《热力发电厂》2 发电厂的回热加热系统PPT课件
合集下载
发电厂的回热系统38页PPT
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
发电厂的回热加热系统60页PPT
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
60、人民的幸福是至高无个的法。— —西塞 罗
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正人走得很慢,但是我从不后退。——亚伯拉罕·林肯
发电厂的回热加热系统
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
热力发电厂回热系统计算PPT课件
• 进出水量:A1=1;
B1=0
• 抽汽份额:α1=τ1/ q1
• #2加热器的热平衡计算
• 吸放热量:q2=h2-hw3;γ2=hd1-hw3;τ2=hw2-hw3
• 进出水量:A2=1;
B2=α1
• 抽汽份额:α2=(τ2-B2γ2)/ q2
• #3加热器的热平衡计算
• 吸放热量:q =h -h 第;14页/γ共2=6页0;τ =h -h
4.3.4 简捷热平衡计算4
• 循环吸热量
• 循环吸热量:q0=h0-hw1+(1-α1)(r-h1)
• 循环放热量
• 循环放热量:qc=αc(hc-hwc)+α3(hd3-hwc) • 式中凝汽份额αc=1-α1-α2-α3
• 循环作功量
• 作功量:wi=q0-qc • 作功量:wi=(h0-hc+σ)-α1(h1+σ-hc)-α2(h2-hc) –α3(h3-hc)
4.3.5 回热效果的完善化7 • 疏水泵的作用
• 截断疏水的自流排放,疏水热量为本级加热器回收利用 • 疏水热量回收的效果表现为出水温度提高和无疏水排放
• 热力计算
• 含疏水泵的加热器的热力过程可以等效为混合式加热器 • 出水温度提高幅度与截流的疏水流量和加热器端差有关 • 热力计算中按照混合式加热器的定义计算各种吸放热量
4.3.4 简捷热平衡计算2
• 初终再热参数
• h0=f(p0,t0);hr=f(pr,tr)
• △H=hr-hct=f(pr,tr,pc)
• hc=hr-△H*ηri (已知效率)
• hc=f(pc,xc)
(已知干度)
• 抽汽参数
• hj=f(pj,tj)
《热力发电厂》2 发电厂的回热加热系统PPT文档104页
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多加热系统
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多加热系统
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
热力发电厂ppt课件
• 用图来反映火电厂热力系统,称热力系统图。热力系统图广泛 用于设计研究和运行管理。
3
全 厂 性
主
要
热
力
设
备
系
统
锅 汽
炉 轮
本 机
体 本
体
主 蒸 汽 系 统
热
力
系
统
按
范
围
划
分
局
(d)带有两组重力布置方式的混合式加热器回热系统
p1
p2
p5 p4 p3
pc p7
p6
9
(e)带有部分混合式低压加热器的热力系统
1
2
3
4
H4
H1
H2
H3
5
H5
6
H6
7
H7 SG
2
8C
H8 SG
1
至 C
10
(一)混合式与表面式加热器比较 • 混合式加热器因无端差,热经济性高;便于汇集汽水和除氧; • 全由混合式加热器组成的系统,每级混合式加热器的水泵应有
4
第二节 回热(机组)原则性热力系统
