值再进行判断大小.【详解】解:∵|x-y|=y-x ,∴y-x≥0,∴y≥x ,故答案为:≤.16.13【分析】根据已知等式得到223x x -=,再利用整体思想代入求值即可.【详解】∵2214x x -+=,∴223x x -=,∴2246x x -=,∴22476713x x -+=+=.故答案为:13.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题的关键.17.4【分析】根据AC =12cm ,CB =23AC ,求出CB 的长度,从而得到AB 的长度,根据D 、E 分别为AC 、AB 的中点,分别求出AD ,AE ,最后根据DE =AE−AD 即可求出DE 的长.【详解】解:∵AC =12cm ,CB =23AC ,∴CB =12×23=8(cm ),∴AB =AC +CB =12+8=20(cm ),∵D 、E 分别为AC 、AB 的中点,∴AD =12AC =12×12=6(cm ),AE =12AB =12×20=10(cm ),∴DE =AE−AD =10−6=4(cm ),故答案为:4.【点睛】本题考查了两点间的距离,线段中点的定义,解题的关键是:根据D 、E 分别为AC 、AB 的中点,求出AD ,AE 的长.18.(1)-4;(2)-10.【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】(1)解:原式=-15-14+25=-4(2)解:原式=-16+3×4×(-23)×(-34)=-16+12×12=-10.【点睛】此题主要考查有理数的混合运算,解题的关键是熟知其运算法则.19.(1)x=19;(2)x=38【分析】(1)根据去括号、移项、合并同类项、化系数为1的计算过程解答即可;(2)根据去分母、去括号、合并同类项、化系数为1的计算过程解答即可.【详解】(1)解:去括号,得:2x+16=3x-3,移项、合并同类项,得:-x=-19,化系数为1,得:x=19;(2)解:去分母,得:2(5x+1)-(2x-1)=6,去括号,得:10x+2-2x+1=6,移项、合并同类项,得:8x=3,化系数为1:x=3 8.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.20.(1)见解析;(2)见解析【分析】(1)根据直线,射线,线段的定义画出图形.(2)在DC的延长线上截取CE=CD即可.【详解】解:(1)如图,直线AB,射线AD,线段BC即为所求作.(2)如图,线段DE即为所求作.【点睛】本题考查作图-复杂作图,直线,射线,线段的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.9a2b-3ab2,-12【分析】先去括号,再合并同类项,最后将a=13,b=﹣3代入化简后的结果,即可求解.【详解】解:()()2222323a b ab ab a b ---2222326a b ab ab a b =--+2293a b ab =-当a =13,b =﹣3时,原式()()22119333391233⎛⎫=⨯⨯--⨯⨯-=--=- ⎪⎝⎭.【点睛】本题主要考查了整式的加减混合运算,熟练掌握整式的加减混合运算法则是解题的关键.22.应该分配8人生产螺钉.【详解】分析:根据每人每天平均生产600个螺钉或800个螺母,以及一个螺钉与两个螺母配套,进而得出等式求出即可.本题解析:设生产螺钉x 人,螺母(20-x )人,()800206002x x -=,x=8,答:应该分配8人生产螺钉.点睛:本题考查了一元一次方程的应用,属于基础题,解答本题关键是得出生产的螺母数是螺钉的2倍这一等量关系.23.(1)21122x x +;(2)3【分析】(1)根据阴影部分的面积等于长方形和正方形的面积和减去三个三角形的面积可列代数式;(2)将2x =代入计算可求解阴影部分的面积.【详解】解:阴影部分的面积为:()()22111123443222x x x x +--⨯+-⨯-2221311126622222x x x x x x =+----+=+;(2)当2x =时,阴影部分的面积为1142322⨯+⨯=,答:阴影部分的面积为3.【点睛】本题主要考查列代数式,代数式求值,列代数式求解阴影部分的面积是解题的关键.24.(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,列出方程,求解即可;(2)利用施工费用=每天的施工费用×施工时间,即可求出选择各方案所需施工费用,再比较后即可得出结论.【详解】解:(1)设乙队每天能完成绿化的面积是x平方米,则甲队每天能完成绿化的面积是(x+200)米,依题意得:x+x+200=800解得:x=300,x+200=500∴甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米.(2)选择方案①甲队单独完成所需费用=1200060014400500⨯=(元);选择方案②乙队单独完成所需费用=1200040016000300⨯=(元);选择方案③甲、乙两队全程合作完成所需费用=()1200040060015000800+⨯=(元);∴选择方案①完成施工费用最少.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)利用总费用=每天支出的费用×工作时间,分别求出选择各方案所需费用.25.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.26.(1)c﹣a;(2)a=﹣10,c=5,b=﹣5;(3)点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【分析】(1)根据数轴可得c>b>a,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)由题意得运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,然后根据P,Q两点间的距离为6,列出方程计算即可求解.【详解】解:(1)由数轴及题意得:∵c>b>a,∴原式=b﹣a+c﹣b=c﹣a;(2)原点位置如图:∵BC=10,∴c﹣b=10,又∵b+c=0,∴c=5,b=﹣5,又∵BC=10,AC=3AB,∴BC=2AB=10,∴AB=5,∴b﹣a=5,∴a=﹣10;(3)∵AC=15,最短运动时间15÷1=15秒,运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,若P,Q两点间的距离为6,则有()-+--=,t t1050.56解得t=6或t=14,均小于15秒,∴点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【点睛】本题主要考查数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用,熟练掌握数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用是解题的关键.。
新人教版七年级数学上册期末试卷及答案【完美版】
