图形计算器
浅谈对图形计算器与数学实验室的认识
浅谈对图形计算器与数学实验室的认识图形计算器是一种以图形显示为主要功能的计算器。
与传统的计算器相比,图形计算器具有更强大的计算能力和更丰富的功能,可以进行复杂的计算、图形绘制、数据处理等操作。
在数学教学和实验中,图形计算器被广泛应用,成为了不可或缺的工具之一。
图形计算器在数学教学中起到了很大的作用。
教师可以通过图形计算器的图形绘制功能,直观地展示数学概念和定理,帮助学生理解和掌握抽象的数学概念。
教师可以利用图形计算器绘制函数图像,让学生通过观察图像来理解函数的性质。
图形计算器还可以进行函数的求导和积分计算,辅助学生进行数学推导和计算。
这样,学生不仅可以更好地理解数学知识,还可以提高数学计算的准确性和效率。
图形计算器在数学实验室中也有广泛的应用。
数学实验室是指专门用于数学实验和研究的实验室,通常配备了一些先进的计算工具和设备。
图形计算器作为数学实验室的重要设备之一,可以帮助研究人员进行复杂的数学计算和数据处理。
研究人员可以利用图形计算器进行数论和代数方面的实验和研究,通过图像和数据的分析,得出结论和发现新的数学规律。
图形计算器还可以进行数学模拟和实验,帮助研究人员验证和探索数学问题。
虽然图形计算器在数学教学和实验中的应用带来了很多好处,但也存在一些问题和挑战。
图形计算器的使用需要一定的技术和操作能力,对于教师和学生来说都需要一定的培训和学习成本。
由于图形计算器功能较为复杂,对计算器性能和功能的要求也比较高,这就需要购买和维护一些先进的设备和软件,增加了成本和投入。
图形计算器在数学教学和实验中具有重要的作用。
它可以帮助学生更好地理解和掌握数学知识,并提高数学计算的准确性和效率。
它也给数学教师和研究人员提供了一个强大的工具,用于教学和研究。
虽然图形计算器的使用存在一定的问题和挑战,但随着技术的发展和应用的不断深入,相信图形计算器在数学教育和研究领域会有更广泛的应用和发展。
Hp39gs操作入门.ppt
2020/11/16
3.图形计算器在国外学校中的运用
• 在国外许多高中数学老师允许甚至鼓励他 们的学生在课堂上使用图形计算器。欧美 学生中图形计算器几乎是人手一台,是很 普及的理科学习工具,在某些课程(例如 微积分中)甚至是必需的。国外中学到大 学的大部分考试都是允许带图形计算器的, 在中国北京的高中数学应用竞赛的复赛 (笔试)中,图形计算器和科学计算器是 被允许带进考场的。
• 由于图形计算器可以编程,它也广泛被用于电 子游戏。
• 一些电脑软件也可以完成图形计算器的功能。
2020/11/16
2.图形计算器的出现
• 二十世纪80年代初惠普推出了HP-28C。之後的 款式有HP-28S (1988), HP-48SX (1990), HP-48S (1991)及其他等的图形计算器。2006年推出的 HP 50g具有计算机代数系统(CAS),是目前 最尖端的品种之一。
y=1.8x+32
2020/11/16
3.三角求解器的使用
• 角度值与弧度制的切换,SHIFT MODES • 已知三角形几个元素,求另外几个元素 • 例1:已知边A=6,B=8,C=10,求三个角? • 例2:已知角B=30°,角A=60°,边C=8,
求角C,边A,边B?
2020/11/16
4.编程入门
图形计算器操作入门732012基本操作键菜单键标签菜单键aplet控制键alpha键shift键732012aplet程序应用库?function函数?inference推论?parametric参数?polar极坐标?sequence数列?solve解方程?linearsolver线性拟合?trianglesolve解三角形?statistics统计7320121
图形计算器:不可替代的“数学工具”?
图形计算器:不可替代的“数学工具”?一、图形计算器是什么?图形计算器(Graphing Calculator,缩写为GC),是一种手持的数学工具,是一种专门用于中学与大学数学教与学的手持技术。
不少人认为,它已经成为现代学校最重要的数学学习工具之一。
GC问世于上世纪80年代,其外形与大小类似科学计算器,但功能更为强大。
它兼具绘图(函数图像,甚至几何作图)、数表处理与统计计算等功能。
有的还能做代数符号演算,解决多项式、线性代数与微积分(甚至偏微分方程)中的计算问题,或称为计算机代数系统(CAS)。
有的GC不仅可与其他GC或计算机对接(通过红外或USB接口),而且能与各种传感器连接,而带有数据流的新一代GC(如hp39s等),则能很方便地用于采集处理来自现实世界的数据。
于是,这种手持技术的组合使用,又构成可移动的、便携的“数字化实验室”,使学生能很方便地进行数学与科学探究。
二、令人关注的发展作为一种常用的数学工具,GC早已经广泛应用于许多国家的大中学的数学课堂。
某些国家或地区明确要求在数学考试(包括大学入学考试)中使用GC。
其中,最令人关注的是新加坡教育部明确要求在高中数学课程中全面使用GC的规定。
他们将其看作为学生学习数学的一种不可替代的工具,将对数学课程,甚至其他学科的教学产生积极而深远的影响。
自1995年以来,我国的数学教师对在教学中尝试应用GC表现出极大的热情,积累了许多教学的案例。
个别地区已经考虑允许在考试中使用GC。
尽管如此,对GC应用的价值,人们还未形成普遍的共识。
且不谈没有接触过GC的人士,即使那些曾经用过的教师,对GC的潜在应用价值也未见得有充分的认识。
与“豪华”的计算机实验室与各种“超级”软件相比,GC显得小得可怜。
在与GC有过一段“亲密的接触”后,他们会发现GC的演示效果好像并不如几何画板、Z+Z平台以及不断更新的其他软件。
有的教师把GC的应用局限于浅层的数学直观或数学实验,不能支持更高、更复杂的数学思考。
Hp39gs操作入门
2019/F12/R4 EEZE:
其它命令
• Graphic图形命令 • loop循环命令 • MATRIX矩阵命令 • PRINT打印命令 • Stat-One和Stat-Two
命令
2019/12/4
单Menu,Fcn,选Root按菜单键Ok,同上得X=3; • 最后可得不等式解集为X<-1或者X>3
2019/12/4
• 方法二: • 从Function进入,输入F(x)=X²-2x-3>0(">"的输入法,
按MATH,选Tests,右边选">")按菜单键ok; • 按Shift Plot,设置范围; • 按Plot画出图像; • 最后可得不等式解集为X<-1或者X>3
2►A: IF A==1 THEN MSGBOX " A EQUALS 1
": ELSE MSGBOX "Xiang You Bin": END:
2019/12/4
绘图命令
例一:编程画一条线段: LINE x1;y1;x2;y2: FREEZE:
例二:编程画一个圆。 ARC 0;0;2;0;2*π : FREEZE:
求角C,边A,边B?
