第5章 工频过电压计算汇总
工频过电压
2.2特高压工频过电压的分类
• 1)特高压系统中主要工频过电压种类如图
特高压线路重要的工频过电压种类
单回线路
同塔双回线路
按工况分类 单运行工况 两回同时运行工况 按甩负荷回数分类 一回甩负荷 两回甩负荷
无故障 甩负荷
2
K (1)
这类工频过电压与单相接地点向电源侧的 X0/X1有很大关系,若X0/X1增加将使不对称短 路故障时健全相的电压有增大的趋势
。
对于特高压输电线路,一般X0/X1≈2.6,由图 1-5可 见不对称故障引起的工频电压升高系数是大于l的, 即产生了不对称故障引起的工频过电压。
二、特高压线路工频过电压
2.3特高压工频过电压限制措施
• 1)固定高抗
a.补偿位置
单端补偿
两端补偿
分段多点补偿
a.补偿度
补偿度即高抗容量与全线电容无功容量之 比。 非全相运行谐振过电压,高抗补偿度不宜 过高。在特高压电网建设初期,一般考虑 将高抗的补偿度控制在80%~90%,在电 网比较强的地区或者比较短的特高压线路, 补偿度可以适当降低。
一、输电线路工频过电压概述
1.1引起工频过电压的因素
• 1).空载长线电容效应; • 2).三相甩负荷; • 3).不对称接地效应;
1.2空载长线电容效应
• 1ห้องสมุดไป่ตู้原理图
简化原理图如下,容性电流流过电感,电压升高。
2)沿线电压表达式:
Ux
cos x cos l U1
沿线电压分布图:
2.1特高压工频过电压特点
• 1)特高压线路输电距离长,电容效应更明显。
电力系统工频过电压的计算与仿真项目课
电力系统工频过电压的计算与仿真项目课电力系统是现代社会不可或缺的基础设施之一,而工频过电压是电力系统中常见的一种故障。
为了更好地掌握电力系统的运行和故障处理,我们需要学习电力系统工频过电压的计算与仿真项目课。
一、计算方法电力系统工频过电压的计算方法主要有两种:解析法和数值法。
解析法是通过解析电力系统的方程组来计算过电压,适用于简单的电力系统。
而数值法则是通过计算机模拟电力系统的运行来计算过电压,适用于复杂的电力系统。
在计算过电压时,需要考虑电力系统中的各种参数,如电源电压、线路电阻、电感、电容等。
同时,还需要考虑电力系统中的各种故障情况,如短路、接地故障等。
只有全面考虑这些因素,才能准确地计算出电力系统中的工频过电压。
二、仿真项目为了更好地理解电力系统工频过电压的计算方法,我们需要进行仿真项目。
仿真项目可以通过计算机模拟电力系统的运行来实现,可以更加直观地展示电力系统中的各种参数和故障情况。
在仿真项目中,我们可以模拟电力系统中的各种故障情况,如短路、接地故障等,以及各种保护措施的应对情况。
通过仿真项目,我们可以更加深入地了解电力系统的运行和故障处理,为实际工作提供更好的参考。
三、课程意义电力系统工频过电压的计算与仿真项目课对于电力系统工程师的培养具有重要意义。
通过学习这门课程,我们可以更加深入地了解电力系统的运行和故障处理,为实际工作提供更好的参考。
同时,这门课程还可以培养我们的计算和仿真能力,提高我们的实际操作能力。
这对于我们未来的职业发展具有重要意义。
总之,电力系统工频过电压的计算与仿真项目课是一门非常重要的课程,对于电力系统工程师的培养具有重要意义。
我们应该认真学习这门课程,提高自己的实际操作能力,为电力系统的运行和故障处理做出更大的贡献。
第5章 电力系统内部过电压及其限制措施
三、空载线路合闸过电压及其限制措施
1、计划合闸: 、计划合闸: (图6)及式(5-12)的解 )及式( )
uc= E (1-cosω0t) ω
uc——线路绝缘上的电压, 是一个以电源电压 线路绝缘上的电压, 线路绝缘上的电压 E为轴线,以ω0为角频率的高频正弦等幅振荡 为轴线, 为轴线 的随机量。其最大值为2 的随机量。其最大值为 Em。
5.2
电力系统的操作过电压
一、操作过电压的产生及类型
产生: 产生 系统中因断路器的操作中各种故障产生的过度过程而 引起的过电压。 引起的过电压。 特点:时间短, 特点:时间短,过电压倍数高 其过电压倍数K的大小和持续时间与电网的结构、 其过电压倍数 的大小和持续时间与电网的结构、断路器的 的大小和持续时间与电网的结构 性能、系统的接线方式及运行操作方式有关, 一般为 一般为3~ 。 性能、系统的接线方式及运行操作方式有关,K一般为 ~4。 类型: 类型 空载线路合闸过电压、切除空载线路过电压、 空载线路合闸过电压、切除空载线路过电压、 切除空载变压器过电压、 切除空载变压器过电压、 中性点不接地系统中弧光接地过电压。 中性点不接地系统中弧光接地过电压。
cosα f ↑ —ω ↑ —α=ω/v ↑ —αl ↑ —cosαl ↓ — α /cosα K21=1/cosαl↑ (5-3) 运行经验表明: 运行经验表明: 220KV及以下电网一般不需要采取特殊限制措 及以下电网一般不需要采取特殊限制措 施; 220KV及以上电网需要考虑,伴随着雷闪过电 及以上电网需要考虑, 及以上电网需要考虑 压和操作过电压采取限制措施。 压和操作过电压采取限制措施。
二、特点
