比例变量泵

合集下载

定量泵与变量泵的区别

定量泵与变量泵的区别

在转速恒定的条件下,输出流量可变的为变量泵,反之为定量泵。

他们最大的不同就是变量泵的轴是偏心安装。

简单来说定量泵的转速选定后,他的流量和压力就确定了,就不能调节。

变量泵的输出流量可以根据系统的压力变化(外负载的大小),自动地调节流量,就是压力高时输出流量小,压力低时输出流量大,这样他可以节省液压元件的数量,从而简化了油路系统,而且可以减少油发热。

缺点是流量脉动严重,系统压力不太平稳,泵的寿命短,泵的轴承容易坏,因为他是偏心安装,而且泵的嘈音大。

叶片泵通过调节偏心距、柱塞泵通过调节滑板角度可以实现变量。

变量泵与定量泵的区别注塑及液压设备中我们最常用到有变量泵和定量泵,这两种油泵的使用效果各显千秋,除了压力稳定性及响应速度上的区别,其构造形式上也有所不同。

液压系统的设计中,不但要实现其拖动与调节功能,还要尽可能地利用能量,达到高效、可靠运行的目的。

液压系统的功率损失会使系统的总效率下降、油温升高、油液变质,导致液压设备发生故障。

因此,设计液压系统时必须多途径地考虑降低系统的功率损失。

几种控制回路的功率损失:1选用传动效率较高的液压回路和适当的调速方式目前普遍使用着的定量泵节流调速系统,其效率较低(<0.385),这是因为定量泵与油缸的效率分别为85%与95%左右,方向阀及管路等损失约为5%左右。

所以,即使不进行流量控制,也有25%的功率损失。

加上节流调速,至少有一半以上的浪费。

此外,还有泄漏及其它的压力损失和容积损失,这些损失均会转化为热能导致液压油温升。

所以,定量泵加节流调速系统只能用于小流量系统。

为了提高效率减少温升,应采用高效节能回路,上表为几种回路功率损失比较。

另外,液压系统的效率还取决于负载。

同一种回路,当负载流量QL与泵的最大流量Qm比值大时回路的效率高。

例如可采用手动伺服变量、压力控制变量、压力补偿变量、流量补偿变量、速度传感功率限制变量、力矩限制器功率限制变量等多种形式,力求达到负载流量QL与泵的流量的匹配。

步进加热炉速度控制系统建模与动态特性分析

步进加热炉速度控制系统建模与动态特性分析

t n frfn t n o e ̄se i ar e ta d te fcosta f c h y a cp o et ftes s m r r s u ci ft a e o h ytm s ri d a n h a tr h taf tte d n mi rp r o h yt v e y e ae a aye nd ti. n lz d i eal Ke r s se e t gf ra e p e o t l rn frfn t n;d n mi rp r ywo d :tp h ai — n c ;s e d c nr ;t se u ci n u o a o y a cp o e y t
示 …
步进加热炉速度控制系统原理如图 1 所示 。
输入 广 —— _ _ l —— _ 位移传感 一 — ~ 1 L 器卜— ——
— — —

二 : 垒 图 .
图 1 步进加热炉速度控 制系统 原理图
由图 1 知 , 进 加 热 炉 速 度 控 制 系统 由 4 可 步
FU La —o g,C N i h n ind n HE Ku— eg,Z s ENG La g c i lF n in —a .L a g。ZH NG A — n A nl g o
( ol eo c i n u mao , hnU ie i t c nea dT cnlg , hn4 0 8 ,C ia C l g f hnr adA t t n Wu a nvr t o S i c n ehooy Wua 30 1 h ) e Ma —y o i sy _ e n
20 年第 6 06 期
傅连东 , : 等 步进加热炉速度控制系统建模与动态特性分析
55 7