• 回热系统既是汽轮机热力系统的基础,也是全厂热力系统的核心, 它对机组和电厂的热经济性起着决定性的作用。
• 回热原则性热力系统的热经济性用机组的热耗率 qo 来表征。现代
大型汽轮机组的 m、g 较高,均为 99% 左右。由式(1-30a) 机组热耗率 qo=3600/img 可知,如视m、g 为定值,则 qo= f (i)。所以本书在定性分析各局部原则性热力系统的热经济性 时,都用汽轮机绝对内效率(即实际循环热效率) I 来说明。
3
全 厂 性
主
要
热
力
设
备
系
统
锅 汽
炉 轮
本 机
体 本
体
主 蒸 汽 系 统
热
力
系
统
按
范
围
划
分
局
(d)带有两组重力布置方式的混合式加热器回热系统
p1
p2
p5 p4 p3
pc p7
p6
9
(e)带有部分混合式低压加热器的热力系统
1
2
3
4
H4
H1
H2
H3
5
H5
6
H6
7
H7 SG
2
8C
H8 SG
1
至 C
10
(一)混合式与表面式加热器比较 • 混合式加热器因无端差,热经济性高;便于汇集汽水和除氧; • 全由混合式加热器组成的系统,每级混合式加热器的水泵应有
4
第二节 回热(机组)原则性热力系统
• 回热系统既是汽轮机热力系统的基础,也是全厂热力系统的核心, 它对机组和电厂的热经济性起着决定性的作用。
• 回热原则性热力系统的热经济性用机组的热耗率 qo 来表征。现代
大型汽轮机组的 m、g 较高,均为 99% 左右。由式(1-30a) 机组热耗率 qo=3600/img 可知,如视m、g 为定值,则 qo= f (i)。所以本书在定性分析各局部原则性热力系统的热经济性 时,都用汽轮机绝对内效率(即实际循环热效率) I 来说明。
热力发电厂ppt课件
• 浙江玉环电厂:USC示范机组(2*900-1000 MW);江苏阚山电厂:600MW USC示范机组
• 四川白马及开远、黄角庄、秦黄岛等电厂
300MW流化床锅炉
• 山东烟台IGCC示范工程(2*300-400MW)
• 发电、煤化工多联产试点工程:如兖州 矿业集 团鲁南化肥厂(76MW发电、10万吨甲醛)
一、我国的能源资源和能源结构
• 能源资源丰富,但人均拥有量相对不足 • 以煤炭为主要能源 • 占一次能源消费量62% • 预计到2050年仍占能源消费量50% • 电力能源一直以煤为主
精选ppt
2
煤炭在总能源中比例
煤炭比例/%
100
90
80
70
60
50
40
30
20
10
0 1965 1970 1975 1980 1985 1990 1995 2000
• 计划关停小火电30GW(煤耗高达 550g/kWh以上),如其中的一半用超(超超) 临界机组替代,每年可节煤2000万吨;
• 相应的节能、节水、精节选p资pt 源和环保效益显著。 19
燃烧室 3
2 压 气 机 1
4
燃气 轮机
G ~ 发电机
9
8 余热锅炉 e
气轮机
发电机 G ~
给水 7
加热器 水泵
• 近年来我国能源需求已呈明显增长的趋势
精选ppt
4
精选ppt
5
能源利用率低,平均能耗高,产值能耗约为发达国家的4~5倍, 产品单耗比发达国家高40%,能源综合利用率不到30% 。
污染严重, CO2的排放量已成为世界第2位
精选ppt
6
二、我国火力发电工业的成就 我国电力工业的发展
• 四川白马及开远、黄角庄、秦黄岛等电厂
300MW流化床锅炉
• 山东烟台IGCC示范工程(2*300-400MW)
• 发电、煤化工多联产试点工程:如兖州 矿业集 团鲁南化肥厂(76MW发电、10万吨甲醛)
一、我国的能源资源和能源结构
• 能源资源丰富,但人均拥有量相对不足 • 以煤炭为主要能源 • 占一次能源消费量62% • 预计到2050年仍占能源消费量50% • 电力能源一直以煤为主