1、 过电压倍数不大 , 对正常绝缘的电气设备一般没有 、 过电压倍数不大, 威胁。 威胁。 2、 在超高压输电中成为确定系统绝缘水平的重要因素 。 、 在超高压输电中成为确定系统绝缘水平的重要因素。 伴随着工频电压的升高直接影响操作过电压的幅值。 伴随着工频电压的升高直接影响操作过电压的幅值 。 工频电压升高是决定保护电器工作条件的重要因素 (如单相接地非故障相电压升高使避雷器的灭弧电压 升高)。 升高) 工频电压升高持续时间长,将严峻考验设备的绝缘。 工频电压升高持续时间长,将严峻考验设备的绝缘。 如油纸绝缘内部游离、绝缘子闪络或沿面放电、 如油纸绝缘内部游离、绝缘子闪络或沿面放电、铁芯 过热、 过热、电晕等
第5章--工频过电压计算
第5章--工频过电压计算————————————————————————————————作者:————————————————————————————————日期:第5章工频过电压计算目录5.1 空载长线路的电容效应 (6)5.1.1 空载长线路的沿线电压分布 (6)5.1.2 并联电抗器的补偿作用 (8)5.2线路甩负荷引起的工频过电压 (11)5.3单相接地故障引起的工频过电压 (13)5.4自动电压调节器和调速器的影响 (16)5.5限制工频过电压的其他可能措施 (17)5.6工频过电压的EMTP仿真 (18)第5章工频过电压计算工频过电压是电力系统中的一种电磁暂态现象,属于电力系统内部过电压,是暂时过电压的一种。
电力系统内部过电压是指由于电力系统故障或开关操作而引起电网中电磁能量的转化,从而造成瞬时或持续时间较长的高于电网额定允许电压并对电气装置可能造成威胁的电压升高。
内部过电压分为暂时过电压和操作过电压两大类。
在暂态过渡过程结束以后出现持续时间大于0.1s(5个工频周波)至数秒甚至数小时的持续性过电压称为暂时过电压。
由于现代超、特高压电力系统的保护日趋完善,在超、特高压电网出现的暂时过电压持续时间很少超过数秒以上。
暂时过电压又分为工频过电压和谐振过电压。
电力系统在正常或故障运行时可能出现幅值超过最大工作相电压,频率为工频或者接近工频的电压升高,称为工频过电压。
工频过电压产生的原因包括空载长线路的电容效应、不对称接地故障引起的正常相电压升高、负荷突变等,工频过电压的大小与系统结构、容量、参数及运行方式有关。
一般而言,工频过电压的幅值不高,但持续时间较长,对220kV电压等级以下、线路不太长的系统的正常绝缘的电气设备是没有危险的。
但工频过电压在超(特)高压、远距离传输系统绝缘水平的确定却起着决定性的作用,因为:①工频过电压的大小直接影响操作过电压的幅值;②工频过电压是决定避雷器额定电压的重要依据,进而影响系统的过电压保护水平;③工频过电压可能危及设备及系统的安全运行。
电力系统工频过电压的atp-emtp计算与仿真
电力系统工频过电压的atp-emtp计算与仿真
电力系统中的工频过电压是指电力系统中由于各种原因导致的电压过高的现象。
为了保证电力系统的安全运行,需要对工频过电压进行计算与仿真。
ATP-EMTP是电力系统计算与仿真常用的软件之一,下面我们来详细介绍一下ATP-EMTP计算与仿真工频过电压的方法。
1. 必要参数的准备
进行计算与仿真之前,需要准备好以下参数:
(1)电力系统参数:包括电压等级、线路长度、负载类型和大小、线路参数等。
(2)过电压源参数:包括过电压等级、波形、频率等。
(3)接地参数:包括接地电阻、接地电感等。
(4)保护参数:包括保护动作时间、保护动作方式等。
2.建立电力系统模型
在ATP-EMTP软件中建立电力系统模型,包括各种线路元件、发电机、变压器、负载等。
需要对每个元件进行参数设置,包括电阻、电感、电容等。
3. 设置过电压源
在模型中设置过电压源,包括过电压等级、波形、频率等。
4.设置接地系统
按照实际情况设置接地系统中的电阻和电感等参数。
5.设置保护
在模型中设置保护装置,包括保护动作时间、保护动作方式等。
6.进行计算与仿真
在设置完以上参数之后,进行电力系统的计算与仿真。
根据仿真结果,分析系统中存在的问题,进行合理的调整和优化。
在使用ATP-EMTP计算与仿真工频过电压时,需要注意模型的精度与参数的准确性,以确保计算与仿真结果的准确性和可靠性。
电力系统中的工频过电压资料
长线路的入口阻抗
输电线路的参数
当线路末端短路时,即XL=0 当线路末端开路时,即XL→∞
Z jZC ctg Zk
空载长线路的沿线电压分布
ZC R0 jL0 G0 jC0
γ输电线路的传播系数, α为相位移系数, β为衰减系 数,Zc为线路特性阻抗(波阻抗);
忽略线路损耗
ZC
L0 C0
j L0C0 j j
chx cosx
shx j sin x
在输电线路上,电压与电流以波的形式传播,行波的 相位相差为2π的两点间的距离称为波长。 2 2 1 L0 C0 f L0 C0
7 电力系统中的工频过电压
内部过电压
外部过电压
电力系统过电压
内部过电压
暂时过电压
操作过电压
在电力系统内部,由于 断路器的操作或发生故 障,使系统参数发生变 化,引起电网电磁能量 的转化或传递,在系统 中出现过电压,这种过 电压称为内部过电压。
暂时过电压包 括工频电压升 高及谐振过电 压;持续时间 比操作过电压 长。
X0 X1 3 U B [ j ]E A X0 2 2 X1 X0 1.5 X1 3 U C [ j ]E A X 2 2 0 X1 1.5
