电力系统中谐波的危害与产生

合集下载

谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些谐波的抑制方法谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

关于“谐波的产生和危害有哪些谐波的抑制方法”的详细说明。

1.谐波的产生和危害有哪些1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

2.谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。

3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。

4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。

2.谐波的抑制方法(一)降低谐波源的谐波含量在谐波源上采取治理措施,从源头上最大限度地避免谐波的产生。

这就需要在设计、制造和使用谐波源设备时,要注意谐波对供电系统及其供用电设备的影响,采取切实可行的治理措施。

用电业务管理部门要严格把关,对于没有采取治理措施的谐波源用户,要禁止其入网运行。

(二)在谐波源处吸收谐波电流这种方法是对已有谐波进行有效抑制的方法,也是目前电力系统使用最为广泛地抑制谐波的方法。

其主要方法有以下几种:1.无源滤波器无源滤波器安装在电力电子设备的交流侧,由L、C、R元件构成谐振回路,当LC回路的谐振频率和某一高次谐波电流频率相同时,即可阻止该次谐波流入电网。

这种方法由于具有投资少、效率高、结构简单、运行可靠及维护方便等优点,是目前采用的抑制谐波及无功补偿的主要手段。

2.有源滤波器有源滤波器即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。

3.防止并联电容器组对谐波的放大在电网中并联电容器组起改善功率因数和调节电压的作用。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波是指频率是电力系统基波频率的整数倍的电压或电流波形,其频率通常为50Hz或60Hz。

谐波是电力系统中的一种电磁干扰,可能引起许多问题和危害,包括设备的过热、降低效率、产生故障以及影响电力网络的稳定性。

谐波的产生主要是由于非线性负载和电源引起的,下面将详细讨论谐波的危害与产生。

谐波的危害:1. 电力设备过热:谐波会导致设备内部的电压和电流波形畸变,造成设备的过载和过热。

设备过热会导致设备寿命缩短,甚至发生火灾等危险。

2. 降低设备效率:设备在谐波环境下工作时,可能会发生电流滞后和电压损失,导致设备的效率降低。

例如,变压器在谐波环境下由于电流滞后而产生降温,这会导致能量损失和电力供应的不稳定。

3. 产生设备故障:谐波会导致设备的电压和电流波形失真,从而损坏设备的绝缘性能和电线连接,引发故障。

例如,变频器引起的谐波可能导致电机绝缘击穿,造成电机损坏。

4. 影响电力网络的稳定性:谐波会改变电力系统的频谱特性,降低系统的稳定性。

谐波的存在可能导致电力网络中的共振现象,引起电压和电流的不稳定性,进一步导致电力系统的故障。

谐波的产生:1. 非线性负载:非线性负载是指对电压和电流响应非线性的负载设备。

这些设备通常包括整流器、变频器、电弧炉、放电灯等。

非线性负载会引起谐波电流的产生,造成电力系统的谐波问题。

2. 电源:电源本身也可能产生谐波。

例如,由于电力系统中存在电压降低和电压暂降,电源系统中的设备可能引入谐波频率。

3. 并联谐波滤波器:并联谐波滤波器通常用于减少负载设备引起的谐波,但滤波器本身可能引入谐波频率。

4. 反射和谐波:电力系统中的传输线上的谐波可能会反射,并返回到电源系统中,从而产生额外的谐波。

为减少谐波的危害,可以采取以下措施:1. 负载侧的措施:使用非线性负载时,可以采取滤波器、谐波限制器等措施来减少谐波的产生。

2. 电源侧的措施:电源系统应具备良好的谐波抑制能力,可以采用对称三相电源供应、提高电源的电压和频率稳定性等措施。

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法谐波是指频率高于基波的电磁波,它们会频繁出现在我们的电力系统和其他电力设备中。