精选ppt
2
煤炭在总能源中比例
煤炭比例/%
100
90
80
70
60
50
40
30
20
10
0 1965 1970 1975 1980 1985 1990 1995 2000
• 计划关停小火电30GW(煤耗高达 550g/kWh以上),如其中的一半用超(超超) 临界机组替代,每年可节煤2000万吨;
• 相应的节能、节水、精节选p资pt 源和环保效益显著。 19
燃烧室 3
2 压 气 机 1
4
燃气 轮机
G ~ 发电机
9
8 余热锅炉 e
气轮机
发电机 G ~
给水 7
加热器 水泵
• 近年来我国能源需求已呈明显增长的趋势
精选ppt
4
精选ppt
5
能源利用率低,平均能耗高,产值能耗约为发达国家的4~5倍, 产品单耗比发达国家高40%,能源综合利用率不到30% 。
污染严重, CO2的排放量已成为世界第2位
精选ppt
6
二、我国火力发电工业的成就 我国电力工业的发展
热力发电厂课件_回热系统计算
回热系统的计算与分析 4.4 回热加热器的运行
4.3 回热系统的计算与分析
4.3.1 4.3.2 4.3.3
4.3.4
4.3.5
计算目的及基本公式 计算方法和步骤 热平衡式的拟定 简捷热平衡计算 回热效果的完善化
4.3.1工况时机组的经济指标和汽水流量分布 确定最大工况下的汽水流量选择辅助设备和管道 确定热力系统不同连接方式的经济性选择技改方案 定功率计算:已知功率,计算进汽量和各级抽汽量 定流量计算:已知进汽量,计算功率和各级抽汽量 简捷热平衡:单位进汽下计算各级抽汽份额和指标
机组的经济指标计算
回热效果的改善
蒸汽冷却器,减少端差,实现过热度的跨级利用 疏水冷却器和疏水泵使疏水热量得到利用
蒸汽冷却器内部传热过程
蒸汽冷却器的使用
4.3.5 回热效果的完善化5
外置式SC
外置式蒸汽冷却器 是充分利用抽汽过 热度的装置。它可 以实现抽汽过热度 的跨级利用。形式 有外置串联和外置 并联两种。前者稳 定但过热度利用少; 后者过热度利用充 分但不稳定
4.3.5 回热效果的完善化6
计算方法
基本公式
汽轮机内效率ηi=Wi/Q0=wi/q0 汽轮机功率平衡3600Pel=Wiηmηg=D0wiηmηg
4.3.2 计算方法和步骤1
热平衡计算的实质
对于含有z级抽汽的汽轮机,热平衡计算涉及z+2变量 需要已知电功率、进汽量中的1个,则含z+1个未知量 共可列出z个加热器的热平衡以及1个功率方程 并联计算:联立求解在z+1个独立的方程组 串联计算:依由高到低的顺序计算z个抽汽流量和指标 整理或取用数据(加热器参数制约关系详见后述) 用加热器的热平衡求抽汽份额;用功率方程求功率 对计算结果进行校核;并计算经济指标
《发电厂热力系统》ppt课件
2、降低压损和汽温偏向措施
热力发电厂
〔1〕采用双管(再热机组双控制主蒸汽管道系统)
随着机组容量不断增大,蒸汽参数也越来越高,为了防止采 用厚管壁大直径的主蒸汽管和再热蒸汽管,减少对价钱昂贵进 口耐热合金钢的要求,还要降低管道压损,我国目前主蒸汽管 多采用双管系统(如125MW、200MW机组),再热蒸汽管也采用 双管系统(如200MW机组)。有的机组在接近主汽门两侧主蒸汽 管之间加装联络管(如200MW机组),以减少两侧汽温偏向,并 保证一个自动主汽门作全关实验时压损在允许范围内。
3、在发电厂设计时,可以根据拟定的全面性热力系统图,编制全厂汽水设 备总表,计算管子的直径和壁厚,提出控制件的定货清单。
课题一 主蒸汽与再热蒸汽系统
热力发电厂
1、范围