X X ( 0 )2 ( 0 ) 1 X1 X1 U B UC 3 E E X0 ( )2 X1
7.1 空载长线路的电容效应
忽略r的作用
U U jI (X X ) U 1 2 L C2 L C
电力系统过电压-第五章
& cos α ' l U1 & = sin α ' l I1 j Z
jZ sin α ' l & U 2 I2 cos α ' l &
α ' = ω L0C0
(ω为电源角频率,L0 ,C0 分别为导线单位长度的电感与电 容),对于输电线路,通常α’≈0.06°/km; l :线路的长度,km。
U B = UC X0 2 X0 ( ) + ( ) +1 X1 X1 = 3 E X ( 0)+2 X1 = K (1) E
-1818-
X 2 2+ 0 X1 X0 1.5 & X1 3 & + j ]E A U C = [− X0 2 2+ X1
§1. 工频电压升高
-4-
§1. 工频电压升高
★合闸后 0.ls 前 高幅值、 高幅值、强阻尼的高频振荡操作过 电压 时间内: ★合闸后 0.1 ~ 1.0s 时间内:暂态工 频电压升高。 频电压升高。由于发电机自动电压 调整器的惯性, 调整器的惯性,发电机的暂态电势 E’d 保持不变,再加上空载线路的电 保持不变, 容效应,使电压升高, 容效应,使电压升高, 1.0s 后,由 于发电机的自动电压调整器开始发 生作用,母线电压逐渐下降。 生作用,母线电压逐渐下降。 以后: ★在 2 ~ 3s 以后: 稳态工频电压升高, 稳态工频电压升高,系统进入稳定 状态。 状态。
& E 1 & = I 0
& X s U1 1 & = 0 1 I1
cos α ' l Xs sin α ' l 1 j Z
第5章--工频过电压计算
第5章--工频过电压计算第5章工频过电压计算目录5.1 空载长线路的电容效应 (5)5.1.1 空载长线路的沿线电压分布 (5)5.1.2 并联电抗器的补偿作用 (7)5.2线路甩负荷引起的工频过电压 (10)5.3单相接地故障引起的工频过电压 12 5.4自动电压调节器和调速器的影响 16 5.5限制工频过电压的其他可能措施 16 5.6工频过电压的EMTP仿真 (17)第5章工频过电压计算工频过电压是电力系统中的一种电磁暂态现象,属于电力系统内部过电压,是暂时过电压的一种。
电力系统内部过电压是指由于电力系统故障或开关操作而引起电网中电磁能量的转化,从而造成瞬时或持续时间较长的高于电网额定允许电压并对电气装置可能造成威胁的电压升高。
内部过电压分为暂时过电压和操作过电压两大类。
在暂态过渡过程结束以后出现持续时间大于0.1s(5个工频周波)至数秒甚至数小时的持续性过电压称为暂时过电压。
由于现代超、特高压电力系统的保护日趋完善,在超、特高压电网出现的暂时过电压持续时间很少超过数秒以上。
暂时过电压又分为工频过电压和谐振过电压。
电力系统在正常或故障运行时可能出现幅值超过最大工作相电压,频率为工频或者接近工频的电压升高,称为工频过电压。
工频过电压产生的原因包括空载长线路的电容效应、不对称接地故障引起的正常相电压升高、负荷突变等,工频过电压的大小与系统结构、容量、参数及运行方式有关。
一般而言,工频过电压的幅值不高,但持续时间较长,对220kV电压等级以下、线路不太长的系统的正常绝缘的电气设备是没有危险的。
但工频过电压在超(特)高压、远距离传输系统绝缘水平的确定却起着决定性的作用,因为:①工频过电压的大小直接影响操作过电压的幅值;②工频过电压是决定避雷器额定电压的重要依据,进而影响系统的过电压保护水平;③工频过电压可能危及设备及系统的安全运行。
我国超高压电力系统的工频过电压水平规定为:线路断路器的变电站侧不大于1.3.p.u(.p.u为电网最高运行相电压峰值);线路断路器的线路侧不大于1.4.p.u以p.u。
电力系统过电压计算
电力系统过电压计算一、引言电力系统过电压是指电力系统中的电压超过其额定值的现象。
过电压可能会对电力设备和系统造成损坏,因此对于电力系统的过电压计算和分析非常重要。
本文将介绍电力系统过电压的计算方法和一些实际案例。
二、过电压的来源电力系统中的过电压主要有以下几种来源:1. 瞬时过电压:由于雷电、开关操作等原因引起的电压瞬时增加。
2. 暂态过电压:由于电力系统中的故障,如短路、接地等引起的电压波动。
3. 持续过电压:由于电力系统中的谐波、电容补偿等原因引起的长时间的电压超过额定值。
三、过电压计算方法电力系统的过电压计算方法包括两种:解析法和仿真法。
1. 解析法解析法是根据电力系统的特性和参数,通过数学公式计算出电力系统中的过电压。
解析法的优点是计算速度快,计算结果比较精确。
但是,解析法需要对电力系统的参数和特性有深入的了解,计算过程比较复杂。
2. 仿真法仿真法是通过电力系统的仿真软件,对电力系统进行模拟计算,得出电力系统中的过电压。
仿真法的优点是计算过程比较简单,可以模拟不同的故障情况,得出不同情况下的过电压。
但是,仿真法需要对电力系统的仿真软件有一定的了解,计算速度比较慢。
四、实际案例下面介绍两个实际案例,展示电力系统过电压计算的应用。
1. 案例一某变电站的110kV主变出现了短路故障,导致电力系统发生了暂态过电压。