新人教版七年级数学上册期末试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.如果y=+ +3, 那么yx的算术平方根是()A. 2B. 3C. 9D. ±32.某种衬衫因换季打折出售, 如果按原价的六折出售, 那么每件赔本40元;按原价的九折出售, 那么每件盈利20元, 则这种衬衫的原价是()A. 160元B. 180元C. 200元D. 220元3. 按如图所示的运算程序,能使输出的结果为的是()A. B.C. D.4.若x, y的值均扩大为原来的3倍, 则下列分式的值保持不变的是()A. B. C. D.5.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如图, ∠1=70°, 直线a平移后得到直线b, 则∠2-∠3()A. 70°B. 180°C. 110°D. 80°7.如图, △ABC的面积为3, BD:DC=2:1, E是AC的中点, AD与BE相交于点P, 那么四边形PDCE的面积为()A. B. C. D.8.比较2, , 的大小, 正确的是()A. B.C. D.9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知(a+1)2+|b+5|=b+5, 且|2a-b-1|=1, 则ab=___________. 2.如图a是长方形纸带, ∠DEF=25°, 将纸带沿EF折叠成图b, 再沿BF折叠成图c, 则图c中的∠CFE的度数是__________°.3. 如图, 有两个正方形夹在AB与CD中, 且AB//CD,若∠FEC=10°, 两个正方形临边夹角为150°, 则∠1的度数为________度(正方形的每个内角为90°)4. 如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程, 那么m的取值是________.5. 如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=________.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:.2. 先化简, 再求值:(1)3x2-[7x-(4x-3)-2x2], 其中x=5(2) , 其中3. 如图1, 在平面直角坐标系中, A(a, 0)是x轴正半轴上一点, C是第四象限内一点, CB⊥y轴交y轴负半轴于B(0, b), 且|a﹣3|+(b+4)2=0, S四边形AOBC=16.(1)求点C的坐标.(2)如图2, 设D为线段OB上一动点, 当AD⊥AC时, ∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P, 求∠APD的度数;(点E在x轴的正半轴).(3)如图3, 当点D在线段OB上运动时, 作DM⊥AD交BC于M点, ∠BMD、∠DAO的平分线交于N点, 则点D在运动过程中, ∠N的大小是否会发生变化?若不变化, 求出其值;若变化, 请说明理由.4. 某住宅小区有一块草坪如图所示. 已知AB=3米, BC=4米, CD=12米, DA =13米, 且AB⊥BC, 求这块草坪的面积.5. “大美湿地, 水韵盐城”. 某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生, 要求每位同学选择且只能选择一个最想去的景点, 下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息, 解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图, 并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生, 请估计“最想去景点B“的学生人数.6. 重百江津商场销售AB两种商品, 售出1件A种商品和4件B种商品所得利润为600元, 售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完, 重百商场决定再次购进A、B两种商品共34件, 如果将这34件商品全部售完后所得利润不低于4000元, 那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.C3.C4.D5.C6.C7、B8、C9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、2或4.2.105°3、70.4.-15.316.2或-8三、解答题(本大题共6小题, 共72分)1.x=1.2.(1)5x2-3x-3, 原式=107;(2)-xy+2xy 2;原式=-4.3、(1) C(5, ﹣4);(2)90°;(3)略4.36平方米5、(1)40;(2)72;(3)280.6.(1)200元和100元(2)至少6件。
2024年最新人教版七年级数学(上册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/25. 下列哪个数是负数?A. 3B. 0C. 2D. 1/26. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零7. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.58. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/29. 下列哪个数是负数?A. 3B. 0C. 2D. 1/210. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零二、填空题(每题3分,共30分)1. 5的绝对值是______。
2. 2的绝对值是______。
3. 3/4的绝对值是______。
4. 0的绝对值是______。
5. 1/2的绝对值是______。
6. 1/2的绝对值是______。
7. 3的绝对值是______。
8. 3的绝对值是______。
9. 2/3的绝对值是______。
10. 0.25的绝对值是______。
三、解答题(每题10分,共50分)1. 计算:| 5 | | 3 | + | 2 | | 1 |2. 计算:| 4 | + | 6 | | 2 | + | 3 |3. 计算:| 7 | | 5 | + | 3 | | 2 |4. 计算:| 8 | + | 7 | | 4 | + | 3 |5. 计算:| 9 | | 6 | + | 5 | | 4 |四、应用题(每题10分,共30分)1. 小明有5个苹果,小红有3个苹果,小刚有2个苹果。
小明比小红多几个苹果?小红比小刚多几个苹果?2. 一辆汽车从A地开往B地,速度是每小时60公里。
人教版七年级上册数学期末考试试卷含答案
人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。
人教版七年级数学上册期末测试卷及答案【完整】