虽然谐波在一些应用中可产生有益效果,但在大多数情况下,它们都是一种电力质量问题,会给电力系统和其他设备带来一系列危害。

1.设备损坏:谐波会增加设备内的电流和电压,导致设备发热加剧,并可能引起设备元件过热、熔断或焚毁。

此外,频繁的谐波还会引起设备的机械振动,造成设备损坏。

2.电力系统不稳定:谐波引起系统的电流和电压的波形失真,导致电力系统不稳定。

此外,谐波会导致电力系统中的谐振现象,这些谐振可以引起电力系统中的电流和电压急剧增加,可能破坏设备。

3.通信干扰:谐波会产生大量的高频干扰信号,这些信号可能干扰无线通信和其他电磁波设备的正常运行。

在高度电子化的社会中,这种通信干扰可能会带来严重的问题。

为了抑制谐波带来的危害,可以采取以下方法:1.装置谐波滤波器:谐波滤波器用于减小电力系统中的谐波。

滤波器通常会将谐波通过处理电路转化成其他形式,或者将它们绕过电力系统,以防止它们对设备和系统产生影响。

2.使用变压器:变压器可以用来减小谐波的影响。

通过在电力系统中安装特定的谐波抑制变压器,可以将谐波电流限制在合理的范围内,从而降低谐波的危害。

3.电源滤波器:为敏感设备提供干净的电力供应也是一种有效的抑制谐波的方法。

电源滤波器可以滤除电力供应中的谐波元素,从而降低谐波对设备的危害。

4.合理的电源设计:在电力系统设计阶段,可以采取一些措施来减小谐波的生成。

例如,选择适当的线路,减小高谐波的产生,或者选择低谐波的电力设备。

5.故障检测和维护:及时发现和处理设备和系统中的谐波问题至关重要。

定期进行电力设备的检查和维护,可以发现并消除谐波带来的潜在危害。

总而言之,谐波在电力系统和其他电力设备中的存在可能带来很多危害。

为了抑制这些危害,我们可以采取各种措施,包括使用谐波滤波器、变压器、电源滤波器、合理的电源设计以及进行定期的检查和维护。

谐波的产生原因危害与治理

谐波的产生原因危害与治理

谐波的产生原因危害与治理谐波是指信号在传输过程中产生的频率是原有信号频率的整数倍的现象。

谐波一般是由于信号源产生幅度非线性特性、信号传输线路的不完美特性以及外界干扰等多种因素共同作用所导致的。

1.非线性特性:当信号源的输入电压超过其线性范围时,信号源会产生非线性失真。

这种非线性特性会使得原信号分解成包含各种谐波成分的信号,即产生谐波。

2.传输线路的不完美:在电力传输和通信线路中,由于电导率不一致、绝缘材料的不均匀性以及线路的接地等因素,会引起谐波的产生。

这些因素使得线路对于不同频率的信号具有不同的传输特性,从而造成信号的失真和谐波的产生。

3.外界干扰:外界电磁辐射的干扰也会引起谐波的产生。

当外界电磁波与系统内的信号相互作用时,可能会产生共振现象,从而导致谐波信号的产生。

谐波的存在会带来一系列的危害,包括以下几个方面:1.信号失真:谐波信号会改变原信号的波形和频谱特性,导致信号失真。

这会影响到电力传输系统和通信系统中的信号传输质量,降低系统的可靠性和稳定性。

2.设备损坏:谐波会导致电流和电压的波形变形,产生大量的电磁干扰。

这些干扰会对设备的正常工作造成影响,甚至会导致设备损坏和故障。

谐波还可能引起设备内部电子元件的过热现象,加速设备老化和损坏。

3.电力系统能源浪费:谐波会引起电力系统中电流和电压的非功率信号,造成能量损耗。

这不仅会浪费能源,还会导致电力系统的效率降低。

为了治理谐波对系统的危害,可以采取以下几种方法:1.模拟电路设计中采用线性器件:选择线性器件作为信号源和信号传输线路中的关键部件,减少非线性特性对信号的影响。

2.使用滤波器:在信号源和负载之间加入合适的滤波器,可以有效地滤除谐波成分,保证原信号的传输质量。

3.优化供电系统:针对供电系统中频繁出现谐波问题的设备,进行电源选择、接线方式和接地设计的优化,减少谐波产生。

4.电源质量改进:加强对供电设备的质量管理,采用高质量的电源设备,减少谐波对电力系统的影响。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波的危害与产生谐波指的是频率为基波频率的倍数的电信号成分,在电力系统中的原因有很多,比如电力设备的非线性负载、电子设备的交流-直流变换等。

虽然谐波信号的功率一般较低,但由于其具有频率较高、波形失真的特点,对电力系统和电力设备的运行安全和电能质量造成了一定的影响和危害。

一、对电力设备的危害1.导致设备过热:谐波信号导致电流和电压波形失真,使电力设备的磁路饱和,导致设备出现额外的损耗,产生额外的热量,从而导致设备过热、老化、性能降低。