2019/12/4
4.编程入门
1.基本步骤: 打开编程目录(SHIFT PROGRAM), 建立新程序-命名(NEW), 编辑输入命令(MATH),
MSGBOX "Xiang You Bin"
END: 测试运行(RUN)。
2019/12/4
分支命令
例一:IF....THEN.....ELSE....END
图形计算器的作用
图形计算器的作用——观《优秀课例》有感我看了《利用导数研究不等式恒成立问题》一课,对图形计算器的使用及其作用产生了些许想法。
这节课体现出来的图形计算器的作用尤为突出,学生一旦掌握了图形计算器的使用方法,就可以利用图形计算器来研究一些有关函数图像的问题。
尤其是那些学生自己动手画函数图像较困难的问题,而使用了图形计算器后,函数图像由图形计算器自动生成,为学生从形的角度研究函数提供了便利的条件,直观、具体、形象。
这对学生学习函数有很大的帮助作用。
总所周知,函数是中学数学极为重要的内容,贯穿高中数学的始终.数、式、方程、不等式、数列、极限、导数与微分等内容都是以函数为中心,同时渗透到三角、立体几何、解析几何,更有内容丰富的函数实际应用性问题,跨学科的综合应用是函数的鲜明特征.所以,学好函数知识是学好整个高中数学的关键.但由于函数是学生所接触到的第一个研究变数之间关系的数学基本概念,从而学生无法很好的基于自身的知识背景来建构这一抽象的概念,并得到深刻的理解.函数图象是函数关系的一种直观、形象的表示,函数图象对函数的概念与性质的理解起着至关重要的作用,但由于作图很麻烦、不方便,甚至不可能作出,从而学生很难达到对函数知识的深刻理解.图形计算器的出现可以很好地学习函数知识.一、利用图形计算器有利于加深对函数知识的理解,挖掘函数知识蕴含的重要思想方法,领悟数学的本质教材的编写有其严密的逻辑体系.函数知识的编写遵循着由简单到复杂,由特殊到一般再到特殊的认知规律.在传统教学中限于技术手段,往往不能很好地呈现函数知识的形成过程,展现函数知识的内涵,挖掘函数知识蕴含的重要思想方法,领悟数学的本质,虽然学生通过一段时间的学习能解决一些问题,但对函数知识的认识往往是一知半解、残缺不全.现在利用图形计算器等信息技术手段,由“静”到“动”,“微观”到“宏观”地展现知识的形成过程,有利于学生构建完整的知识体系.如指数函数的学习中,只用“描点法”作出y=2x,两个图象,然后直接给出指数函数y=a x的性质.这有些“强加于人”的感觉,例如,学生对为什么要把底数a分为0<a<1和a>1两种情况加以讨论不一定理解,学习过程比较被动.而引导学生用图形计算器完成函数y=2x的对应值表,作出图象,并在信息技术环境下动态观察图象,形成对指数函数性质的感性认识,再让学生自由选择a的值,并用图形计算器在同一坐标系内作图象.在此过程中,学生可清楚地看到底数a如何影响并决定着函数y=ax的性质.由于函数的图象随着0<a<1和a>1自然聚集(如图1),学生可以清楚地看到a=1这条分界线,而函数的定义域、值域、单调性、特殊点(0,1)等更是一目了然.然后再通过a的连续变化来演示函数图象的变化规律,从而让学生更直观、更清楚地“看到”函数y = a x的性质.这样呈现内容,对学生发现和认识“为什么以a=1为分界点”“过点(0,1)为什么要作为性质之一”“为什么不讨论a=0和a<0的情形”(如图2,图3)等,都营造了很好的环境,使教学的开放性、探索式学习等成为可能.显然,如果没有信息技术,上述过程很难实现.利用信息技术构建的高中数学教学改变传统教学中学生围着老师转的教学模式,学生从以往的听众变成了积极的参与者,真正成为课堂的主体.把原来的数学学习过程转变成为自己学习数学的过程,使学生体会到知识产生的过程,从而对数学有更深刻的认识,产生更深刻的求知欲,也进一步激发了学生学习数学的积极性.二、利用图形计算器有利于掌握函数知识的重点,突破函数知识的难点,构建完整的函数知识体系函数的概念、函数的性质、基本初等函数是函数知识的重点,是函数知识的支撑,这些内容的理解掌握,对函数知识的学习至关重要.函数的概念、反函数、复合函数是函数知识的难点,对难点知识的突破,有利于构建完整的知识体系.在传统教学中,对重点知识的教学往往不直观、不具体,不是水到渠成,总有强加于人的感觉,揭示不深刻,不利于知识的理解掌握;对难点知识的教学往往说不清道不明,蜻蜓点水,浅尝辄止,不能有效突破.利用图形计算器可以直观、形象地揭示知识间的联系,有利于掌握重点突破难点.以往研究复合函数的性质,特别是复合函数单调性的判断,总是直接给出结论“同则增,异则减”,学生只知其然,而不知其所以然,往往疑惑不解.现在利用图形计算器研究复合函数,设,,在图形计算器上同时显示三个坐标系(如图4),画出(x,t)、(t,y)、(x,y)的对应点,认清这三组变量的对应关系.教师指定或由学生自选简单的复合函数进行作图和研究.例如:y =cos[sin(x)],设t=sin(x),y = cos(t),则如图5.学生可以研究:y =cos[sin(x)]的1.定义域、值域;2.单调性、奇偶性;3.最大、最小值等等.还可以用图形计算器直接作出图像进行检验(如图6).使复合函数问题变得直观、易懂.对复合函数的有关知识从疑惑不解到理解洞悉,由不确定到确定,由含糊到明确.利用信息技术构建的高中数学为学生营造了一个“探索数学”,“体验数学”的环境,大家可以做实验,互相讨论,积极思维,互相协作,大胆猜想,踊跃发表自己的观点,参与感比较强,在实验中学习,数学课也不枯燥了.信息技术给我们带来了生动形象的数学,以其图像的快捷性和直观性为进一步探索数学提供了必要的条件.有利于逐步培养学生科学研究的态度和意识.三、利用图形计算器有利于解决函数型实际应用问题,逐步培养科学研究的态度和意识利用数学知识来解决实际问题的一般方法,是把实际问题加以抽象概括,得出关于实际问题的数学描述,建立相应的数学模型,利用这些模型来研究实际问题.其基本步骤是:实际应用问题的解决关键在于数学模型的建立,函数模型的建立步骤是:确定变量,收集数据;根据收集的数据画出散点图;根据散点图选择恰当的函数;建立函数关系式.也就是对变量进行回归分析,得出回归方程,并进行相关性检验.这一过程需要大量的运算,甚至无法用纸和笔来解决,使我们对问题的解决变得厌倦甚至放弃.而利用图形计算器的函数拟合功能,使得对一些采集的实验数据进行分析,建立适当的数学模型变得轻松、容易.如:以下是某地区不同身高的未成年男性的体重平均值表:(1)根据上表中各组对应的数据,能否找到一种函数,使它比较近似的反应该地区未成年男性体重y关于身高x的函数关系,试写出这个函数关系式.(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8为偏瘦,那么该地区某校一男生身高175cm,体重78kg,他的体重是否正常?这个问题的解决,只要在图形计算器中输入数据画出散点图,根据散点图引导学生用学过的函数y=ax+b, y=alnx+b, y=a b x进行拟合,学生发现用y=a b x拟合较好(如图7,图8).追问:为什么不可以用y=ax2+bx+c来拟合呢?这些点的走向趋势也很符合二次函数图像的走势啊?老师和同学们一起共同进行研究,用y=ax2+bx+c来拟合,利用图形计算器算得a =0.0037 ,b=-0.4310,c=19.6973,所以,该地区未成年男性体重关于身高的函数关系式可以选为y2(x) = 0.0037x 2– 0.4310x + 19.6973.作出y1(x)和y2(x)的图像(如图9),从拟合的图像上看,两者都拟合得较好,但究竟哪一种函数要更接近实际一些呢?图9师生、生生展开热烈的讨论,最后认为,可以利用y1(x)和y2(x)的函数值与实际值C2的差的绝对值来比较两者接近程度,利用图形计算器可以方便地算出|y1(c1)-c2|的对应数值(C3列的值) ,|y2(c1)-c2|的对应数值(C4列的值)(如图10)图10显然,C3列的误差比C4列的误差要小,由此可见,函数y1(x)的拟合效果要好,所以,函数解析式为y1(x) = 2.004 1.020x,能较好地反映该地区未成年男性体重与身高的关系.