人教版七年级数学上册期末测试卷及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A .0B .1C .2D .37.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.6的相反数为( )A .-6B .6C .16-D .169.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程:3531 132x x-+ -=2.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.3.如图,四边形ABCD中,AD∥BC,点E在CD上,EA,EB分别平分∠DAB和∠CBA,设AD=x,BC=y且(x﹣3)2+|y﹣4|=0.求AB的长.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.小明同学在A、B两家超市发现他看中的随身听和书包的单价都相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求小明看中的随身听和书包单价各是多少元?(2)假日期间商家开展促销活动,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(购物满100元返购物券30元,购物满200元返购物券60元,以此类推;不足100元不返券,购物券可通用).小明只有400元钱,他能买到一只随身听和一个书包吗?若能,选择在哪一家购买更省钱.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、A6、B7、C8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、40°3、70.4、-405、2或2.56、±3三、解答题(本大题共6小题,共72分)x .1、32、±33、74、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)随身听和书包的单价分别是360元和92元;(2)略.。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.4的倒数是( )A .4-B .4C .14- D .142.单项式23x y -的系数是( )A .3-B .1C .2D .33.下列各式中结果为负数的是( )A .()3--B .3-C .()23-D .23-4.如图,这个几何体是由哪个图形绕虚线旋转一周形成的( )A .B .C .D .5.已知关于x 的方程290x a +-=的解是3x =,则a 的值为( )A .2B .3C .4D .56.下列计算正确的是( )A .277x x x +=B .532y y -=C .437x y xy +=D .22232x y x y x y -=7.将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( ) A . B .C .D .8.若()123m m x --=是关于x 的一元一次方程,则m 的值是( )A .2-B .1C .2D .2±9.如图,点A 在点O 的北偏西60°方向,射线OB 与射线OA 所成的角是108°,则射线OB 的方向是( )A .北偏西42°B .北偏西48°C .北偏东42°D .北偏东48° 10.有一项城市绿化整治任务交甲、乙两个工程队完成,已知甲单独做10天完成,乙单独做8天完成,若甲先做1天,然后甲、乙合作x 天后,共同完成任务,则可列方程为( )A .11108x x +-=B .11108x x ++= C .11108x x --= D .11108x x -+= 11.将图①中的正方形剪开得到图①,图①中共有4个正方形;将图①中一个正方形剪开得到图①,图①中共有7个正方形;将图①中一个正方形剪开得到图①,图①中共有10个正方形……如此下法,则第2022个图中共有正方形的个数为( )A .2022B .6062C .6063D .606412.如图,点O 为直线AB 上一点,COD ∠为直角,OE 平分AOC ∠,OF 平分COB ∠,OG 平分BOD ∠.下列结论:①45FOG =︒∠;①90AOE FOB ∠+∠=︒;①130EOG ∠=︒;①90AOC BOD ∠-∠=︒.正确的有( )A .4个B .3个C .2个D .1个二、填空题13.数轴上表示2-和3+两个点之间的距离是______.14.300000-用科学记数法表示为______.15.若一个角是25°38′,则它的余角为______.16.若x 的相反数是3,y 的绝对值是7,则x y +的值为______.17.如图,点B 、C 在线段AD 上,CD=5,BD=9,B 是AC 的中点,则AC 的长为______.18.已知x+2y ﹣5=0,则代数式2x+4y ﹣7的值是_____.19.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“民”字一面的相对面上的字是_______.三、解答题20.解方程:127x -﹣1=33+x .21.已知213a b x y -与23x y -是同类项.(1)请直接写出:a =______,b =______;(2)在(1)的条件下,求()()2222523425a b ab b a+--+的值.22.直线AB ,CD 交于点O ,将一个三角板的直角顶点放置于点O 处,使其两条直角边OE ,OF ,分别位于OC 的两侧.若OC 平分①BOF ,OE 平分①COB .(1)求①BOE的度数;(2)写出图中①BOE的补角,并说明理由.23.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.24.用尺规作图按下列语句画图:(1)画射线BC,连接AC,AB;(2)反向延长线段AB至点D,使得DA=AB.25.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?26.如图,OD平分①BOC,OE平分①AOC.若①BOC=70°,①AOC=50°.(1)求出①AOB及其补角的度数;(2)请求出①DOC和①AOE的度数,并判断①DOE与①AOB是否互补,并说明理由.参考答案1.D2.A3.D4.A5.B6.D7.C8.A9.D10.B11.D12.B13.5.【分析】数轴上两点之间的距离,即数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.【详解】解:数轴上表示-2和+3的两个点之间的距离是3-(-2)=5.故答案是:5.【点睛】本题考查了数轴的定义.解答该题时,也可以利用借助数轴用几何方法求两点之间的距离.14.-3×105【分析】根据科学记数法的定义计算求值即可;-= -3×105,【详解】解:300000故答案为:-3×105【点睛】本题考查了科学记数法:把一个绝对值大于1的数表示成a×10n的形式(a大于或等于1且小于10,n是正整数);n的值为小数点向左移动的位数.15.64°22′【分析】根据余角的定义可知这个角的余角=90°-25°38′,然后将90°化为89°60′计算即可.【详解】解:它的余角=90°-25°38′=89°60′-25°38′=64°22′.故答案为:64°22′.【点睛】本题主要考查的是度分秒的换算、余角的定义,将90°转化为89°60′是解题的关键.16.4或10-或4-##10【分析】根据相反数的定义和绝对值的性质,先求出x、y的值,再代值求解.【详解】解:由题意,得:x=-3,y=±7;当x=-3,y=7时,x+y=-3+7=4;当x=-3,y=-7时,x+y=-3-7=-10.故答案为:4或10-.【点睛】此题主要考查绝对值的性质以及相反数的定义.有理数的加法运算,代数式的值,需注意的是互为相反数的两个数绝对值相等,不要漏解.17.8【分析】根据线段中点的定义和线段的和差即可得到结论.【详解】解:①CD=5,BD=9,①BC=BD-CD=4,①B是AC的中点,①AB=BC=4,①AC=AB+BC=8,故答案为:8.【点睛】本题考查了两点间的距离,熟练掌握线段中点的定义是解题的关键.18.3.