2.损害设备绝缘:谐波会提高设备绝缘材料的介质损耗角正切值,使设备的绝缘等级下降,从而导致电气设备的绝缘性能降低。

3.损伤电动机:谐波信号会使电动机的转矩波形失真,加剧机械振动,引起转子的加速损伤或者负载不平衡问题,从而降低电动机的性能。

4.降低电力设备的寿命:谐波会使电力设备的运行稳定性降低,电力设备的寿命也随之降低。

二、对电能质量的危害1.导致电能损耗:谐波会使电能的传输损耗增大,电能的利用效率降低,从而造成电能浪费。

2.引起电压波动:谐波会使电源电压的总谐波畸变THD值增大,从而导致电源电压的变化、波动明显。

3.引起电流不平衡:谐波信号会加剧相间电流之间的差异,导致电流的不平衡问题,从而影响电力系统的运行稳定性和性能。

4.影响电力系统的稳定性:谐波会使电力系统的总谐波畸变THD值较大,从而影响电力系统的稳定性和电能质量。

为减小谐波的危害,可采取以下措施:1.选择适当的电力设备,如交流电动机、逆变器、电子变压器等,以减小非线性负载对电力系统产生的谐波。

2.配置滤波器装置,用于消除电力系统中的谐波信号。

3.加强电力设备的维护与管理,延长设备的寿命,减少谐波产生的数量。

4.优化电力系统的运行参数,如改善电力系统的谐波阻抗,减小电力系统的谐波电流等。

电力系统谐波的产生、危害及其抑制

电力系统谐波的产生、危害及其抑制
60年代, 由于高压直流输电技术的发展, 人们对变流器引起的
外, 还产生旋转磁场, 在转子的铁芯中和转子的绕组中感应 电流, 从而产生有功附加损耗。 这些附加损耗使电机的定子 和转子温升增大。 另外, 谐波电流和基波磁场相互作用产生 的扭力矩作用在转子上, 激发汽轮发电机周期性振动, 并伴
有噪声。如果谐波电流的频率接近定子零部件的固有振动
方 - 的- 成 电 的 波 量 论 为 二 。 此为 流 谐 含 理 值 I‘土 因 ,减 - 波- 合 -相一一 ” h
小主要的谐波次数及总谐波含量, 提高相数是有效的。
(3) 开发有效的过程和方法来控制、 减小或消除电力系 统及其设备的谐波 从电源电压 、 线路阻抗 、 负荷特性等找出三相不平衡原 因, 并加以消除。 这样可以有效地减小3次谐波的产生, 有利
频率时, 可能引起发电机的强烈振动, 造成汽轮机的轴和叶 片因疲劳而损坏。
电力系统谐波问题更加重视。 70年代以来, 随着电力电子技术 的飞速发展, 各种电力电子装置在电力系统、 工业、 交通及家
庭中的应用 日 益广泛, 谐波所造成的危害也 日 趋严重。
1谐波的产生
(2)对变压器的影响与危害 变压器中谐波电流的影响主要是增加其铜损和铁损, 并随 频率的增大而增大。 谐波损耗产生的局部过热会降低变压器的
绝缘寿命。当附加损耗达到一定值时, 需要降低出力运行。
产生谐波的根本原因在于电力系统中存在大量非线性 负荷。当正弦基波电压(设电源阻抗为零时)作用于非线性
负荷时, 负荷吸收的电流与施加的电压波形不同; 同时, 畸 变的电流又会影响电流回路中的其它设备。但在实际系统 中, 电源阻抗不为零, 畸变电流将在电源阻抗上产生压降, 使电源端电压发生畸变, 从而对系统中所有负荷产生影响。 非线性负荷产生的谐波电流分量的数值与基波电压值和电 力系统的阻抗无关。因此, 大部分谐波源可看成是恒流源。 通常, 谐波源可以被分成三类: ( 1) 电力电子装置。包括变速传动装置、不间断电源