利用所得函数关系式容易判断问题(2)中的男生体型偏胖.传统应用题由于受信息技术条件的约束,背景不丰富,远离时代,和学生的实际结合得不紧密,大量数据需要人为加工,题目还常常有明显的解题途径的暗示(如上例的教材解法),所以学生难以通过解这些题,提高自己数学建模的能力,领会问题解决的思想.由于有图形计算器和计算机这些信息技术工具,就使得运算繁杂、作图困难、数据处理难度大的问题,特别是一些具有真实背景的实际问题的解决成为可能.借助图形计算器,将实验、尝试、模拟、猜想、检验、调控、运算、推理、证明等作为数学学习的重要方式,更加重视学生的亲身实践活动,促进高层次数学思维,提高数学思考力度.让学生“看到”他们以往只能想象的数学,“做”他们以往不可能做的数学,使学生感受到实实在在的数学.总之,图形计算器是数学学习的有力工具,恰当地使用图形计算器,可以有效地学习函数知识,进而学好高中数学知识.。
图形计算器应用实践报告
图形计算器应用实践报告图形计算器,也称为图形处理器,是一种特殊的数字计算机,可以进行快速的图形处理,以支持信息处理、图像处理、图形视窗系统等。
现在,图形计算器已经广泛应用于学生、教师、图形设计师、绘图员、工程师等各行各业。
本文的目的是介绍图形计算器的基本结构,并通过实际应用实例,探讨图形计算器在当今社会中的应用价值。
一、图形计算器的基本原理图形计算器属于小型专用计算机,其本质是一台由多种模块组成的小型模块集成计算机。
它采用模块化结构,结构清晰、层次分明、维护方便,而且能够很好地满足多种编程语言的要求。
图形计算器的主要模块包括:运算器模块、存储器模块、编程设计模块、图形处理及显示模块、接口及控制模块等。
它们均可通过专业的软件进行组合,完成图形计算器的功能,如图形处理、信息处理等。
图形计算器作为一种通用计算机,它有自主的指令系统,可以对一般通用程序作出快速反应。
它也可以用来开发计算机编程语言,执行计算任务,完成高级计算工作。
图形计算器还可以根据执行图形处理任务而运行图形软件,并能够满足复杂的图形处理要求。
二、图形计算器的应用实践现在,图形计算器已经广泛用于教学、工程、科研等领域。
在教学中,它可以用来处理绘图、视频、图像、声音等数据,为学生提供交互式的多媒体教学环境,以激发学生的学习兴趣;在工程中,它可以用来分析图形信息,实现快速的绘图处理;在科研中,它可以辅助科学家们处理大量复杂的数据,进行复杂的数据分析及模拟,更好地发现科学现象及探索新的科学知识。
在本次实践中,我们使用的是HP-48GX图形计算器,它采用的操作系统是HP-48G作系统,主要用于处理科学和工程运算。
首先,我们使用“编程语言”模式开发了一个求解一元二次方程的程序,编写程序过程也相当容易。
我们还利用HP-48GX图形计算器计算了一些复杂的数学公式,如三角函数,并能够利用图形计算器绘制出函数图像,更好地理解它们的特征。
三、图形计算器的应用价值图形计算器的出现,给传统的计算机编程和数据处理带来了巨大的变革,它的应用价值不容小视。
TI-89_Titanium
2.剥开随产品附带的四节 AAA 电池的包装,将它们放到电池盒里。放置的时候依据电池盒 里的图示确定正负极。 3.将电池盖盖好。应当听见盖子发出“咔”的声音。 第一次将 TI-89 Titanium 计算器开机 安装好电池之后,按“ON”,应用程序桌面会显示出来。 注意:如果您的计算器将预先安装的应用程序初始化,那么将不会出现应用程序桌面,而出 现一个进度条,并显示“Installation in progress . . . Do not interrupt!”。为避免丢失应用程序, 请勿在初始化时将电池拿出。(您可以从产品光盘或 重新安装应用程序。) 调 节 对 比度 *要使屏幕变亮,持续按“◆”,按“-”。 *要使屏幕变黑,持续按“◆”,按“+”。 应 用 程 序桌面 应用程序桌面是操作您的 TI-89 Titanium 计算器的最初位置。已安装的应用程序分类的以图 标的形式显示在应用程序桌面上。通过应用程序桌面,您可以: *打开应用程序。 *选择与编辑应用程序的类别。 *浏览计算器中安装的所有应用程序。 *浏览选中的应用程序的全名。 *查看与编辑时间与日期。 *检查状态栏的信息 *查看分屏幕模式的信息 在任何时候,要回到应用程序桌面,只需按“APPS”。会出现上次选中的类别,并且光标停 在上次选中的应用程序上。 关 闭 计 算器 按“2nd”“OFF”。下次打开计算器时会出现应 用程序桌面,之前的设置与 内存的内容保持 不变。(如果您关闭了应用程序桌面,将显示计算器的主页面。) 您可以用以下方式中的任意一种来关闭 TI-89 Titanium 计算器。 “2nd”“OFF”:
HP Prime图形计算器触摸版说明书
DatasheetHP Prime Graphing Calculator Touch-enabled.Full color.Revolutionaryfunctionality.Experience handheld calculating in the age of touch with the HP Prime Graphing Calculator.This full-color, multi-touch calculator has touchscreen or keypad interaction,powerful math applications,formative assessment tools,wireless connectivity1,and a long-life, Li-ion rechargeablebattery.College Board and IB approved.Rest easy with a calculator that’s College Board-approved for use on the PSAT/NMSQT®,SAT®,SAT®Subject Tests in Mathematics,and select AP®Exams;and InternationalBaccalaureate®-approved for use on IB Diploma Programme examinations.So many applications in such a small package.Easily switch between symbolic,graphical,and numerical table views with dedicated buttons.Explore math concepts with Dynamic Geometry,CAS,Advanced Graphing,and spreadsheetapplications.The calculator you’ll want to hold on to.Say hello to the evolution of handheld calculating in a sleek,slim,brushed metal design thatlooks great and performs even better.Keep the calculator protected when it’s not in use withthe slide-on protective cover.Enjoy a feature-rich calculating experience with a familiar HP keypad and l arge3.5-inchdiagonal, multi- touch display.Featuring:●We don’t stop at hardware.You also get an integrated tool suite.HP Equation Writer supports multiple linear andnon-linear equation solving.HP Solve is a time-saving application that allows you to store equations and solve forvariables.