【分析】直接利用已知得出x+2y=5,再将原式变形进而得出答案.【详解】①x+2y﹣5=0,①x+2y=5,①2x+4y﹣7=2(x+2y)﹣7=10﹣7=3.故答案为:3.19.化【详解】选择“民”这一面作为底面将正方体还原可得:“弘”与“族”是相对面,“扬”与“文”是相对面,“民”与“化”是相对面,故答案为:化.【点睛】本题考查了根据正方体表面展开图判断相对面的字,熟练掌握正方体表面展开图的特点是解题的关键,需要一定空间想象能力.20.原方程的解是x=﹣3.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x ﹣7x =21﹣3+21,合并,得﹣13x =39,系数化1,得x =﹣3,则原方程的解是x =﹣3.21.(1)1,−2(2)32【分析】(1)两个单项式为同类项,则字母相同,对应字母的指数也相同,据此可求得a 、b 的值;(2)先去括号再合并同类项,最后代入求值.(1)解:①213a b x y -与23x y -是同类项,①2a=2,1−b=3,①a=1,b=−2;故答案为:1,−2;(2)解:()()2222523425a b ab b a +--+=5a 2+6b 2-8ab-2b 2-5a 2=4b 2-8ab ,当a=1,b=−2时,原式=4×(−2) 2-8×1×(−2)=16-(-16)=32.【点睛】本题考查整式的化简求值,同类项,解题的关键是掌握同类项的定义,整式的加减运算法则.22.(1)30°;(2)①BOE 的补角有①AOE 和①DOE .【分析】(1)根据OC 平分①BOF ,OE 平分①COB .可得①BOE =①EOC =12①BOC ,①BOC =①COF ,进而得出,①EOF =3①BOE =90°,求出①BOE ;(2)根据平角和互补的意义,通过图形中可得①BOE+①AOE =180°,再根据等量代换得出①BOE+①DOE =180°,进而得出①BOE 的补角.【详解】解:(1)①OC 平分①BOF ,OE 平分①COB .①①BOE =①EOC =12①BOC ,①BOC =①COF , ①①COF =2①BOE ,①①EOF =3①BOE =90°,①①BOE =30°,(2)①①BOE+①AOE =180°①①BOE 的补角为①AOE ;①①EOC+①DOE =180°,①BOE =①EOC ,①①BOE+①DOE=180°,①①BOE的补角为①DOE;答:①BOE的补角有①AOE和①DOE;【点睛】考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.23.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)①点C为原点,BC=1,①B所对应的数为﹣1,①AB=2BC,①AB=2,①点A所对应的数为﹣3,①m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)①点B为原点,AC=6,AB=2BC,AB+BC=AC,①AB=4,BC=2,①点A所对应的数为﹣4,点C所对应的数为2,①m=﹣4+2+0=﹣2;(3)①原点O到点C的距离为8,①点C所对应的数为±8,①OC=AB,①AB=8,当点C对应的数为8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为4,点A所对应的数为﹣4,①m=4﹣4+8=8;当点C所对应的数为﹣8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为﹣12,点A所对应的数为﹣20,①m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.24.(1)见详解;(2)见详解.【分析】(1)根据尺规作图过程画射线BC,连接AC,AB即可;(2)根据尺规作图过程反向延长线段AB至点D,使得DA=AB即可.【详解】解:如图所示:(1)(1)射线BC,连接AC,AB即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.25.(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.26.(1)120°,60°;(2)①DOE与①AOB互补,理由见解析.【分析】(1)①AOB的度数等于已知两角的和,再根据补角的定义求解;(2)根据角平分线把角分成两个相等的角,求出度数后即可判断.【详解】解:(1)①AOB=①BOC+①AOC=70°+50°=120°,其补角为180°-①AOB=180°-120°=60°.(2)①DOC=①BOC=×70°=35°,①AOE=①AOC=×50°=25°.①DOE与①AOB互补.理由如下:①①DOC=35°,①AOE=25°,①①DOE=①DOC+①COE =①DOC+①AOE=60°.①①DOE+①AOB=60°+120°=180°,①①DOE与①AOB互补.11。
人教版七年级数学上册期末测试卷含答案
人教版七年级数学上册期末测试卷含答案七年级(上)期末数学试卷1(总分:100分时间:90分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如果水库水位上升2m记作+2m,那么水库水位下降2m记作( ) A.-2 B.-4 C.-2m D.-4m2.下列式子计算正确的个数有( )①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.A.1个 B.2个 C.3个 D.0个3.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥 B.四棱柱C.三棱锥 D.三棱柱4.已知2016x n+7y与-2017x2m+3y是同类项,则(2m-n)2的值是( ) A.16 B.4048 C.-4048 D.55.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元 B.160元 C.192元 D.200元6.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,……,设C(碳原子)的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示( )A.C n H2n+2 B.C n H2nC.C n H2n-2D.C n H n+3二、填空题(本大题共6小题,每小题3分,共18分)7.-12的倒数是________.8.如图,已知∠AOB =90°,若∠1=35°,则∠2的度数是________.9.若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a =2,化简结果为_________.10.若方程6x +3=0与关于y 的方程3y +m =15的解互为相反数,则m =________. 11.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排25名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.12.在三角形ABC 中,AB =8,AC =9,BC =10.P 0为BC 边上的一点,在边AC 上取点P 1,使得CP 1=CP 0,在边AB 上取点P 2,使得AP 2=AP 1,在边BC 上取点P 3,使得BP 3=BP 2.