电力系统谐波的危害及其常用抑制方法

电力系统谐波的危害及其常用抑制方法

电力系统谐波的危害及其常用抑制方法电力系统中的谐波是指频率为基波频率的整数倍的电压和电流成分,它们在电力系统中的存在会引起一系列的问题和危害。

下面将详细介绍电力系统谐波的危害及其常用抑制方法。

一、谐波的危害1.电压失真:谐波的存在会使电压波形发生畸变,进而导致电压的失真,使电力设备无法正常运行。

电压失真还会对电力设备造成较大的冲击和损害,缩短设备的寿命。

2.系统能效下降:谐波会导致电力系统中电流的失真,由于谐波电流引起的额外功耗,使得系统能效下降。

这会导致电力设备的能耗增加,降低整个系统的效率。

4.电磁兼容性问题:谐波信号会干扰电力系统周围的其他电子设备,导致电磁兼容性问题。

这会对邻近的电子设备造成干扰,影响设备的正常运行。

5.高频谐波产生的热问题:高频谐波会导致电力设备产生过多的热量,进而引起绝缘材料的老化和烧损,甚至造成火灾。

这对电力系统的安全性构成严重威胁。

二、谐波抑制的常用方法1.变压器和电机的设计优化:在变压器和电机的设计中考虑谐波的影响,通过选择合适的材料和结构,减小谐波对设备的影响。

例如,在电机设计中,可以增加骨架的厚度或配置合适的磁路副将谐波分向其他通道。

2.滤波器的应用:安装合适的滤波器可以有效地抑制谐波。

滤波器可以通过改变电源电路的阻抗特性,将谐波电流引向滤波器,从而减小谐波的水平。

4.负载侧的谐波抑制:对于谐波敏感的设备,可以在负载侧采取一些措施来抑制谐波。

例如,使用谐波阻抗装置或磁性隔离器等。

5.教育和培训:提高电力系统从业人员对谐波问题的认识和理解,增强其对谐波抑制方法的应用能力,能够及时发现和解决谐波问题。

总之,谐波对电力系统的危害不容忽视。

为了保证电力系统的正常运行和设备的安全性,需要采取有效的措施来抑制谐波。

以上所提到的方法是目前常用的谐波抑制方法,但需要根据具体情况选择合适的方法。

电力系统谐波的产生与危害综述

电力系统谐波的产生与危害综述

电力系统谐波的产生与危害综述1 前言在理想情况下,电力系统中三相交流电波形为正弦波。

但各种非线性用电设备的使用,所产生的谐波电流对电能质量产生了污染,对用电设备造成了隐患。

尤其是近年来,公司变频器的投用已在电网内部产生了大量的谐波,对公司运行的设备等已经造成了严重的隐患,本文将着重论述谐波的产生与危害,及公司采用YH-8010有源滤波器治理谐波污染的情况。

2 谐波的产生【1】【3】由于发电机制造工艺的问题,使电枢表面的磁感应强度分布稍稍偏离正弦波,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。

谐波产生的另一个原因是由于非线性负载。

电流流经非线性负载时,负载上电流为非正弦波,即产生了谐波。

主要非线性负载有整流逆变设备、电弧炉等。

3 谐波对电力系统设备的危害谐波使电网波形受到污染,供电质量恶化,附加损失增加,传输能力下降,是电网的公害。

其对系统和设备的影响主要表现在几方面:污染公用电网、影响电动机、变压器的正常运行、对继电保护和自动装置造成影响、对通讯系统产生干扰等。

4 国际国家谐波标准限值【1】国际电工委员会及美国“IEEE电子电气工程师协会”明确规定计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。

在《电能质量公用电网谐波》(GB/T14549-93)中规定:6~220kV各级公用电网电压(相电压)总谐波畸变率是0.38kV为5.0%,6~10kV为4.0%,35~66kV为3.0%,110kV为2.0%。

5 谐波的抑制措施【1】【3】【4】为了抑制谐波,可采取多种措施,如装设静止无功补偿装置、无源及有源滤波器等,但经过多年实践证实有源滤波器在治理谐波上有着成熟的经验及明显的效果,因为其实现的是动态补偿,且不与系统断开,而且没有储能元件。

对供电质量要求很高的场所,使用有源滤波器,动态实时抵消谐波电流。

还可补偿无功功率和三相不对称电流。

谐波产生的原因及危害性?