●Be productive longer with the lithium-ion rechargeable battery.When you need to charge up,the convertible chargerworks with the USB connection on your PC or a standard AC wall plug.●Create a formative assessment bundle by using the HP Prime Wireless Kit1and HP Connectivity Kit2to wirelesslyconnect an HP Prime Graphing Calculator to a PC and enable teachers to poll students and view their work in real-time.●Turn the calculator into a testing tool with a test-mode configuration that makes only pre-approved functionsavailable.1Compatible only with HP Prime Graphing Calculator SKU G8X92AA.The HP Prime Wireless Kit is sold separately and includes one PC antenna and30wireless modules,with bi-directional transmission range up to15 meters.2The HP Connectivity Kit is included with the HP Prime Graphing Calculator(G8X92AA only).Keypad or touchscreen. You decide.HP Prime Graphing CalculatorPart number G8X92AADisplay320x24016-bit TColor Touch Screen(10lines x33characters+menus+header)Display type TFTEnclosure material PlasticEntry system logic RPN;Algebraic;TextbookMenus/Prompts YesKeyboard AlphanumericBest used for Engineering;Computer science;Surveying;Trigonometry;Statistics;Geometry;Biology;Chemistry;PhysicsGraphing Functions2-D Function,Polar,Parametric Plot;Differential Equation,Bar Plot;Histogram,Scatter Plot;Find:Intersect,Extremum,Slope,Area;Zoom,Trace, Co-ordinates,ShadeMath functions+,-,x,÷,?,1/x,+/-,In,ex,x?y;yx,LOG,10x,x2,%,?,n!;Fractions;Degrees,radians,or grads mode;Trigonometric functions/inverses;Hyperbolics/inverses;HP Solve application(root finder);Numeric Integration;Symbolic Integration;Numeric differentiation;Symbolic differentiation;Complex number of functions;Polynomial root finder,Taylor series;Absolute value,round;Integer,&fractional part of a number;Modulo function,floor,ceiling;CAS systemExpansion features USBMemory256MB flash memoryPower supply Lithium Ion rechargableAuto power off User selectable,default5minutesWeight228g(8.04oz)Dimensions18.23x8.58x1.39cm(7.13x3.38x.55in)Warranty Limited1-year warranty(may vary by region)What's in the box Calculator;Hard Cover;Quick Start Guide;CD(connectivity software and User Guide);USB cable;USB power supplyThe product could differ from the images shown. © 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to changewithout notice. Specific features may vary from model to model. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical oreditorial errors or omissions contained herein.Learn more at 4AA5-9099ENUS, June 2015。
《初识TI图形计算器》课件
目录
• 引言 • ti图形计算器的功能介绍 • 如何使用ti图形计算器 • ti图形计算器的应用实例 • 总结与展望
01
引言
什么是ti图形计算器
定义
TI图形计算器是一种便携式科学 计算器,具有图形和数值计算功
能。
发展历程
TI图形计算器始于20世纪90年代 ,随着技术的发展,其功能日益强 大,成为学生和科研人员的重要工 具。
特点
轻便、易携带,具备多种数学和科 学功能,适用于多种学科领域。
ti图形计算器的用途
01
02
03
04
教学辅助
在数学、物理、化学等学科中 ,TI图形计算器可以帮助学生 进行数值计算和绘制图表。
科研工具
在工程、科学、医学等领域, TI图形计算器可用于数据分析
、模拟和算法开发。
竞赛应用
在数学竞赛、物理竞赛等赛事 中,TI图形计算器是必备的辅
极限和导数计算
在数学分析中,ti图形计算 器可以用来计算函数的极 限和导数,辅助学生理解 微积分的基本概念。
物理问题模拟
力学模拟
ti图形计算器可以模拟物体的运 动轨迹和受力情况,帮助学生理
解力学的基本原理。
电路分析
在电子学中,ti图形计算器可以 用来模拟电路的工作原理,帮助
学生理解电路的基本概念。
Q
我的计算器突然不能开机了,怎么办?