若P 0P 3=1,则CP 0的长度为________.三、(本大题共5小题,每小题6分,共30分) 13.(1)计算:13.1+1.6-(-1.9)+(-6.6);(2)化简:5xy -x 2-xy +3x 2-2x 2.14.计算:(1)(-1)2×5+(-2)3÷4;(2)⎝ ⎛⎭⎪⎫58-23×24+14÷⎝ ⎛⎭⎪⎫-123+|-22|.15.化简求值:5a+3b-2(3a2-3a2b)+3(a2-2a2b-2),其中a=-1,b=2. 16.解方程:(1)x-12(3x-2)=2(5-x);(2)x+24-1=2x-36.17.如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.四、(本大题共3小题,每小题8分,共24分)18.我区期末考试一次数学阅卷中,阅B卷第22题(简称B22)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍.在阅卷过程中,由于情况变化,需要从阅B22的教师中调12人阅A18,调动后阅B22剩下的人数比原先阅A18人数的一半还多3人,求阅B22和阅A18原有教师人数各是多少.19.化简关于x 的代数式(2x 2+x )-[kx 2-(3x 2-x +1)],当k 为何值时,代数式的值是常数?20.用“⊕”定义一种新运算:对于任意有理数a 和b ,规定a ⊕b =ab 2+2ab +a .如:1⊕3=1×32+2×1×3+1=16. (1)求(-2) ⊕3的值;(2)若312a +⎛⎫⊕ ⎪⎝⎭⊕⎝ ⎛⎭⎪⎫-12=8,求a 的值.五、(本大题共2小题,每小题9分,共18分) 21.如图,点A 、B 都在数轴上,O 为原点.(1)点B 表示的数是________;(2)若点B 以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B 表示的数是________;(3)若点A 、B 都以每秒2个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.22.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?六、(本大题共12分)23.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.期末数学试卷1 答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.C 2.B 3.A4.A 【解答】由题意得2m+3=n+7,移项得2m-n=4,所以(2m-n)2=16.故选A.5.B 6.A二、填空题(本大题共6小题,每小题3分,共18分)7.-2 8.55°9.2 -x2-7y210.27211.2512.5或6 【解答】设CP0的长度为x,则CP1=CP0=x,AP2=AP1=9-x,BP3=BP2=8-(9-x)=x-1,BP0=10-x.∵P0P3=1,∴|10-x-(x-1)|=1,11-2x=±1,解得x=5或6.三、(本大题共5小题,每小题6分,共30分)13.【解答】(1)原式=13.1+1.9+1.6-6.6=10.(3分)(2)原式=5xy-xy=4xy.(6分)14.【解答】(1)原式=3.(3分)(2)原式=19.(6分)15.【解答】原式=5a+3b-6a2+6a2b+3a2-6a2b-6=5a+3b-3a2-6.(3分)当a=-1,b=2 时,原式=5×(-1)+3×2-3×(-1)2-6=-5+6-3-6=-8.(6分)16.【解答】(1)x=6.(3分)(2)x=0.(6分)17.【解答】设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(1分)又因为BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(2分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(3分)所以x=14,所以∠ABC=7x°=98°.(6分)四、(本大题共3小题,每小题8分,共24分)18.【解答】设阅A18原有教师x人,则阅B22原有教师3x人,(2分)依题意得3x-12=12x+3,解得x=6.所以3x=18.(7分)答:阅A18原有教师6人,阅B22原有教师18人.(8分)19.【解答】(2x2+x)-[kx2-(3x2-x+1)]=2x2+x-kx2+(3x2-x+1)=2x2+x-kx 2+3x 2-x +1=(5-k )x 2+1.(5分)若代数式的值是常数,则5-k =0,解得k =5.(7分)则当k =5时,代数式的值是常数.(8分)20.【解答】(1)根据题中定义的新运算得(-2)⊕3=-2×32+2×(-2)×3+(-2)=-18-12-2=-32.(3分)(2)根据题中定义的新运算得a +12⊕3=a +12×32+2×a +12×3+a +12=8(a+1),(5分)8(a +1)⊕⎝ ⎛⎭⎪⎫-12=8(a +1)×⎝ ⎛⎭⎪⎫-122+2×8(a +1)×⎝ ⎛⎭⎪⎫-12+8(a +1)=2(a +1),(7分)所以2(a +1)=8,解得a =3.(8分) 五、(本大题共2小题,每小题9分,共18分) 21.【解答】(1)-4(2分)(2)0(4分)(3)由题意可知有两种情况:①O 为BA 的中点时,(-4+2t )+(2+2t )=0,解得t =12;(6分)②B 为OA 的中点时,2+2t =2(-4+2t ),解得t =5.(8分)综上所述,t =12或5.(9分)22.【解答】(1)顾客在甲超市购物所付的费用为300+0.8(x -300)=(0.8x +60)元;在乙超市购物所付的费用为200+0.85(x -200)=(0.85x +30)元.(3分)(2)他应该去乙超市,(4分)理由如下:当x =500时,0.8x +60=0.8×500+60=460(元),0.85x +30=0.85×500+30=455(元).∵460>455,∴他去乙超市划算.(6分)(3)根据题意得0.8x +60=0.85x +30,解得x =600.(8分)答:李明购买600元的商品时,到两家超市购物所付的费用一样.(9分) 六、(本大题共12分)23.【解答】(1)由题意得∠BOC =180°-∠AOC =150°,又∵∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -∠COE =∠COD -12 ∠BOC =90°-12×150°=15°.(3分)(2)∠DOE=12α.(6分) 解析:由(1)知∠DOE=∠COD-12∠BOC=∠COD-12(180°-∠AOC)=90°-12(180°-α)=12α.(3)①∠AOC=2∠DOE.(7分)理由如下:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°-∠DOE,∴∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE)=2∠DOE.(9分)②4∠DOE-5∠AOF=180°.(10分)理由如下:设∠DOE=x,∠AOF=y,由①知∠AOC=2∠DOE,∴∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,2∠BOE+∠AOF =2(∠COD-∠DOE)+∠AOF=2(90°-x)+y=180°-2x+y,∴2x-4y=180°-2x+y,即4x-5y=180°,∴4∠DOE-5∠AOF=180°.(12分)七年级(上)期末数学试卷2(总分:120分时间:90分钟)一、选择题(本题包括12小题,每小题3分,共36分。