谐波产生的原因及危害性?
谐波对旋转电机的危害主要是产生附加的损耗和转矩。由于集肤效应、磁滞、涡流等随着频率的增高而使在旋转电机的铁心和绕组中产生的附加损耗增加。在供电系统中,用户的电动机负荷约占整个负荷的85%左右。因此,谐波使电力用户电动机总的附加损耗增加的影响最为显著。由于电动机的出力一般不能按发热情况进行调整,由谐波引起电动机的发热效应是按它能承受的谐波电压折算成等值的基波负序电压来考虑的。试验表明,在额定出力下持续承受为3%额定电压的负序电压时,电动机的绝缘寿命要减少一半。因此,国际上一般建议在持续工作的条件下,电动机承受的负序电压不宜超过额定电压的2%。
供电系统中的谐波危害主要表现在以下几个方面。
1、增加了发、输、供和用电设备的附加损耗,使设备过热,降低设备的效率和利用率。
由于谐波电流的频率为基波频率的整数倍,高频电流流过导体时,因集肤效应的作用,使导体对谐波电流的有效电阻增加,从而增加了设备的功率损耗、的谐波转矩对电动机的平均转矩的影响不大,但谐波会产生显著的脉冲转矩,可能出现电机转轴扭曲振动的问题。这种振荡力矩使汽轮发电机的转子元件发生扭振,并使汽轮机叶片产生疲劳循环。
(2)对变压器的影响
谐波电流使变压器的铜耗增加,特别是3次及其倍数次谐波对三角形连接的变压器,会在其绕组中形成环流,使绕组过热;对全星形连接的变压器,当绕组中性点按地,而该侧电网中分布电容较大或者装有中性点接地的并联电容器时,可能形成3次谐波谐振,使变压器附加损耗增加。
(3)对输电线路的影响
由于输电线路阻抗的频率特性,线路电阻随着频率的升高而增加。在集肤效应的作用下,谐波电流使输电线路的附加损耗增加。在供应电网的损耗中,变压器和输电线路的损耗占了大部分,所以谐波使电网网损增大。谐波还使三相供电系统中的中性线的电流增大,导致中性线过载。输电线路存在着分布的线路电感和对地电容,它们与产生谐波的设备组成串联回路或并联回路时,在一定的参数配合条件下,会发生串联谐振或并联谐振。一般情况下,并联谐波谐振所产生的谐波过电压和过电流对相关设备的危害性较大。当注入电网的谐波的频率位于在网络谐振点附近的谐振区内时,会激励电感、电容产生部分谐振,形成谐波放大。在这种情况下,谐波电压升高、谐波电流增大将会引起继电保护装置出现误动,以至损坏设备,与此同时还可产生相当大的谐波网损。对于电力电缆线路,由于电缆的对地电容比架空线路约大10-20倍,而感抗约为架空线路的1/2-1/3,因此更容易激励出较大的谐波谐振和谐波放大,造成绝缘击穿的事故。

谐波对电力系统的危害及预防措施

谐波对电力系统的危害及预防措施

谐波对电力系统的危害及预防措施什么是二次谐波三次谐波高次谐波一、供电系统中的谐波在供电系统中谐波电流的出现已经有许多年了。

过去,谐波电流是由电气化铁路和工业的直流调速传动装置所用的,由交流变换为直流电的水银整流器所产生的。

近年来,产生谐波的设备类型及数量均已剧增,并将继续增长。

所以,我们必须很慎重地考虑谐波和它的不良影响,以及如何将不良影响减少到最小。

1 谐波的产生在理想的干净供电系统中,电流和电压都是正弦波的。

在只含线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。

在实际的供电系统中,由于有非线性负荷的存在,当电流流过与所加电压不呈线性关系的负荷时,就形成非正弦电流。

任何周期性波形均可分解为一个基频正弦波加上许多谐波频率的正弦波。

谐波频率是基频的整倍数,例如基频为50Hz,二次谐波为100Hz,三次谐波则为150Hz。

因此畸变的电流波形可能有二次谐波、三次谐波……可能直到第三十次谐波组成。

2 产生谐波的设备类型所有的非线性负荷都能产生谐波电流,产生谐波的设备类型有:开关模式电源(SMPS)、电子荧火灯镇流器、调速传动装置、不间断电源(UPS)、磁性铁芯设备及某些家用电器如电视机等。

(1)开关模式电源(SMPS):大多数的现代电子设备都使用开关模式电源(SMPS)。

它们和老式的设备不同,它们已将传统的降压器和整流器替换成由电源直接经可控制的整流器件去给存贮电容器充电,然后用一种和所需的输出电压及电流相适合的方法输出所需的直流电流。