锅炉供应汽轮机蒸汽的管道,蒸汽管间的连通母管, 通往用新汽设备的蒸汽支管等称为主蒸汽管道系统。 假设是再热式机组,还有汽轮机高压缸排汽口至再 热器入口的再热冷段管道,再热器出口至汽轮机中 2压、缸特入点口的再热热段管道。
2、降低压损和汽温偏向措施
热力发电厂
〔5〕采用最少的控制件
在保证运转平安可靠、经济的条件下,尽量减少
控制件,以降低部分阻力损失。如主蒸汽管道上的 流量丈量孔板改用喷嘴或文丘里管。主蒸汽管上也 可不装关断阀。
ቤተ መጻሕፍቲ ባይዱ
课题二 再热式机组的旁路系统
热力发电厂
旁路系统是再热机组启、停、事故情况下的一种调理和维护 系统。
2、两级并联旁路系统
两级并联旁路系统是由高压旁路和整机旁路组成。
高压旁路设计容量为锅 炉额定蒸发量的10%, 其目的是维护再热器,机 组启动时暖管,热态启动 时利用再热器热段上的向 空排汽阀对外排汽以提高 二次汽温。整机旁路设计 容量为锅炉额定蒸发量的 20%,其目的是将各种 运转工况多余蒸汽排入凝 汽器,锅炉超压时可减少 平安阀动作或不动作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tw2 hw2
t1s h1s
t1 h1 tw1 hw1
内置式疏水冷却器
1
1
hs1 ts1 hs1 ts1
t, °C
ts1 •
ts1
• 1 • tw2
•
t1••s
•t1 •tw1
1
A, m2
疏水 蒸汽 过热蒸 冷却段 凝结段 汽冷却段
外置式疏水冷却器
pj
p1
hj
hwj
1 hj
p2
pj+1 hj+1
pj 1
a
b
twj+1 tsj
2
twj
= tsj – twj
t, °C 2
a
1
b Δt
A, m2 ↓ ,热经济性↑
表面式加热器端差的选择
t, °C 2
a
1
b Δt
A, m2
pj 1
a
b
twj+1 tsj
2 twj
端差与换热面积的关系:
换热面积↑, ↓
t KA 1 e Gc p
无过热蒸汽冷却段: = 3~6°C 有过热蒸汽冷却段: = -1~2°C
(1)疏水逐级自流方式 ——利用汽侧压差,将压力较高的疏水自流到
压力较低的加热器中,逐级自流直至与主水流汇合
P2
P1
P3
疏水逐级自流方式
(2)疏水泵方式
——由于表面式加热器汽侧压力远小于水侧压 力,借助疏水泵将疏水与水侧的主水流汇合,汇 入点常为该加热器的出口水流中
2、两种疏水方式的热经济性分析
j+1
j
tsj
三 蒸汽冷却器及其热经济性分析
1、蒸汽冷却器
t1s
tw2
ts1
t1 tw1
2、类型 内置式:与加热器本体合成一体
外置式:具有独立的加热器外壳,布置灵活
tw2 hw2
t1s h1s
t1 h1 tw1 hw1
内置式蒸汽冷却器
hs1
t, °C
• ts1
ts1
t1s••
1
•tj •tw1 1
二 抽汽管道压降Δpj及热经济性
抽汽管道压降Δpj—— 汽轮机抽汽口压力pj和j级回热 加热器内汽侧压力 pj 之差
p j p j pj
• p j1 p j
p j
影响因素:蒸汽流速、局部阻力
• twj+1 pj
twj
pj < 10% pj (大机组取4%~6%) 分析: pj ↓ ,热经济性↑
h2
疏水逐级自流方式 ↑高压抽汽,↓低压抽汽, ↓热经济性
2、疏水冷却器的设置
t1s
t1
tw2
tw1
作用:
ts1
hs1
ts1'
hs1
(1)↓疏水逐级自流排挤低压抽汽所引起的附加冷源热
损失或疏水压降产生热能贬值带来的做功损失;
(2)↓疏水经节流后产生蒸汽形成两相流的可能性;
(3) ↑热经济性
布置方式:内置式、外置式
• tw2
蒸汽凝结段
A, m2
过热蒸 汽冷却段
作用:1)↓回热加热器内汽水换热的不可逆损失 2)↑出口水温,↓端差,↑回热抽汽做功比,↑经济性0.15-0.20%