人教版七年级数学上册期末统考试题及参考答案(WL2023统考)
人教版七年级数学上册期末统考试题及参考答案(WL2023统考)(满分:120分时间:100分钟)第I卷(选择题共36分)一、选择题(本大题共12个小题;每小题3分,满分36分)1.在下列各数中:10,(-4)2,+(-3),-5,-|-2|,0,(-1)2023,是负数的有( )个.A.3B.4C.5D.62.据统计,全国共有共青团员7358万,数据7358万用科学记数法表示为( )A.7.358×107B.7.358×103C.7.358×104D.7.358×1063.下列说法错误的是( )A.直线AB和直线BA表示同一条直线B.过一点能作无数条直线C.射线AB和射线BA表示不同射线D.射线比直线短4.若设减去-3m等于m2-3m+2的多项式是A,则这个多项式A为( )A.-m2-3m-2B.-m2-3m+2C.m2-6m-2D.m2-6m+25.有理数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. a>bB.|a|>|b|C. -a<bD.a+b>06.今年恰好是我们学校建校四十周年,小玲同学特意制作了一个写有“四十周年校庆”的正方体盒子,其平面展开图如图所示,每一个面都有一个汉字,则在该正方体中和“年”字相对的汉字是( )A. 校B.十C.四D.庆7.给出下列判断:①若|a|=a,则a>0; ②若a、b互为相反数,则ab =1;③单项式-2x2y3的系数是-2;④代数式a2+1的值永远是正数;⑤几个有理数相乘,当负因数的个数是奇数个时,积一定为负数;⑥多项式xy2-xy+24是关于x,y的四次多项式.其中判断正确的有( )A.1个B.3个C.4个D.5个8.如图,OC是∠AOB的角平分线,∠BOD=13∠COD,∠BOD=20°,则∠AOD的度数等于( )A.130°B.120°C.110°D.100°9.将方程x0.3=1+1.2−0.3x 0.2中分母化为整数,正确的是( )A. 10x 3=10+12−3x2 B. x3=10+1.2−0.3x 0.2C.10x3=1+12−3x2D. x3=1+1.2−0.3x210.市区绿化队对市区主干道进行绿化,现有甲、乙两个施工队,甲施工队有15位工人,乙施工队有25位工人,现计划有变,需要从乙施工队借调x 名工人到甲施工队,刚好甲施工队人数是乙施工队人数的3倍,则根据题意列出方程正确的是( ) A.3(15+x)=25-x B.15+x=3(25-x) C.3(15-x)=25+xD.15-x=3(25+x)11.如图,D,E 顺次为线段AB 上的两点,AB=20,BE-DE=4,C 是AD 的中点,则 AE-AC 的值是( )A.9B.8C.7D.612.正方形ABCD 在数轴上的位置如图所示,点A,B 对应的数分别为-2和-1,若正方形 ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点C 所对应的数为0;则翻转2022次后,点C 所对应的数是( )A.2020B.2021C.2022D.2023第II 卷(非选择题 共84分)二、填空题(本大题共4个小题;每小题4分,共16分)13.若关于x 的方程(a-1)x |a|+1=0是一元一次方程,则a=_______. 14.当m 的值为______时,5x 3-2x-1与4mx+3的和不含x 的一次项.15.定义一种新运算“※”,即x ※y =xy+1,例如:2※3=2x3+1=7. 则(1※4)※(- 13)的值是_______.16.如图,点C,D,E 在线段AB 上,若点C 是线段AB 的中点,DE=5BE ,CD:AB=3:8, CE=17,则AB=_______.三、解答题(本大题共6小题;共68分) 17.计算(本题满分10分)(1) (13−37+221)÷(−142) (2) (-1)2024 +24÷(-2)3-152×(115)218.解方程(本题满分10分)(1)5(x-5)+2x=-4 (2) 2x−13−6x+16=119.先化简,再求值(本题满分12分)(1)已知(a+12)2+|b+8|=0,求-6a 3+(3ab 2-5a 2b)-3(ab 2-2a 3)的值.(2)已知A=-x-2y-1,B=x+2y+2,当x+2y=6时,求A+3B 的值.20.(本题满分 12分)两个商场搞促销活动,甲商场全场9折;乙商场如下:购买不超过100元不给予优惠;购买超过了100元但又不超过200元的,全部打9.5折;购买超过200元的,200元那部分打9.2折,超过200元的那部分打8折.(1)当一次性购物标价总额是200元时,在甲、乙商场实际付款分别是多少元? (2)当标价总额是多少元时,在甲、乙商场购物实际付款一样多?(3)小王两次到乙商场分别购买标价98元和150元的商品,如果他想只去一次该商场购买 这些商品,你能帮他计算可以节省多少元吗?21.(本题满分12分)如图1,已知线段AB=40cm ,CD=4cm ,线段CD 在线段AB 上运动(点C 不与点A 重合),点E 、F 分别是AC 、BD 的中点.(1)若AC=10cm,则EF=_________cm.(2)当线段CD在线段AB上运动时,试判断线段EF的长度是否会发生变化?如果不变,请求出线段EF的长度;如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图2,已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD.类比以上发现的线段的规律,若∠EOF=65°,∠COD=25°,求AOB的度数.22.(本题满分 12分)在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|.我们把数轴上两点之间的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,0A=_______,AB=_______.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=_______.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是_______.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和 N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出值;若不存在,请说明理由.参考答案一、选择题BADDB CADCB BA二、填空题13. -114. 1215. −2316. 48三、解答题17.计算(1)0 (2)-318.解方程(1)x=3 (2)x=−9219.化简求值(1)原式=-5a2b=10(2)原式=2(x+2y)+5=1720(1)当一次性购物标价总额是200元时,在甲超市需付款:200×0.9=180(元)在乙超市需付款:200×0.95=190(元)(2)设当标价总额是x元时,甲、乙超市实付款一样.0.9x=200×0.92+(x-200) ×0.8,x=240(3)两次到乙超市分别购物标价98元和150元时,需要付款:98+150×0.95=240.5(元) 一次性到乙超市购物标价98+150=248元的商品,需要付款: 200×0.92+(248-200)×0.8=222.4(元),240.5-222.4=18.1(元),所以,可以节省18.1元.21(1)22(2)线段EF的长度不会发生变化.(3)105°22(1)10,22(2)①1 ②22,7,11(3)1,113。