根据电力系统的参数和特性,使用解析法计算出了过电压的大小和持续时间。
结果显示,过电压的峰值为1.8倍额定电压,持续时间为0.2秒。
根据计算结果,变电站采取了相应的措施,避免了过电压对电力设备的损坏。
2. 案例二某城市的电力系统中出现了谐波问题,导致电力系统中的持续过电压超过了额定值。
为了解决这个问题,使用仿真软件对电力系统进行了模拟计算。
结果显示,谐波问题主要来自于电容补偿装置的存在,采取了相应的措施,降低了电容补偿装置的影响,解决了谐波问题。
五、结论电力系统过电压的计算和分析对于保障电力设备和系统的安全运行非常重要。
第5章工频过电压计算
目录5.1 空载长线路的电容效应 (3)5.1.1 空载长线路的沿线电压分布 (3)5.1.2 并联电抗器的补偿作用 (5)5.2线路甩负荷引起的工频过电压 (7)5.3单相接地故障引起的工频过电压 (9)5.4自动电压调节器和调速器的影响 (12)5.5限制工频过电压的其他可能措施 (13)5.6工频过电压的EMTP仿真 (14)工频过电压是电力系统中的一种电磁暂态现象,属于电力系统内部过电压,是暂时过电压的一种。
电力系统内部过电压是指由于电力系统故障或开关操作而引起电网中电磁能量的转化,从而造成瞬时或持续时间较长的高于电网额定允许电压并对电气装置可能造成威胁的电压升高。
内部过电压分为暂时过电压和操作过电压两大类。
在暂态过渡过程结束以后出现持续时间大于0.1s(5个工频周波)至数秒甚至数小时的持续性过电压称为暂时过电压。
由于现代超、特高压电力系统的保护日趋完善,在超、特高压电网出现的暂时过电压持续时间很少超过数秒以上。
暂时过电压又分为工频过电压和谐振过电压。
电力系统在正常或故障运行时可能出现幅值超过最大工作相电压,频率为工频或者接近工频的电压升高,称为工频过电压。
工频过电压产生的原因包括空载长线路的电容效应、不对称接地故障引起的正常相电压升高、负荷突变等,工频过电压的大小与系统结构、容量、参数及运行方式有关。
一般而言,工频过电压的幅值不高,但持续时间较长,对220kV电压等级以下、线路不太长的系统的正常绝缘的电气设备是没有危险的。
但工频过电压在超(特)高压、远距离传输系统绝缘水平的确定却起着决定性的作用,因为:①工频过电压的大小直接影响操作过电压的幅值;②工频过电压是决定避雷器额定电压的重要依据,进而影响系统的过电压保护水平;③工频过电压可能危及设备及系统的安全运行。
我国超高压电力系统的工频过电压水平规定为:线路断路器的变电站侧不大于 1.3.p.u(.p.u为电网最高运行相电压峰值);线路断路器的线路侧不大于1.4.p.u以p.u。
工频过电压
5.1.4 甩负荷时引起的工频电压升高
当输电线路在传输较大容量时,断路器因某 种原因而突然跳闸ቤተ መጻሕፍቲ ባይዱ掉负荷时,会在原动机与发 电机内引起一系列机电暂态过程,它是造成工频 电压升高的又一原因。
返回
5.1.5 工频电压升高的限制措施
在考虑线路的工频电压升高时,如果同时计及空 载线路的电容效应、单相接地及突然甩负荷等三种 情况,那么工频电压升高可达到相当大的数值。 实际运行经验表明 在一般情况下,220kV及以下的电网中不需要采取 特殊措施来限制工频电压升高 在330~500kV超高压电网中,应采用并联电抗器 或静止补偿装置等措施,将工频电压升高限制到 1.3~1.4倍相电压以下
操作过电压是叠加在工频电压升高之上的,从而 达到很高的幅值。
(2)它的大小会影响保护电器的工作条件和保护效果 避雷器的最大允许工作电压是由避雷器安装处工频 过电压值来决定的。如工频电压过高,避雷器的最大 允许工作电压也越高,避雷器的冲击放电电压和残压 也将提高,相应被保护设备的绝缘水平要随之提高
(3)持续时间长,对设备绝缘及其运行性能有重大影 响
返回
小 结
工频过电压在超高压输电时必须引起重视。
工频过电压的产生由空载长线的电容效应,不对称
短路和甩负荷引起的工频电压升高。
超高压电网中,工频过电压的限制可采用并联电抗
器和静止补偿装置。
返回
例如引起油纸绝缘内部电离,污秽绝缘子闪络,铁 心过热,电晕等
返回
5.1.2 空载线路电容效应引起的工频过电压
一般R要比XL和XC小得多,而空载线路的工频容抗要 大于工频感抗。从相量图可以看出,线路上容抗 上的电压将高于电源电动势。
返回
5.1.3 不对称短路引起的工频电压升高
电力系统工频过电压的计算与仿真
电力系统工频过电压的计算与仿真摘要:日常的绝大多数的负载为感性负载,增加电抗器,可以使线路更加稳定的运行。
该文在没有电抗器和有电抗器的情况下,对空载线路分别求解首末端电压关系,发现在有电抗器的情况下,末端电压波动要小,首末端电压比较小。
最后使用EMTP进行仿真,搭建了没有电抗器和有电抗器的空载线路,采集了输入输出点电压的波形,然后画出首末端电压图,发现首末端电压波形都是标准的正弦,而且是同相位,只有幅值大小不等,仿真结果和理论相一致。
关键词:容性功率输电线路工频过电压电磁暂态分析电抗器1电力系统工频过电压1.1电力系统工频过电压的产生的基本机理电力系统的内部过电压是指系统中的电磁能由于系统故障或开关操作而发生较大的变化,发生电力系统内部过电压时会发生电压从额定允许值瞬间或长期上升。