A
可能是电池松了或按键卡住。请检查电池并确保所有 按键都正常工作。若问题持续存在,建议联系技术支持 。
04
ti图形计算器的应用实例
数学问题求解
代数方程求解
使用ti图形计算器可以方便 地求解代数方程,如线性 方程、二次方程等。
TI-NspireCX-CCAS图形计算器操作指南
/X /C /V /Z /Y
/k 即 Ð /_ t /.即 Ì /g 即 Ê /h 即 Ë = /=即 Í º /q 即 Ò /v 即 Ý
/+即× /-即 Ø
导航 页顶 页尾 上页 下页 环境菜单
/7 /1 /9 /3 /b 即«
文档导航 显示上一页 显示下一页 显示页面大纲
我的文档
1 未保存的文档 2展开的文件夹 3折叠的文件夹 4 状态指示 5 文件大小
新建文档
在主页上按 1 键,或者直 接选择应用程序新建文档
3
1 页面选项卡-标明问题编号和页面。 2 状态图标指示器-指示组合键是否激活中,并显示电池电量。
组合键激活指示 指示/g 是否被激活 电池电量
3 文档名称-显示使用中的文档名称及保存状态。
为图形计算器充电
图形计算器的标准包装盒中随带一根标准 A 到迷你 B 的 USB 线缆,可以使用该线缆将图形计算器连接到计算 机进行充电。也可以将一台或多台图形计算器放在与图形计算器配套的 Docking Station 中进行多台计算器的充 电。 在充电的过程中,可以在主页的状态下,按 Ä 设置 Ã 状态…看到如下的界面,就可以看到图形计算器已经 充电到多少的状态了。
:正在充电 :显示电量
使用目录
使用目录键在计算器输入行中插入命令、符号、表达式模板 或其他功能。
1. 指令与函数功能模板,按照字母顺序排序; 2. 数学运算功能模板; 3. 度量单位模板; 4. 符号控制面板,包含特殊字符; 5. 数学表达式模板; 6. 公用库(LibPub)
使用表达式模板
举例:
7 n =3
您可以利用几何应用程序进行下述操作:
T I 图 形 计 算 器 基 本 操 作
44
44 44
voyage 200 方式设置介绍 ---- MODE键 (1)
方式设置
第1页 第2页 第3页
作图方式 ..... 当前文件夹.... 数据位显示.... 角度单位...... 指数格式...... 复数格式...... 向量格式...... 精致显示......
回车确认 ESC取消
例三、绘制极坐标 r8sin 2.5()函数的图象。
1、方式设置:按 键,显示图象方式设置菜单,将其中的Graph(作图) 设定为 POLAR(极坐标),Angle(角度)设定为RADIAN (弧度制)
2、输入函数:按 (Thick)
键,显示Y=编辑器,输入函数图象Style(样式)为粗线
3、设置窗口:按 设置窗口变量,
方式的设置 (Mode)
进入函数编辑器 (Y= Editor)
进行窗口设置 (Windows)
作图功能 (Graph)
方法一: 选中3:Windows 方法二: +3
方法三:按 +E
方法一: 选中 2:Y=Editor
方法一: +2
方法三:按 +W
方法一: 选中 4:Graph
方法二: +4
方法三:按 +R
voyage 200 (CAS)计算机代数系统简介
按 开机 按 关机 CAS或称Home(主屏)为开机后
系统默认状态
菜单栏 表达式与结 果及显示栏 输入栏 状态栏
voyage 200 (CAS)计算机代数系统简介
F1
1. 打开 2. 保存 3. 新建 4. 剪切 5. 复制
6. 贴帖 7. 删除 8. 清屏 9. 格式 A. 关于
2、计算 arctan3e4 1 15
TI—83 plus图形计算器常用功能简介
TI—83 plus图形计算器常用功能简介一、基本代数功能(一)MATH运算访问MATH(数学)菜单,可按 。
菜单中有四个子菜单,它们分别是:MATH(数学)、NUM(数值)、CPX(复数)以及PRB(概率)。
(二)角度和关系运算访问ANGLE(角度)菜单,可按ψ[ANGLE]。
ANGLE菜单显示与角度有关的指令。
但要注意的是:Radian/Degree方式设置会影响计算器对指令的解释。
访问TEST(关系)菜单,可按ψ [TEST]。
TEST菜单有两个子菜单:TEST(关系)和LOGIC(布尔)。
1.ANGLE菜单介绍1:。
度表示。
5:R④Pr(给定x和y,返回r。
2:’DMS分表示。
6:R④Pθ(给定x和y,返回θ。
3:r 弧度表示。
7:P④Rx(给定R和θ,返回x。
4:④DMS 以度/分/秒显示。
8:P④Ry(给定R和θ,返回y。
2.TEST菜单1:= 相等。
3:> 大于。
5:< 小于。
2:≠不等。
4:≥大于等于。
6:≤小于等于。
关系运算符比较两边的值,当判断为真时返回1,判断为假时返回0。
二、函数作图功能【例】用边长为60cm的正方形铁皮在四角各剪去一个小正方形做成一个无盖水箱,问水箱底面边长取多少时,才能使所得的水箱容量最大,并求出最大容量。
1.设置函数Func 按ζ(图1)图1 图2 图3ζ菜单介绍分类按屏幕顺序数字记数法:Normal(通常)Sci(科学)Eng(工程)小数位数:Float(浮点)0~9(小数位数)角度单位:Radian(弧度)Degree(角度)作图类型:Func(函数)Par(参数)Pol(极坐标)Seq(数列)Connected(用线连接)Dot(点)是否连接图象点:是否同时绘图:Sequential(一个接一个)Simul(同时)显示结果:Real(实数)a+bi(直角坐标复数)re^θi(极坐标复数)屏幕方式:Full(整屏)Horiz(水平)G—T(图形—表)2.建立体积y与x的关系:在ο编缉器中输入函数解析式:y=(60-2x)(60-2x)x(图2)3.设置窗口变量:考虑到x的变化范围为0<x<30,估计y的范围是0<y<19000。
浅谈对图形计算器与数学实验室的认识
浅谈对图形计算器与数学实验室的认识【摘要】本文将从引言部分介绍图形计算器与数学实验室,接着探讨图形计算器的优势和数学实验室的作用。
然后列举图形计算器在数学实验室中的应用,并分析数学实验室对学生的帮助。
最后讨论图形计算器与数学实验室的结合,探究它们共同推动数学教学发展的作用。
结合实际案例与数据,从理论和实践两个层面充分展示图形计算器与数学实验室对数学教学的重要性和价值。
通过深入分析图形计算器与数学实验室各自的优势和作用,以及二者结合的意义,为促进数学教学的创新和提高教学质量提供了有益的借鉴与思考。
最终得出共同推动数学教学发展的结论,强调图形计算器与数学实验室在当代数学教学中的重要性和必要性。