人教版七年级数学上册期末考试题及答案【完整版】
人教版七年级数学上册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)251237x yx y-=-⎧⎨+=⎩(2)4(1)3(2)833634x yx y--+=⎧⎪++⎨=⎪⎩2.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C-互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、A6、C7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、60°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-405、40°6、2或-8三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=⎩;(2)62xy=⎧⎨=⎩2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、略4、略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册数学期末试卷及答案.docdoc一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .32.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟B .35分钟C .42011分钟 D .36011分钟 3.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .345.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33° 8.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( )A .(2,1)B .(3,3)C .(2,3)D .(3,2)9.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 10.3的倒数是( )A .3B .3-C .13D .13-11.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102512.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==13.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离14.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人15.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题16.化简:2xy xy +=__________.17.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 18.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.19.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋. 20.若∠1=35°21′,则∠1的余角是__.21.已知一个角的补角是它余角的3倍,则这个角的度数为_____.22.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米. 23.方程x +5=12(x +3)的解是________.24.已知代数式235x -与233x -互为相反数,则x 的值是_______. 25.当12点20分时,钟表上时针和分针所成的角度是___________.26.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .27.若4a +9与3a +5互为相反数,则a 的值为_____. 28.已知7635a ∠=︒',则a ∠的补角为______°______′.29.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.30.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.三、压轴题31.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.32.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?33.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 34.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.35.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.36.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.37.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.38.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】把x 等于2代入代数式即可得出答案. 【详解】 解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.D解析:D 【解析】 【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可. 【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分. 设小强做数学作业花了x 分钟, 由题意得 6x -0.5x =180, 解之得x = 36011. 故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.5.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF =∠ABC =70°, ∴∠AED =70°∵∠ADC =∠AED +∠DAE , ∴∠ADC >70°, 故选A . 【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C解析:C 【解析】 【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论. 