外置式蒸汽冷却器
P3
P1
P2
•
优点: ↑最终给水温度,↑本级抽汽,↓高级抽汽, ↑经济性 0.3-0.5%,布置方式灵活
缺点: 造价高
4、蒸汽冷却器的连接方式
2.混合式加热器的结构
(1)卧式混合式加热器 用途:除氧器、大机组低加
加热蒸汽进口
凝结水进口 凝结水出口
凝结水出口
加热蒸汽进口
凝结水进口
用途:除氧器、大机组低加 (2)立式混合式加热器
第2节 表面式加热器及系统的热经济性分析
一、表面式加热器上端差 (出口端差)
——表面式加热器管内流动的水吸热升温后的出口 温度与该加热器内汽侧压力对应的饱和水温度之差
回热循环
加热器分类
汽、水接触方式 混合式加热器 表面式加热器 立式加热器
受热面布置方式 卧式加热器
立式加热器
卧式加热器
二、混合式与表面式加热器比较
1、热经济性: 2、加热器结构:
混合式高 混合式简单
3、回热系统复杂性及可靠度不可以除氧
三、加热器类型选择
角度:经济性、实用性
(1)疏水逐级自流方式(高、低加热器)
↑高一级抽汽量,↓低一级抽汽量,↓热经济性
(2)疏水泵方式(大中型机组末级低加热器)
疏水与主水流混合后,↓端差,↑热经济性
分析两种疏水收集方式的热经济性
p1
p2
p3
D1
D2
D3
p1
p2
p3
D1
D2
D3
••
h1
疏水泵方式 ↓1端差, ↓高压抽汽, ↑热经济性
•
h1
四、典型回热系统示例
1、 高、低加热器为表面式的系统
2、全混合式加热器回热系统
P1
P2
P3
3、重力方式布置的混合式低压加热器
p5
p4
p1
p2
p3
p7
pc
p6
4、带有部分混合式低压加热器的热力系统
12
3
4
H4
H1 H2
H3
567
8C
H5 H6 H7 SG2 H8 SG1
至C
五、加热器的结构
1.表面式加热器 疏水——表面式加热器中加热蒸汽在管外冲 刷放热后的凝结水
优点:进水温度高,换热温差小,做功 损失小;
缺点:给水全部流经冷却器,给水系统 阻力大,泵功消耗多
(2)并联连接
优点:给水系统阻力小,泵功消耗少 缺点:进水温度小,换热温差大,做功
损失大;回热抽汽做功少
(四)表面式加热器的疏水方式及热经济性分析
1、疏水收集方式
疏水收集——将疏水收集并汇集于系统的主水流 (主给水或主凝结水)中
第二章 回热加热系统
1 回热加热器的型式 2 表面式加热器及系统的热经济性 3 给水除氧及除氧器 4 除氧器的运行及其热经济性分析 5 汽轮机组原则性热力系统计算
第1节、回热加热器的形式
一、加热器
回热循环 ——回热加热器、回热 抽汽管道、水管道、疏 水管道组成的一个加热 系统
1 S
B2
aA
aB
7 Ⅰ 6 5Ⅱ 4
hwj+1
1
hwj+2 hj+1
下端差(入口端差)
——加装疏水冷却器(段)
后,疏水温度与本级加热 器进口水温之差
p1
p2
tsj twj1
一般推荐 =5~10℃
p1
1 ts1
水侧连接方式: (1)内置式蒸汽冷却器:
串联连接(顺序连接)
(2)外置式蒸汽冷却器:
串联连接:全部给水流经冷却器 并联连接:只有一部分给水进入冷却器
单级并联
与主水流分流两级并联 先j-1级,后j级的两级串联
单级串联
与主水流串联两级并联 先j级,后j-1级的两级串联
5、外置式蒸汽冷却器连接方式比较 (1)串联连接
分类: 卧式:大机组 立式:中小机组
水室
(1)立式表面式加热器
(U形管管板式加热器)
用途:低加、高加 蒸汽
进水
出水
上级疏水
疏水
立式高压加热器管束
(2)卧式表面式加热器
用途:大机组低加、高加
疏水 进口
防冲板
蒸汽进口
分流隔板
给水 出口
隔板
疏冷段进口
疏冷段隔板
疏水出口 管板
给水 进口
30万机组高压加热器管束