通过本文的阐述,读者将更深入地了解图形计算器与数学实验室在数学教学中的作用和重要性,以及它们如何共同助力数学教学的创新与发展。
【关键词】图形计算器、数学实验室、数学教学、优势、应用、帮助、结合、发展、学生、介绍1. 引言1.1 图形计算器与数学实验室的介绍图形计算器和数学实验室是现代教育中不可或缺的工具和资源。
图形计算器是一种能够进行数学计算和绘图的设备,通过其强大的功能和易用性,可以帮助学生更好地理解和掌握数学知识。
数学实验室则是一个专门用于进行数学实验和实践的场所,提供了丰富的数学资源和设备,让学生可以进行更深入的学习和探究。
图形计算器和数学实验室的介绍为学生提供了更加丰富和有效的学习资源,帮助他们更好地掌握数学知识,并提高数学学习的兴趣和动力。
两者的结合不仅可以促进学生的学习效果和成绩,还可以激发学生的创造力和实践能力,共同推动数学教学的发展。
2. 正文2.1 图形计算器的优势图形计算器的优势在于其能够快速、准确地进行数学计算,帮助学生更好地理解和掌握数学知识。
图形计算器具有强大的计算功能,可以进行复杂的运算和图形绘制,帮助学生解决繁琐的计算问题。
图形计算器可以实现多种运算和函数的图形表达,使得数学概念更加直观和具体,有利于学生深入理解数学知识。
图形计算器——高中数学有效教学的利器
195教育视窗2020年第8期高中数学课堂是重要的科学之一,其在教学上的重要性不言而喻,是高考必考的科目之一。
高中数学教学方式的创新和改革是教学中重要发展内容,在传统教学中,很多学生对高中数学存在力不从心感受,对数、图、形基本是一篇模糊,而图形计算则是数学教学利器,可以非常巧妙有效解决这一困难问题。
图形计算器应用于数学教学中是数学教学中的新形式,可以将数学中的一些函数绘制图像、方程组等进行准确计算,而且功能非常强大,所含括的范围比较广,在图形计算器上可以同时显示多行文本的功能。
另外图形计算器还具备符号代数、几何操作以及数据分析系统等,能将各个图形更直观绘制出来,是数学学习的重要工具。
本人认为图形计算器是高中数学教学的利器,主要是图形计算器具有小巧便捷的特点,利于数学课堂上的应用开展,助推数学进一步发展,为数学教学提供了更大工具性支持。
1 图形计算器的功能及特点1.1 图形计算器的功能数学课堂教学中图形计算器提供一种更直观的教学手段和研究环境,尤其是数学符号上,可以更直观、准确的借助图形计算的基本功能。
图形计算器可以快速进行数学的实践和应用,提高教学研究的效率。
图形计算器主要功能体现在其的数值预算、作图、统计、金融、程序、计算应用等多种功能。
在数学课堂上,还可以提供更直观的教学研究,引导学生能更深入理解数学的一些结论、定义或是法则,理解到数学知识的本质内容,并不断给学生创设更好自主学习的教学环境,通过自主学习合作探究,获取更多的知识和运用能力。
1.2 图形计算器的特点图形计算器在数学中的应用具有几个特点。
(1)便携性:图形计算器是针对数理研究学习的工具,其本身的就特点就需要够方便、体积不大,这样携带起来比较便捷。
数学教学可以作为课堂的必备教材工具之一,可以在课堂上随时体验它的价值和意义。
(2)网络性:可以通过端口连接,可以展示计算器之间的数据交互特点,利于数据的整合运用。
(3)专业性:图形计算器是针对数理应用的新型技术产物,可以通过收集、分析、分类进行各个学科研究,比如数学、物理、化学、生物等的研究,更显其专业的特性。
TI-83图形计算器在高中数学教学中的应用.
TI-83图形计算器在高中数学教学中的应用宜川中学 邹秀琴传统的数学教育模式,是教师在前面讲授定义、公式和解题方法,学生在下面听,记住老师所讲的基本解题技巧,背熟公式,并做大量的练习题,这种教学模式的重要弊病就是忽视了对学生的创新能力、分析解决实际问题能力的培养。
同样传统的数学考试模式主要考察学生与解题相关的记忆能力、计算能力和分析能力等等,实际上很大程度上是在考察学生解数学题的能力,无法考察学生进入社会参加工作所需的自己动手利用仪器解决问题的熟练程度的能力。
如今,教育者越来越清晰地认识到学生学习数学是一个不断地同化新知识、构建新知识的过程,只有通过学生自身的操作活动和主动参与才是最有效的,也只有通过学生自身的情感体验、树立坚定的信心才可能是成功的。
随着现代科学、信息技术的发展,计算器、计算机、多媒体技术在教育中的广泛应用为数学教育创造了广阔的天地。
特别是图形计算器进入数学课堂之后,更为学生主动去探索数学,主动参与数学实验提供了良好的技术支持。
本文利用TI-83图形计算器为例,介绍两个数学教学活动。
一、 数学概念的多重表示及相互转换数学概念与过程的表示涉及到数学的本质,数学家们可以用各种形式来表示自己所发明创造的模式,而一种表示方法往往代表了一种思维方式,或者一个研究领域。
犹如心理学已论证的:有人倾向于用图形表达,而其他一些人却更擅长线性的文字表达或计算。
因此心理学家建议用多种形式展示数学课程内容,以使各种学生都有机会更好学习数学。
案例1:把物体放在冷空气中冷却,如果物体原来的温度是B ºC ,空气的温度是A ºC ,t 分钟后物体的温度C 可由经验公式()kt C A B A e -=+-求得,这里的k 是一个随着物体与空气的接触状况而定的正的常量。
现有62ºC 的物体,放在15ºC 的空气中冷却,1分钟后物体的温度是52ºC ,求冷却后多少分钟物体的温度是42ºC ,32ºC ,22ºC ,15.1ºC (精确到四位有效数字)。
浅谈对图形计算器与数学实验室的认识
浅谈对图形计算器与数学实验室的认识图形计算器是一种集计算、绘图等多种功能于一身的小型计算器,它具有界面友好、操作简单、功能强大、便携性好等特点。
而数学实验室是一个专门用于进行数学实验与研究的实验室,通常配备有一系列先进的数学实验设备与软件,能够提供高效的数学实验环境。
在当今的数学教学中,图形计算器与数学实验室之间有着密不可分的联系。
一方面,图形计算器可以作为数学实验室中的一个重要工具,为学生提供高效、便捷的数学实验环境。
数学实验室也可以提供更加广阔的实验平台,使得学生能够更深入地了解和应用图形计算器。
图形计算器作为数学实验室中的工具,极大地方便了学生们进行实验与研究。
图形计算器不仅可以进行基本的算术运算,还可以进行复杂的函数图像绘制、方程解法、统计分析等等。
这为学生们提供了一个快速验证数学理论与推导的工具,加快了实验与研究的进程,提高了实验结果的准确性。
图形计算器还可以在数学教学中起到辅助教学的作用。
教师可以利用图形计算器进行示范演示,直观地展示数学概念和运算步骤。
学生们通过观察和模仿,能够更深入地理解数学理论,提高他们的学习效果。
图形计算器还可以帮助学生们进行有效的自主学习,提高他们的学习兴趣和学习动力。