【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm , ∴AC=10-4=6cm . ∵M 是线段AC 的中点, ∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时, ∵BC=4cm , ∴AC=14cmM 是线段AC 的中点, ∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm . 故选C . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.A解析:A 【解析】 【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.【详解】解:OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A . 【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.8.C解析:C 【解析】 【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案. 【详解】∵(1,2)表示教室里第1列第2排的位置, ∴教室里第2列第3排的位置表示为(2,3), 故选C. 【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.9.B解析:B 【解析】 【分析】把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1, 把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11, 故选B. 【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.10.C解析:C 【解析】根据倒数的定义可知. 解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.12.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.13.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.14.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.15.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A .【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题16..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.17.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.18.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图, “横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.19.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.21.45°【解析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.22.18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:118000=1.18×105,故答案为1.18×105.23.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.24.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.25.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.26.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.27.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键. 28.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.29.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.30.11【解析】【分析】对整式变形得,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已解析:11【解析】【分析】对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.【详解】解:∵2a ﹣b=4,∴423a b -+=2(2)324311a b -+=⨯+=,故答案为:11.【点睛】本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.三、压轴题31.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P 运动到点B 的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)﹣4,6;(2)①4;②1319,22或 【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a ,b 的值,然后在数轴上表示即可; (2)①根据PA ﹣PB =6列出关于t 的方程,解方程求出t 的值,进而得到点P 所表示的数;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)P 在原点右边;(Ⅱ)P 在原点左边.分别求出点P 运动的路程,再除以速度即可.【详解】(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b ,∴a =﹣4,b =6.如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10,∴PB =AB ﹣PA =10﹣2t .∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.33.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.34.(1)1+a 或1-a ;(2)12或52;(3)1≤b≤7. 【解析】【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,当点A在点B右侧时,t=(3+2)÷(3-1)=52;②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d≥1,∴d=1,当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,∵点A到点B的d追随值d[AB]≤6,∴d≤7∴1<d≤7,综合两种情况,d的取值范围是1≤d≤7.故答案为(1)1+a或1-a;(2)①12或52;②1≤b≤7.【点睛】本题考查了数轴上两点之间的距离和动点问题.35.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.。