这对于设备制造厂的好处是使用器件的尺寸、价格及重量均可大幅度地降低,它的缺点是不管它是哪一种型号,它都不能从电源汲取连续的电流,而只能汲取脉冲电流。

此脉冲电流含有大量的三次及高次谐波的分量。

(2)电子荧光灯镇流器:电子荧光灯镇流器近年被大量采用。

它的优点是在工作于高频时可显著提高灯管的效率,而其缺点是其逆变器在电源电流中产生谐波和电气噪声。

浅析电力系统谐波的产生、危害及抑制措施

浅析电力系统谐波的产生、危害及抑制措施

浅析电力系统谐波的产生、危害及抑制措施摘要:本文主要介绍了电力系统中产生谐波的主要原因,对电网系统的危害及抑制谐波的方法。

关键词:电力谐波;谐波产生;危害;抑制措施1 前言在理想的情况下,电力系统中三相交流发电机发出的电压,其波形基本是正弦波,但随着电力电子设备技术的发展、电弧炉、变压器等设备容量的加大、家用电器的增多等原因,向电网注入谐波,造成系统电压、电流波形畸变,电能质量下降,危害电力系统及用户的安全与经济运行。

2 电力谐波的产生2.1 发电源质量不高产生谐波发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来讲很小,可以忽略。

2.2 输配电系统产生谐波输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。

它的大小与磁路的结构形式、铁心的饱和程度有关。

铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。

2.3 用电设备产生的谐波2.3.1 晶闸管整流设备由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。

我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。

如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。

如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。

经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

电力系统中谐波的危害与产生(三篇)

电力系统中谐波的危害与产生(三篇)

电力系统中谐波的危害与产生电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。

本文全面论述了电力系统中谐波的危害及产生情况,希望能引起我们的高度重视。

谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面:1.对供配电线路的危害(1)影响线路的稳定运行供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。

但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。

晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。

这样,谐波将严重威胁供配电系统的稳定与安全运行。

(2)影响电网的质量电力系统中的谐波能使电网的电压与电流波形发生畸变。

如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。

另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。

2.对电力设备的危害对电力电容器的危害当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。

对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。

尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。

另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。

什么是谐波及谐波的危害

什么是谐波及谐波的危害

什么是谐波及谐波的危害谐波是什么在交流电中,电源发出的是正弦电流和正弦电压,而负载所需要的电流和电压的波形也应当是正弦波形,但是由于各种因素的影响,负载端所需要的电流和电压波形可能会发生畸变,也就是波形不再是正弦波形。

在波形发生畸变的情况下,会有一些波形的分量出现在电力系统中,这些波形分量即为谐波。

谐波的产生原因谐波是由于电力系统中存在非线性负载而产生的。

具体来说,可以将非线性负载分为两类。

第一类是导致电流畸变的负载,如电子器件、弧炉、电弧炉等;第二类是导致电压畸变的负载,如变压器、电动机、放电灯等。

这些负载在工作时,由于其特殊的电学特性,会使得所需电流或电压发生畸变,因此就会产生谐波。

谐波的危害1.使变压器过热谐波电流会使变压器铁核的铜损和铁损增加,从而使变压器温升过高。

在变压器内部,铁芯损功会对油温产生较大的影响,导致油温升高,最终使变压器过热。

如果过热程度严重,会导致变压器绝缘老化、绝缘击穿等。

2.影响电能计量由于谐波电流的存在,会使得电能计量的准确性受到影响。

在全功率电流表中,谐波电流与基波电流的叠加会导致表头转子偏转,造成电表误差。

在互感器中,谐波电流也会使得互感器的准确性受到影响。

3.增加电力系统的损耗谐波电流还会增加电力系统的损耗,如线路上的热损耗、变压器的铜损和铁损等。

由于谐波电流的存在,使得交流电路中的电能的总有效值增加了,从而增加了系统的损耗。

4.影响电源的能力谐波电流会影响电源的能力,使得电源的有效输出功率降低,从而影响设备的正常工作。

如果谐波电流较大,还会影响电源谐波抑制和电源噪声。

5.影响其他设备的正常工作谐波电流还会影响其他设备的正常工作。

由于谐波电流会使得电力系统中的电压波形失真,造成其他设备的故障,如电机的震动加剧、电容器容量下降、接触器碳化等。

虽然谐波在电力系统中存在的时间不长,但是其对电力系统的危害是不可忽视的,需要防范和治理谐波。

通过采用控制非线性负载电流、增加电源稳压器、加装滤波器等方法可以有效降低谐波水平,保障电力系统的正常运行。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中的谐波是指频率不同于基波频率的周期性电压或电流成分。