这种不正常的电压增长会对电气设备构成威胁,因此尽量减小电力系统发生内部过电压的次数。
电力系统内部过电压可以分为操作过电压和暂时过电压这两类,操作过电压是指在电力系统运行过程中不正确的操作导致电压异常增长超过了允许值,而暂时过电压是由于环境等原因发生了电压的振荡,一般而言,顺态过电压可以在比较短的时间内经过电力系统自身内部的调节而消除,从而达到一种电力系统稳定运行的状态[1-3]。
在瞬态转换完成后持续数秒或数小时(持续 0.1 s(5 个工频周期)或更长时间)的持续过电压称为暂时过电压。
由于现代超高压电力系统的保护日益完善,超高压电网中的暂时过电压很少持续超过几秒钟,因此这种过电压称为顺态过电压,由于瞬时过电压的存在的时间不是很长,因此更容易进行调节,尽量减小顺时过电压发生的次数,可以保障电力系统稳态的运行。
该文设计内容有:(1)掌握电力系统工频过电压的产生的基本机理、计算方法和抑制措施。
(2)掌握电力系统电磁暂态仿真软件ATP-EMTP的基本使用方法和分析方法。
(3)设计一个500 kV输电系统的仿真模型,分析不同工况条件产生工频过电压的情况,对理论分析和抑制方法进行验证。
第5章 工频过电压计算
第5章工频过电压计算目录5.1 空载长线路的电容效应 (4)5.1.1 空载长线路的沿线电压分布 (4)5.1.2 并联电抗器的补偿作用 (6)5.2线路甩负荷引起的工频过电压 (9)5.3单相接地故障引起的工频过电压 (11)5.4自动电压调节器和调速器的影响 (14)5.5限制工频过电压的其他可能措施 (15)5.6工频过电压的EMTP仿真 (16)第5章工频过电压计算工频过电压是电力系统中的一种电磁暂态现象,属于电力系统内部过电压,是暂时过电压的一种。
电力系统内部过电压是指由于电力系统故障或开关操作而引起电网中电磁能量的转化,从而造成瞬时或持续时间较长的高于电网额定允许电压并对电气装置可能造成威胁的电压升高。
内部过电压分为暂时过电压和操作过电压两大类。
在暂态过渡过程结束以后出现持续时间大于0.1s(5个工频周波)至数秒甚至数小时的持续性过电压称为暂时过电压。
由于现代超、特高压电力系统的保护日趋完善,在超、特高压电网出现的暂时过电压持续时间很少超过数秒以上。
暂时过电压又分为工频过电压和谐振过电压。
电力系统在正常或故障运行时可能出现幅值超过最大工作相电压,频率为工频或者接近工频的电压升高,称为工频过电压。
工频过电压产生的原因包括空载长线路的电容效应、不对称接地故障引起的正常相电压升高、负荷突变等,工频过电压的大小与系统结构、容量、参数及运行方式有关。
一般而言,工频过电压的幅值不高,但持续时间较长,对220kV电压等级以下、线路不太长的系统的正常绝缘的电气设备是没有危险的。
但工频过电压在超(特)高压、远距离传输系统绝缘水平的确定却起着决定性的作用,因为:①工频过电压的大小直接影响操作过电压的幅值;②工频过电压是决定避雷器额定电压的重要依据,进而影响系统的过电压保护水平;③工频过电压可能危及设备及系统的安全运行。
我国超高压电力系统的工频过电压水平规定为:线路断路器的变电站侧不大于 1.3.p.u为电网最高运行相电压峰值);线路断路器的线路侧不大于p.u(.1.4.p.u以p.u。
第4-5讲 工频过电压
4
2. 工频过电压产生的主要原因
空载长线路的电容效应 不对称短路引起的工频电压升高 甩负荷引起的工频电压升高
5
2.1 空载长线路的电容效应
集中参数电路中的“电感—电容” 效应
在R-L-C串联回路中电路,若R <<1/(C)、L,且1/C >L
Ux
U2
cosx
U1
cosl
cosx
11
电压传递函数
定义:线路首端或末端对线路任一点x的传递系数
K1x U(x) /U1 K2x U(x) /U2
空载时线路上的各点电压 按余弦分布
Ux
U2
cos
x
U1
cosl
cos
x
空载时线路首端对末端的电压传递系数(I2 =0)
K12 U2 /U1 1/ cosl
UI11
UI((xx))
chx 1 shx
ZC
ZC shx
chx
UI22
➢ 长线用二端口网络代替,其一般表达式为
UI11
A11 A12 A21 A22
UI22
AUI22
9
➢ 无损长线正弦稳态解
线路传播系数、波阻抗分别为
L0C0
ZC
L0 C0
UI((xx))
UI11
j
cosl
1 sin ZC
l
jZC sin l cosl
UI22
UI00
1 0
jX S 1
j
cos l 1 sin l
ZC
jZC sin l
cosl
UI22
cosl
电力系统过电压计算
电力系统的参数、设备的绝缘水平、阻抗匹配等。
03
CATALOGUE
电力系统过电压的防护措施
防雷保护措施
避雷针
利用避雷针将雷电引入地 下,防止雷电直接击中输 电线路或变电设备。
避雷线
在输电线路上方架设避雷 线,通过避雷线将雷电引 入地下,保护输电线路免 受雷击。
接地电阻
降低接地电阻,使雷电引 入地下时能够更快地泄放 电流,降低过电压幅值。
通过改变系统的电容、电感等参数,避免产 生谐振条件。
投切电容器
适时投切系统中的电容器组,破坏谐振条件 ,防止谐振过电压的发生。
04
CATALOGUE
电力系统过电压的案例分析