在充分利用图形计算器和数学实验室的也需要注意其合理的使用。
教师需要确保学生们对图形计算器的基本操作和使用方法有一定的掌握。
教师需要根据具体的教学目标和课程内容来确定何时使用图形计算器和数学实验室,以及如何使用。
不能片面追求工具的使用而忽视数学原理的学习。
教师还需要设定适当的实验任务和评价标准,引导学生们进行独立思考和实践操作,培养他们的实验能力和创新精神。
图形计算器与数学实验室是当今数学教学中不可或缺的工具和场所。
它们为学生提供了一个高效、便捷、广阔、深入的数学实验环境,有助于培养学生的实验能力和创新精神,提高他们的解决问题的能力。
教师和学生应充分利用这些工具和资源,合理使用,发挥它们的最大作用,推动数学教学的改革与发展。
浅谈对图形计算器与数学实验室的认识
浅谈对图形计算器与数学实验室的认识图形计算器和数学实验室是现代数学教学和研究中重要的工具和环境。
图形计算器是一种具有计算和绘图功能的小型电子设备,它能够快速计算数学问题并可视化结果。
数学实验室则是一个配备了计算机和相关软件的专门用于数学教学和研究的实验室。
一、图形计算器的作用和优势图形计算器在数学教学中起到了重要的作用。
它可以帮助学生更好地理解数学概念和解题方法,提高解题能力和数学思维能力。
具体来说,图形计算器的作用和优势主要有以下几点:1.图形化展示:图形计算器可以将数学问题的解以图形的形式展示出来,使学生对数学概念和解题过程有直观的认识。
通过绘制函数图像,学生可以更好地理解函数的性质和变化规律。
2. 解题工具:图形计算器具备强大的计算功能,可以快速解决复杂的数学问题。
它可以进行数值计算、代数运算、方程求解、微积分等,同时还可以进行统计、概率和矩阵运算等。
学生可以借助图形计算器进行多种数学运算和问题的求解,提高效率和准确性。
3. 数学实验:图形计算器还可以用于进行数学实验,通过调整参数和观察图像变化,学生可以探索数学规律和性质。
这种实验性的学习方式可以培养学生的探究精神和创新能力。
4. 数学模型和应用:图形计算器可以帮助学生构建数学模型,解决实际问题。
学生可以利用图形计算器绘制图形来分析数据、预测趋势、做出决策等。
这种将数学应用于实际问题的过程可以提高学生的实际运用能力和问题解决能力。
二、数学实验室的作用和意义数学实验室是一个集教学、研究和实践于一体的专门场所,对于数学教学和研究具有重要的意义。
数学实验室具有以下作用和意义:1. 提供学习和研究的环境:数学实验室提供了一个学习和研究的良好环境,学生和教师可以在实验室中使用计算机、图形计算器等工具开展数学学习和科研活动。
实验室可以集中各种数学资源和工具,为学生和教师提供便利。
3. 互动和合作:数学实验室是一个促进师生互动和合作的场所。
教师可以通过实验室教学促进学生的主动参与和合作学习,学生也可以在实验室中相互交流和合作。
例谈图形计算器处理数列问题的特点与优势
解法2 按键l D l ● l s I s( 2 — — e 输入 N q
’ 。 。 。。’… 。 。 。 。
。。警 s等 )圜 一 一 (。一i c s n) 。 一 圈 囡
( 将数列口 赋值给数组 L)2 D—l A I 1l I s T N T
+一 (
一
十。 3)
2 +( j 一… ] 3
高中理科教学仪器配备标准 作为一种有效
的教 学辅助 工 具 , 形计 算 器在 数 学 教 学 中 图
L 『
的作用 和优 势正 日益 引起 人 们 的注 意. I T 图
形计 算器 ( 下 简 称 “ ” 作 为计 算 器 的 高 以 TI) 端产 品 ( 国德 州 仪器 公 司生 产 文 以 T - 美 本 I
般计算 器 的优点 之一.
数列 多种形 式 的呈现不 仅是 源于数学 自
身 的本质 属性 , 而且 也 体 现 了“ I 特有 的数 T” 学 品质 和科技含 量.
图 1 5 图 1 6
第3 第 1 0卷 期
2 1 年 1月 01
数 学 教 学 研 究
4 1
s (i e nt ( / +i × 3) nt( 7 ) X/ , ×, 1, X, 1 0 日 只n ÷L2 s (。 。 l 1
S / )
}; : 茎 N‘ f 2 j = 茎
只 :
只 。
■
_ - -
( 水 乖 n 兀4
1 2
81 91 D 晕 on
E d n e / : s Di p ¨ 宣 , “ ) N) 、 舡 R = ( l . I , R … ,R 抒、 。 、 ’
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形计算器:对学习困难的学生的教学建议
通过Marcee M. Steele
介绍
在课堂上高中代数、几何老师将图形计算器广泛应用的今天,国家和国家数学课程标准建议他们将之用于班级工作、测验和作业中(Dion, Jackson,Klag, Liu, & Wright, 2001)。
由于最近的立法,包括2004年IDEA和不让一个孩子掉队的规定,多数轻度残疾学生被放置在普通的教育班级。
虽然图形计算器显然是对教师和学生有用的资源,但计算器对学习困难的学生经常提出挑战。
本文的目的是描述受到图形计算器使用干扰的学习困难学生的特征,然后提出建议,帮助学生和教师在代数和几何课程上取得成功经验。
学习困难学生的特点
学习困难的学生
普通代数I、代数II和几何课程教育中学习困难的学生有这样的分类,如学习障碍(LD),行为障碍(蓝光),沟通障碍(CD)和注意力缺陷/多动症(ADHD)。
虽然分类是不同的,但学生的许多特点表现出相似性,使用图形计算器时可能出现障碍。
以下各节描述了轻度残疾人士的典型特征和他们在使用图形计算器时出现的有关问题。
加工障碍
许多有LD,CD和ADHD的学生都显示出有加工障碍(Mercer and Mercer,2005)。
拥有视觉处理障碍的学生,例如,可能很难记得图形计算器的功能键,看起来类似的负号和减号键和有“X“的各种键在用途上会出现混淆。
他们可能还有为问题按下正确命令键需要有几个步骤而麻烦。
在一个分段函数的图形中,学生可能很难记得为了包容设置模式,进入每个包容真理功能和价值观,添加,选择视窗,图形和使用跟踪功能的所有步骤。
有视觉处理问题的学生,也可能在解释图形产生的原因上有麻烦,如着色不均衡的图形或包括几条线的线性系统的图形。
另一方面,听觉处理障碍,在当老师介绍了如何使用计算器处理各种问题时,可能干扰学生理解口头报告或演讲的能力。
当口头提出通过选择窗口,一个圆圈用中心和半径,使用变焦和绘图功能,并进入中心坐标和半径的一种图形解释时,可能会引起混淆。
此外,机动处理障碍可能使其难以按正确的键,即使学生知道所需的命令和步骤。