谐波是由非线性负载引起的,诸如电力电子装置(如变频器、整流装置、电弧炉)等。

它们产生的谐波电流会通过电力系统的线路和设备传播,对电力系统和相关设备产生一定的危害。

下面将详细讨论谐波的危害和产生原因。

首先,谐波对电力系统的主要危害包括以下几个方面:1. 电力质量损害:谐波会导致电网电压波形失真,破坏电网电压的纯度和稳定性。

谐波电流进入电网后,会导致电网频率响应下降,严重时会引发电网失供故障。

2. 线路过载:谐波电流会导致电力系统中的导线和变压器等设备过载。

这是因为谐波电流具有较高的频率,使得设备的额定电流在该频率范围内有效值变大。

3. 电磁干扰:谐波产生的电磁场会对电力系统周围的通讯设备、调控系统和其他敏感设备产生干扰。

这些干扰可能导致设备的误操作或数据传输错误。

4. 电力设备损坏:谐波会引起电力设备内部的电场和磁场分布不均匀,导致绝缘损坏和局部热点。

同时,谐波还会产生机械振动和声音,对设备的机械结构造成损害。

其次,谐波的产生主要源于以下几个因素:1. 非线性负载:非线性电子元器件和负载(如电力电子装置)是主要的谐波源。

它们的工作原理要求电流和电压之间的关系不是线性的,这就会产生非基波的电流和电压成分。

2. 不平衡负载:不平衡电网或不平衡负载会引入谐波电流。

此类条件下的非对称性会产生额外的谐波电流成分。

3. 非线性磁性元件:磁性元件(如变压器和电感器)的饱和和非线性特性也会导致谐波的产生。

这是因为在这些元件中,电流和磁场之间的关系不是线性的。

4. 电力电子装置的开关操作:电力电子装置的开关(如IGBT 和MOSFET)引起了电流和电压瞬时变化,从而引入谐波电流和电压。

为了减轻谐波对电力系统的危害,可以采取以下措施:1. 选择低谐波负载和电力电子设备:在设计和采购阶段选择低谐波负载和电力电子设备,这将减少谐波电流和电压的产生。

谐波的产生及危害

谐波的产生及危害

谐波的产生及危害一、谐波的产生及危害电力谐波对电力网(包括用户)危害是十分严重的,它是一种电力污染,一种人们看不见、嗅不到、摸不着的污染。

所以往往不被人们注意。

对于电力系统,谐波是个很要命的问题!1、谐波的危害的产生主要表现在:当电网中的电压或电流波形非理想的正弦波时,即说明其中含有频率高于50Hz的电压或电流成分,我们将频率高于50Hz的电流或电压成分称之为谐波。

当谐波频率为工频频率的整数倍时,我们将其称之为整数次谐波,这类谐波通常用次数来表示。

例如:将频率为工频频率5倍(250Hz)的谐波称之为5次谐波,将频率为工频频率7倍(350Hz)的谐波称之为7次谐波,依此类推。

当谐波频率不是工频频率的整数倍时,我们将其称之为分数谐波。

这类谐波通常直接使用谐波频率来表示。

例如:频率为1627Hz的谐波。

2、谐波产生的原因多种多样。

比较常见的有两类:第一类是由于非线性负荷而产生谐波,例如可控硅整流器、开关电源等,这一类负荷产生的谐波频率均为工频频率的整数倍。

例如三相六脉波整流器所产生的主要是5次和7次谐波,而三相12脉波整流器所产生的主要是11次和13次谐波。

第二类是由于逆变负荷而产生谐波,例如中频炉、变频器,这一类负荷不仅产生整数次谐波,还产生频率为逆变频率2倍的分数谐波。

例如:使用三相六脉波整流器而工作频率为820Hz的中频炉则不仅产生5次和7次谐波,还产生频率为1640Hz的分数谐波。

谐波在电网诞生的同时就是存在的,因为发电机和变压器都会产生少量的谐波。

但是由于产生大量谐波的用电设备不断增加,并且电网中大量使用的并联电容器所造成的谐波放大,使得谐波的影响越来越严重,从而逐渐引起人们的重视。

当电网中的谐波电流较大,以至于电压波形也产生畸变时,我们将其称之为电网被污染。

电网的污染程度用电压波形畸变率来表示,简称THDu。

按照国家标准GB/T14549-93《电能质量公用电网谐波》的规定:10KV 电网的THDu应小于4%,400V电网的THDu应小于5%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:AQ-JS-03716
( 安全技术)
单位:_____________________
审批:_____________________
日期:_____________________
WORD文档/ A4打印/ 可编辑
电力系统中谐波的危害与产生
Harm and generation of harmonics in power system
电力系统中谐波的危害与产生
使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科
学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。