某地区雷电过电压案例分析
总结词
该案例主要分析了某地区雷电过电压的产生原因、影响范围和防护措施。
详细描述
该地区雷电过电压主要是由于雷击线路或设备引起的。在雷电活动频繁的季节,雷电过电压会对电力系统的正常 运行造成严重影响,可能导致设备损坏、停电等事故。为了降低雷电过电压的影响,该地区采取了一系列防护措 施,如安装避雷器、改善接地等。
某线路谐振过电压案例分析
总结词
该案例探讨了某线路谐振过电压的产生 条件、影响范围和解决措施。
VS
详细描述
在电力系统中,由于线路的电感和电容等 参数,可能引发谐振过电压。这种过电压 可能导致设备损坏、绝缘击穿等问题,严 重威胁电力系统的安全运行。为了解决谐 振过电压问题,该线路采取了多种措施, 如改变线路参数、增加滤波装置等。
05
CATALOGUE
电力系统过电压的发展趋势与展望
过电压研究的新方法与新技术
数值模拟方法
随着计算能力的提升,数值模拟方法 在电力系统过电压计算中得到广泛应 用,如有限元法、有限差分法等,能 够更精确地模拟过电压的传播和分布 。
工频过电压
谢谢观看
工频过电压
电力工程名词
01 简介
目录
02 系统
03
不同类型线路的差异 性
05
线路设立开关站对的 影响分析
04
线路串补对的影响分 析
工频过电压(power frequency overvoltage)指系统中由线路空载、不对称接地故障和甩负荷引起的的频 率等于工频(50Hz)或接近工频的高于系统最高工作电压的过电压。
简介
特高压电工频过电压主要考虑无接地三相甩负荷和单相接地三相甩负荷2种工频过电压。系统结构、电源容量、 输电潮流、线路参数及线路高抗补偿情况是影响系统工频过电压的关键因素。
根据我国特高压电的规划,在特高压交流输电通道中单段线路的长度差别较大,从几十公里到上百公里都有 可能存在,且由于海拔和线路走廊的要求,有些特高压线路将会采用同塔双回和单回混合架设的方式;由于线路 送端电源性质的不同,特高压系统有“厂对”结构(送电端为电厂)和“对”结构(送电端为电)之分。上述情况可 能导致不同特高压系统工频过电压水平存在较大差异 。
不同类型线路的差异性
首先对相同系统条件下,长400 km特高压输电线路分别采用单回架设、同塔双回架设及单/双回混合架设(分 别用S、D及S&D表示)3种类型的工频过电压进行计算分析,结果列于表3。其中单/双回混合比例为1:1。另外,当 线路采用D和S&D架设时,研究了双回运行和单回运行(分别用LD和LS表示)2种方式,其中LS方式下,考虑了停运 线路两侧接地刀闸悬空和接地(分别用LS-H和LS-G表示)2种情况。
2)串补对接地系数的影响。
在线路发生单相接地故障后,若串补不旁路,则线路正序电抗降低,线路增加,从而导致线路单相接地甩负 荷引起的工频过电压增加。但事实上,当判断为单相永久接地故障,线路三相两侧断路器跳闸的同时,会命令串 补旁路开关闭合,将三相串补旁路,串补只是在旁路开关合闸的较短时间内(一般小于50ms),对单相接地甩负荷 操作过电压产生了一定的影响,而对操作过电压过后的工频过电压是不起作用的。
电气安全第5章1
60
75 200
• 气体绝缘冲击耐 压的伏秒特性: 表明击穿时 间与电压量值的 关系。 注意波前击 穿与波尾击穿电 压取值不同。
u
5 4 3 2 1
0
t
第二节 变配电所过电压保护
• 过电压与设备耐压是一对矛盾。 • 设备耐压强于过电压,无击穿危险。 • 设备耐压不及过电压,会被击穿。 怎么办——保护。 避雷器:典型保护器件。 原理:先于被保护设备被击穿,释放过电压能 量。
重要概念2:与标准作用电压相对应,规定了 一系列标准耐受试验,通过这些试验,可得出设 备绝缘在不同情况下的耐受电压能力,如: 最高工作电压:能长期承受的工频电压上限值, 由持续工频耐压试验确定。 1min短时工频耐压:由短时工频耐压试验确定, 考察对暂时过电压承受能力。 雷电冲击耐压:由1.25μs/50μs冲击耐压试验确 定,考察对雷电过电压的耐受能力。
(3)起始动作电压U1mA。超过这个电压,避 雷器将快速进入导通状态。这个电压所对应的泄 漏电流大致为1mA。 该电压类似于SiC避雷器的放电电压,它们都 表示避雷器由截至变为导通的临界点,但MOA没 有间隙,不存在放电问题,因此用动作电压表征。
(4)残压。与SiC避雷器类同,分三种情况。 1)雷电冲击下残压:8μs/25μs、峰值5kA电流 作用下的阀片电压。 2)操作冲击下残压:30~100μs/60~200μs、 峰值0.5kA、1kA、2kA电流作用下的阀片电压。 MOA可用作防内部过电压,因此需考察这一参 数。 3)陡波冲击下的残压:1μs/5μs、峰值5kA电 流作用下的阀片电压。
• 排气管式避雷器短路电流校合 工频续流即避雷器安装处短路电流。 该电流过小,电弧强度不够,排气管产气量不 足以吹灭电弧,使工频续流持续存在。 该电流过大,产气过多,会使排气管爆炸。 厂家对管式避雷器会给出一个允许的短路电流 范围。若安装处实际短路电流在该范围内,即为 合格。确认是否合格的过程,称为管式避雷器短 路电流的校合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章工频过电压计算目录5.1 空载长线路的电容效应 (4)5.1.1 空载长线路的沿线电压分布 (4)5.1.2 并联电抗器的补偿作用 (6)5.2线路甩负荷引起的工频过电压 (9)5.3单相接地故障引起的工频过电压 (11)5.4自动电压调节器和调速器的影响 (15)5.5限制工频过电压的其他可能措施 (15)5.6工频过电压的EMTP仿真 (16)第5章工频过电压计算工频过电压是电力系统中的一种电磁暂态现象,属于电力系统内部过电压,是暂时过电压的一种。