精细的动作协调要求可能难以用计算器来精确。
例如,钥匙都很小,并且靠在一起,有很多机会会打开错误的钥匙或者在一起的两个钥匙。
学术匮乏
低于平均学术技能水平,例如阅读和写作也可以干扰数学成绩,是有LD, BD and ADHD
障碍的学生的典型特征。
(Mastropieri &Scruggs, 2004)。
阅读有问题的学生在理解使用计算器明确的步骤和程序手册以及教科书解释时会有困难。
例如,长篇的和详细的解释,即在手册中往往包含复杂的词汇和句子结构,使他们很难理解。
写作能力差,让学生在课堂上记录适当的注释说明变得困难,因此,他们可能无法按照自己笔记本上记录的步骤和方向进行操作,导致功课和测验表现不佳。
如果学生有的步骤写了错误的命令或有遗漏,他们将不能够准确的将自己的操作用于练习和复习中。
行为问题
一些与BD 和ADHD(Mercer& Mercer, 2005)有关的社会、情绪和行为问题可能会影响成功的数学成绩。
有注意力缺失的学生往往会失去对有多个步骤的图形问题的关注。
在进入两个方程,改变观察的窗口,使用交互功能,然后确定解决方案之前,即使学生知道如何使用多项式方程组找到解决方法,他们可能也会感到沮丧甚至想要放弃。
有社交技能障碍的学生可能对教师经常在课堂作业和项目中使用小组活动产生麻烦。
学生可能会由于只把计算器用
来玩而忽略了注意课程和学会如何正确使用它们而惹上麻烦。
语言障碍
语言障碍是有LD 和CD障碍的学生的特点(Mastropieri &Scruggs, 2004),会给数学教学带来挑战。
当老师试图解释使用图形计算器的步骤或方向时,接受性语言问题会导致课堂演示混乱; 另一方面,语言表达问题,使一些学生需要没有尴尬的去寻求援助难以达到。
认知障碍
低于平均认知水平,如概念化,抽象推理和归纳(Mercer & Mercer, 2005)将使一些学生当情况与在课堂上略有不同时,难以用他们的知识和技能去解决家庭作业中的问题。
他们难以用新知识去解释在代数和几何中数学教学的关键问题。
尽管解释问题帮助学生看到了数学在现实世界中的应用,但为用计算器给表格和图形录入数据使用的众多方程,数字,变量和输入步骤等长期问题可能会非常的复杂。
当教师和学生使用图形计算器时,这些有学习困难典型特征的学生的成功会受到影响,在下面的页面表1做了总结。
然而,代数I,代数II和几何教师可以利用战略,提高所有学生的成功可能性。
对在代数,几何中使用图形计算器有学习困难的学生的建议
若干修改和干预措施,将使教师和有学习问题的学生在涉及图形计算器的课堂上获得成功。
下面的讨论包括了对学生良好的研究和建议的做法与学习有关的例子和图形计算器使用的应用程序问题的说明。
记忆策略
如果学生有记忆问题,教师可以利用记忆策略,以帮助他们记住他们所需要的步骤和程序(Mercer &Mercer, 2005)。
教师和学生程序需要一个特殊的问题。
仿真软件,是通过各种公司提供的,是教师可以利用它为学习困难的学生纳入一种多种感官的课程的另一种技术的例子。
该软件提供了一个使用电脑屏幕上的图形计算器(视觉输入)准确的模型,并为教师在
他们的使用和应用问题上提供了一些记录或者使用有指令的预先录制的脚本(听觉输入)的选项(TI-SmartView, 2005)。
建模
模型可以为学生提供处理问题所需要的更多范例。
教师可以用几个例子和模型,来阐明程序,从而帮助学生为其他问题归纳出步骤(Salend,2005年)。
如果在书中为使用图形计算器提供的用法说明书和解释是混淆不清的,教师的例子可以帮助阐明。
此外,脚手架涉及建模的一个过程,其中教师通过程序与学生谈论,然后学生最终学会了通过它们的步骤和步骤提示去学习(Polloway, Patton,& Serna, 2005)。
在个人,小组或全班设置中,教师可以为学生提供通过使用图形计算器展示一个问题的步骤顺序的支持。
然后,学生可以通过必要步骤,指导,最后当他们准备好,学生可以独立的练习步骤。
分块
有时程序在一个长问题里需要被分解成非常小的步骤,为了学生获得成功需要实行额外的重复和复习(Mastropieri& Scruggs, 2004)。
例如,使用正弦建模,学生可以分散情节图练习,直到掌握散点图图形,然后添加的正弦回归图之前,最后检查是否添加该模型是一个不错的选择。
样本问题
有记忆障碍的学生也将受益于步骤记录,程序和实例的问题被写在他们笔记或笔记本中的一部分,所以他们有很难记得的东西时每次都有一些东西去参考(Salend,2005)。
也许这些提醒甚至可以用于测试开始,直到学生能够记住自己所做的大量的练习和复习。
通过解释非常容易的词汇和简单的句子,对使用计算器解决各种问题的用法说明书可以进行阐明。
学生应能用自己的话重复这些指示,以确保他们知道在功课试验之前使用这些规则。
学生提问
鼓励学生提出问题是在数学教学中对学习困难的学生非常有利的(Polloway, Patton,& Serna, 2005)。
对提出有关计算器和使用计算器解决问题的步骤的问题,应该得到鼓励。
此外,笔记应进行检查,以确保学生在做功课或测试学习前有正确的信息。
现实的例子
真实生活中的例子也有利于确保学生了解各项程序和使用图形计算器的目的。
例如,Cyrus 和Flora,建议教学用现实例子的技术来说明概念学习和应用(2000)。
Osawa提供了一个现实生活中的例子,他在一个高中的学生参加的接力比赛中使用了一个图形计算器,为的是生成解决一个问题需要的数据。
为了在数学课上获得成功,学生们显示出一个很高的兴趣水平和动力,这是一个整体更好的学习数学的态度和对工作附加问题的兴趣。
此外,根据教师使用了现实生活中的例子和图形计算器,学生在课程中获得了对具体的概念和程序更多的深入了解。
实践,实践,实践
有足够的时间去练习问题,单独和小团体的使用图形计算器将使学生十分受益。
这样,他们可以得到反馈,并提示所需要的。
集体练习的方式可以用来改善学生们的数学和社交技巧(Goos, Galbraith,Renshaw, & Geiger, 2000)。
结论
在本文中提出的建议在后面表格中进行了总结。
这些修改将有助于有学习困难的学生,但也有助于许多在课堂上由于各种原因使用计算器遇到麻烦的学生。
提出的许多建议可以用于其他方面的数学教学,除了图形计算器的使用,每当图形涉及到用法说明,它们还能用于其它学科,诸如科学和社会学习的研究。
Marcee M. Steele博士,南佛罗里达大学,是一位北卡罗莱纳州威尔明顿大学从事特殊教育的教授。
她任教于学习障碍,评估技术和特殊的教育方法本科和研究生课程。
她还在公共和私人机构从事残疾人从幼儿园到研究生水平的独立学习研究超过了30年。