电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。

本文全面论述了电力系统中谐波的危害及产生情况,希望能引起我们的高度重视。

谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面:
1.对供配电线路的危害
(1)影响线路的稳定运行
供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。

但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。

晶体管继电器虽然具有许多优点,
但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。

这样,谐波将严重威胁供配电系统的稳定与安全运行。

(2)影响电网的质量
电力系统中的谐波能使电网的电压与电流波形发生畸变。

如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。

另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。

2.对电力设备的危害
对电力电容器的危害
当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。

对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但
如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。

尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。

另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。

一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。

再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。

对电力变压器的危害
谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。

谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。

同时由于以上两方面的损耗增加,因此要减少变压器的实际使用容量,或者说在选择变压器额定容量时需要考虑留出电网中的谐波含量。

除此之外,谐波还导致变
压器噪声增大,变压器的振动噪声主要是由于铁心的磁致伸缩引起的,随着谐波次数的增加,振动频率在1KHZ左右的成分使混杂噪声增加,有时还发出金属声。

对电力电缆的危害
由于谐波次数高频率上升,再加之电缆导体截面积越大趋肤效应越明显,从而导致导体的交流电阻增大,使得电缆的允许通过电流减小。

另外,电缆的电阻、系统母线侧及线路感抗与系统串联,提高功率因数用的电容器及线路的容抗与系统并联,在一定数值的电感与电容下可能发生谐振。

对用电设备的危害
对电动机的危害
谐波对异步电动机的影响,主要是增加电动机的附加损耗,降低效率,严重时使电动机过热。

尤其是负序谐波在电动机中产生负序旋转磁场,形成与电动机旋转方向相反的转矩,起制动作用,从而减少电动机的出力。

另外电动机中的谐波电流,当频率接近某零件的固有频率时还会使电动机产生机械振动,发出很大的噪声。

对低压开关设备的危害
对于配电用断路器来说,全电磁型的断路器易受谐波电流的影响使铁耗增大而发热,同时由于对电磁铁的影响与涡流影响使脱扣困难,且谐波次数越高影响越大;热磁型的断路器,由于导体的集肤次应与铁耗增加而引起发热,使得额定电流降低与脱扣电流降低;电子型的断路器,谐波也要使其额定电流降低,尤其是检测峰值的电子断路器,额定电流降低得更多。

由此可知,上述三种配电断路器都可能因谐波产生误动作。

对于漏电断路器来说,由于谐波汇漏电流的作用,可能使断路器异常发热,出现误动作或不动作。

对于电磁接角器来说,谐波电流使磁体部件温升增大,影响接点,线圈温度升高使额定电流降低。

对于热继电器来说,因受谐波电流的影响也要使额定电流降低。

在工作中它们都有可能造成误动作。

对弱电系统设备的干扰
对于计算机网络、通信、有线电视、报警与楼宇自动化等弱电设备,电力系统中的谐波通过电磁感应、静电感应与传导方式耦合
到这些系统中,产生干扰。

其中电感应与静电感应的耦合强度与干扰频率成正比,传导则通过公共接地耦合,有大量不平衡电流流入接地极,从而干扰弱电系统。

影响电力测量的准确性
目前采用的电力测量仪表中有磁电型和感应型,它们受谐波的影响较大。

特别是电能表(多采用感应型),当谐波较大时将产生计量混乱,测量不准确。

谐波对人体有影响
从人体生理学来说,人体细胞在受到刺激兴奋时,会在细胞膜静息电位基础上发生快速电波动或可逆翻转,其频率如果与谐波频率相接近,电网谐波的电磁辐射就会直接影响人的脑磁场与心磁场。

谐波的产生
总而言之,电网谐波来自于3个方面:一是发电源质量不高产生谐波;二是输配电系统产生谐波;三是用电设备产生的谐波。

其中用电设备产生的谐波最多。

发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难
做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。

它的大小与磁路的结构形式、铁心的饱和程度有关。

铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流的0.5%。

在用电设备中,下面一些设备都能产生谐波。

晶闸管整流设备。

由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。

我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。

如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的
30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。

如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。

经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频装置。

变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。

电弧炉、电石炉。

由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。

其中主要是27次的谐波,平均可达基波的8%20%,最大可达45%。

气体放电类电光源。

荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。

分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网
造成奇次谐波电流。

家用电器。

电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。

在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。

这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。

这里填写您的公司名字
Fill In Your Business Name Here。

相关文档
最新文档