电力系统内部过电压是指由于电力系统故障或开关操作而引起电网中电磁能量的转化,从而造成瞬时或持续时间较长的高于电网额定允许电压并对电气装置可能造成威胁的电压升高。
内部过电压分为暂时过电压和操作过电压两大类。
在暂态过渡过程结束以后出现持续时间大于0.1s(5个工频周波)至数秒甚至数小时的持续性过电压称为暂时过电压。
由于现代超、特高压电力系统的保护日趋完善,在超、特高压电网出现的暂时过电压持续时间很少超过数秒以上。
暂时过电压又分为工频过电压和谐振过电压。
电力系统在正常或故障运行时可能出现幅值超过最大工作相电压,频率为工频或者接近工频的电压升高,称为工频过电压。
工频过电压产生的原因包括空载长线路的电容效应、不对称接地故障引起的正常相电压升高、负荷突变等,工频过电压的大小与系统结构、容量、参数及运行方式有关。
一般而言,工频过电压的幅值不高,但持续时间较长,对220kV电压等级以下、线路不太长的系统的正常绝缘的电气设备是没有危险的。
但工频过电压在超(特)高压、远距离传输系统绝缘水平的确定却起着决定性的作用,因为:①工频过电压的大小直接影响操作过电压的幅值;②工频过电压是决定避雷器额定电压的重要依据,进而影响系统的过电压保护水平;③工频过电压可能危及设备及系统的安全运行。
我国超高压电力系统的工频过电压水平规定为:线路断路器的变电站侧不大于 1.3.p.u为电网最高运行相电压峰值);线路断路器的线路侧不大于p.u(.1.4.p.u以p.u。
特高压工程工频过电压限值参考取值为:工频过电压限制在1.3.下,在个别情况下线路侧可短时(持续时间不大于0.3s)允许在1.4.p.u以下。
电力系统中由于出现串、并联谐振而产生的过电压称为谐振过电压。
电力系统中的电感,包括线性电感、非线性电感(如高压电抗器和变压器的励磁电抗)和周期性变化的电感,当系统发生故障或操作时,这些电感可能与其串联或并联的电容(如线路电容和串、并联补偿电容)产生谐振从而分别引发线性谐振、铁磁谐振和参数谐振。
目前,人们采取改变回路参数、破坏谐振条件、接入阻尼电阻等多项措施,使谐振过电压得到有效限制。
高压输电系统的电磁暂态和过电压的计算可用EMTP 进行仿真计算研究。
5.1 空载长线路的电容效应5.1.1 空载长线路的沿线电压分布对于长输电线路,当末端空载时,线路的入口阻抗为容性。
当计及电源内阻抗(感性)的影响时,电容效应不仅使线路末端电压高于首端,而且使线路首、末端电压高于电源电动势,这就是空载长线路的工频过电压产生的原因之一。
长度为l 的空载无损线路如图5-1所示,E 为电源电动势;1U 、2U 分别为线路首末端电压;S X 为电源感抗;00C /C L Z =为线路的波阻抗;00C L ωβ=为每公里线路的相位移系数,一般工频条件下,km /06.0︒=β。
线路首末端电压和电流关系为⎪⎭⎪⎬⎫+=+=)cos()sin(j )sin(j )cos(221221l I l Z U I l I Z l U U C C ββββ(5-1)图5-1 空载长线路示意图若线路末端开路,即02=I ,由式(5-1)可求得线路末端电压与首端电压关系)cos(12l U U β = (5-2) 定义空载线路末端对首端的电压传递系数为)cos(11212l U U K β== (5-3) 线路中某一点的电压为)cos()cos()cos(12x l x U x U U βββ == (5-4) 式中,x 为距线路末端的距离。
由式(5-4)可知,线路上的电压自首端1U 起逐渐上升,沿线按余弦曲线分布,线路末端电压2U 达到最大值,如图5-2所示。
图5-2空载长线路沿线电压分布若︒=90l β时,从线路首端看去,相当于发生串联谐振,∞→12K ,∞→2U ,此时线路长度即为工频的1/4波长,约1500km ,因此也称为1/4波长谐振。
同时,空载线路的电容电流在电源电抗上也会形成电压升,使得线路首端的电压高于电源电动势,这进一步增加了工频过电压。
考虑电源电抗后,根据式(5-1),可得线路末端电压与电源电动势的关系为2S S 11)]sin()[cos(U l Z X l X I j U E Cββ-=+= (5-5)定义线路末端的电压对电源电动势的传递系数EU K 202=,令C S 1Z tan X -=ϕ,代入式(5-5),得)cos(cos )sin()cos(1S 02ϕβϕββ+=-=l l Z X l K C(5-6) 由式(5-6)可知,电源电抗S X 的影响通过角度ϕ表示出来,当︒=+90ϕβl 时,∞→02K ,∞→2U ,图5-3中曲线2画出了︒=21ϕ时02K 与线路长度的关系曲线(虚线),此时ϕβ-︒=90l ,线路长度为1150km 时发生谐振。
可见,电源电抗相当于增加了线路长度,使谐振点提前了。
曲线1对应于电源阻抗为零的情况。
从图5-3中看出,除了电容效应外,电源电抗也增加了工频过电压倍数。
图5-3 空载长线路末端电压升高与线路长度的关系5.1.2 并联电抗器的补偿作用为了限制电容效应引起的工频过电压,在超、特高压电网中,广泛采用并联电抗器来补偿线路的电容电流,以削弱其电容效应。
如图5-4所示,假设在线路末端并接电抗器P X ,将P22X I j U =代入式(5-1),并令PC 1Z tan X -=θ,可求得线路首末端电压的传递系数为)cos(cos 1212θβθ-==l U U K(5-7)图5-4 线路末端接有并联电抗器在线路末端并接电抗器,相当于缩短了线路长度,因而降低了电压传递系数。
此时由首端看进去的入端阻抗将增大,用式(5-1)同样可以求出线路末端开路时入端阻抗为)cot(jZ )tan(jZ )sin()cos()sin()cos(j )sin()cos()sin(j )cos(j Z C C CP C P C C P C P 11R θβϕβββββββββ--=+=-+=-+==l l l Z X l l l Z X Z l Z X l l Z l X I U (5-8)式(5-8)中,PC 1Z tan X -=θ,C P 1Z tan X -=ϕ,且有︒=+90θϕ。
通常采用的欠补偿情况下,线路首端输入阻抗仍为容性,但数值增大,空载线路的电容电流减少,同样电源电抗的条件下,降低了线路首端的电压升高。
首端对电源的电压传递系数)cot(Z )cot(Z j Z Z C S C S R R 101θβθβ----=+==l X l X E U K (5-9) 由式(5-7)和式(5-9)可求得线路末端对电源的电压传递系数,通过化简可得)cos(cos cos 120102ϕθβϕθ+-==l K K K (5-10) 其中,沿线电压最大值出现在θβ=x 处,线路最高电压为)cos(cos θϕθβϕ+-=l E U (5-11) 因此,并联电抗器的接入可以同时降低线路首端及末端的工频过电压。
但也要注意,高抗的补偿度不能太高,以免给正常运行时的无功补偿和电压控制造成困难。
在特高压电网建设初期,一般可以考虑将高抗补偿度控制在80%~90%,在电网比较强的地区或者比较短的特高压线路,补偿度可以适当降低。
[例题5-1]某500kV 线路,长度为400km ,电源电动势为E ,电源电抗Ω=100S X ,线路单位长度正序电感和电容分别为m H/km 9.00=L 、μF/km 0127.00=C ,求线路末端电压对电源电动势的比值。
若线路末端并接电抗器Ω=1034P X ,求线路末端电压对电源电动势的比值及沿线电压分布中的最高电压。
解:参数计算。
线路的波阻抗:Ω=⨯⨯==--7.2651001275.0109.0/6300C C L Z 波速:km/s 1095.21001275.0109.01/156300⨯=⨯⨯⨯==--C L v 相位系数km /061.01001275.0109.01801006300︒=⨯⨯⨯⨯︒⨯==--C L ωβ ︒===--6.20265.7100tan Z tan 1C S 1X ϕ 1.当线路空载,末端不接电抗器,线路末端电压最高,线路末端电压对电源电动势的比值为32.1)6.20400061.0cos(6.20cos )cos(cos 02=︒+⨯︒=+=ϕβϕl K 2.当线路空载,末端并接电抗器,︒===--4.141034265.7tan Z tan 1P C 1X θ 线路末端电压对电源电动势的比值为05.1)6.204.144.24cos(6.20cos 4.14cos )cos(cos cos 02=︒+︒-︒︒︒=+-=ϕθβϕθl K 线路最高电压为E E l E 09.1)6.204.144.24cos(6.20cos )cos(cos =︒+︒-︒︒=+-ϕθβϕ 5.2线路甩负荷引起的工频过电压输电线路输送重负荷运行时,由于某种原因,线路末端断路器突然跳闸甩掉负荷,也是造成工频电压升高的原因之一,通常称为甩负荷效应。
此时影响工频过电压有三个因素:①甩负荷前线路输送潮流,特别是向线路输送无功潮流的大小,它决定了电源电动势E的大小。
一般来讲,向线路输送无功越大,电源的电动势E也越高,工频过电压也相对较高。
②馈电电源的容量,它决定了电源的等值阻抗,电源容量越小,阻抗越大,可能出现的工频过电压越高。
③线路长度,线路愈长,线路充电的容性无功越大,工频过电压愈高。
此外还有发电机转速升高及自动电压调节器和调速器作用等因素,也会加剧工频过电压升高。
设输电线路长度为l ,相位系数为β,波阻抗为C Z ,甩负荷前受端复功率为Q P j +,电源电动势为E ,电源感抗为S X ;1U 、2U 分别为线路首末端电压;。
甩负荷前瞬间线路首端稳态电压为)]j )(tan(j 1)[cos()sin(j j )cos()sin(j )cos(**2*2C 22C 21Q P l l U l U Q P Z l U l I Z l U U -+=-+=+=ββββββ (5-12)式中,**Q P 、为以C22B Z U S =为基准的标幺值。