各种注塑机节能介绍

各种注塑机节能介绍

各种注塑机节能介绍在注塑产品成本的构成中,电费占了相当的比例,依据注塑机设备工艺的需求,传统的注塑机油泵马达耗电占整个设备耗电量比例高达80%-90%。

设计与制造新一代“节能型”注塑机,已成为迫切需要关注和解决的问题。

在注塑机节能问题上,目前主要存在两个解决方案:1.全电动式;2.电动-液压混合式。

一、其主要特点分别为:1、全电动式注塑机有一系列优点,特别是在环保和节能方面的优势。

目前较先进的全电动式注塑机节电可以达到70%,另外,由于使用伺服电机注射控制精度较高,转速也较稳定,还可以多级调节。

但全电动式注塑机在使用寿命上不如全液压式注塑机,市场上仍以日产设备为主。

2、电动-液压式注塑机是集液压和电驱动于一体的新型注塑机。

它融合了全液压式注塑机的高性能和全电动式的节能优点,这种电动-液压相结合的节能型注塑机已成为国内注塑机技术发展的一个主导方向。

二、注塑机的一般工艺过程注塑机的工艺过程一般分为:锁模、射胶、熔胶、保压、冷却、开模等几个阶段,各个阶段需要不同的压力和流量。

对于油泵马达而言,注塑过程的负载总是处于变化状态,在定量泵的液压系统中,油泵马达以恒定的转速提供恒定的流量,多余的液压油通过溢流阀回流,此过程称为高压节流。

据统计由高压节流造成的能量损失高达36%-68%。

故而,相关的节能技术有变频节能技术和变量泵节能技术,有各自的技术特点。

三、变频节能型注塑机传统的注射机没有对机器的驱动电机进行调整,即只要机器通电,电机就始终以额定转速运行。

由于电机与油泵同轴,油泵将以额定排量将油吸入液压系统中,当系统需要的流量小于油泵所提供的流量时,多余的油将被回流,这势必极大浪费。

变频节能型注射机克服了传统注射机的这一弊病。

当系统需要的流量发生变化时,电机的转速也跟着发生变化,从而使得油泵排出的油的流量发生变化,即做到“需要多少给多少”。

由于是异步电机直接加上变频器运行,没有速度闭环精确控制,主电机的加速与减速时间较长,会影响生产效率。

变量泵图解非常直观非常好ppt课件

变量泵图解非常直观非常好ppt课件

PVW开环泵 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物
27 /83
1) 大排量型号的控制活塞是与驱动轴 垂直的。当从泵的顶部向下看时会很 清楚地看到。
PVW
PVW
开 环 泵 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
7 /83
定量轴向柱塞泵 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物
1 2
8 /83
定量轴向柱塞泵 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物
25 /83
Equal size pumps with pilot / boost pumps
Hydrokraft plus other piston pumps
Smallest with largest
将 Hydrokraft 轴 向柱塞泵与其他型 号柱塞泵或叶片泵 结合在一起几乎无 任何不可能
Hydrokraft plus vane pumps
PF
23 /83
MF
PV TV
MV
Hydrokraft 轴向柱塞产品有如下类型: 定量泵 (PF) 开环变量泵 (PV) 闭环变量泵 =(TV) 定量马达 (MF) 变量马达 (MV)
结构配置 – 多元 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物

泵的比例定律适用条件

泵的比例定律适用条件

泵的比例定律适用条件《泵的比例定律适用条件》有一次我和朋友小李在一个工厂参观,看到厂里那巨大的泵在运转,工人师傅在旁边检查着各种参数。

小李就好奇地问师傅:“师傅啊,这泵只要大小一样,是不是转数啥的变了也都一样干活啊?”师傅被逗笑了说:“可没那么简单,有个泵的比例定律在管着呢,这里面啊是有些适用条件的。

”于是,我们今儿个就来好好唠唠泵的比例定律适用条件。

首先呢,泵的比例定律得在相似工况下才适用。

啥叫相似工况呢?就好比人干活的时候环境都差不多,对于泵来说,就是它的流动状态要相似。

比如说,泵内部的液流速度分布、压力分布得大致相同才行。

比如说,咱们有大泵和小泵,这大小泵在不同转速下工作的,你得保证它们流体画出来的“门道儿”相似,像流体在泵里面是顺畅地按照差不多的路线走,可不能大泵里是高速公路,小泵里变成羊肠小道,那样可就不满足比例定律的适用条件了。

然后啊,液体的物理性质也要满足条件。

像流体的粘性不能差别太大。

想象一下,你一种是水那样比较“清爽”的流体,一种是浓稠得像面糊似的流体,这泵在这两种流体里工作肯定是不同的呀。

如果粘性不同,即使是同样的泵,按照比例定律去套可能就出错了。

有次在实验室,我们小组就是没太在意流体的粘性区别,觉得只要泵一样,转速按比例变,性能就该按比例来,结果得到的数据啊,那简直是一团糟,让导师是又好气又好笑,说我们是“纸上谈兵小迷糊”。

还有啊,泵的结构特性得保持相似。

就像是复制粘贴一样,在一定程度上得是同一型号或者是结构上标准化相似的。

你不能这边是有着奇奇怪怪内部构造的泵,那边是普通常规结构的泵,还想着比例定律能直接通用。

我有个同行朋友,他曾经接手一个老旧设备更新项目,新泵和旧泵看着外表有点像,但内部有些小结构进行了改良。

这时候,他要是不管三七二十一地按照比例定律算性能参数,那计算结果和实际运行情况就差得老远了。

我的建议呢,在实际操作里,要是想运用泵的比例定律,一定要把这些个条件好好地盘点盘点。

变量泵的一种控制方式的应用

变量泵的一种控制方式的应用

变量泵的一种控制方式的应用摘要——在本文中,我们的目的是使用奇异摄动理论来简化液压系统的控制设计,并让它更为可行,符合工程实际情况。

本文介绍了一种控制规律的推导和位移控制的液压执行器的仿真,并给出应用条件和稳定分析的证明,简化了控制设计流程,得出体积弹性模量鲁棒性变化。

设计目标是对不同输入模型的条件下仿真和应用,跟踪位移误差呈指数式衰减,控制的结果就是让低频信号占主导地位。

一、简介液压系统广泛应用于工业应用程序,因为它们有着高功率密度,较强的灵活性和高刚度。

阀门控制系统的使用似乎是一个直接的解决方案,对系统使用补偿或负载敏感感泵,阀控制执行机构提供各自的压力。

该设计似乎简单,但也有一些缺点:安装成本高,高元件成本和低能量的效率,因为有节流损失【1】。

新一代液压系统的挑战是效率,紧凑性和有效性。

一种新的控制方法和新的系统配置需要制定,以取代目前的,低效阀节流的方法【2】。

该泵的排量控制执行器的主要优点是效率高,因为有了执行器的主电源线没有节流损失。

不幸的是,这些系统的动态特性是高度非线性的,相对难以控制。

非线性是由液压油的可压缩性和变排量泵本身产生的。

到现在为止,许多研究一直都是专注于负载敏感与压力补偿泵排量控制,出现的通过直接控制泵排量执行器的研究很少。

液压系统的非线性控制在近几十年来吸引了极大的关注力。

线性控制理论已经在液压系统中得到应用【3,4】,并且有较强的稳定性。

为了解决不确定性的问题,控制算法的选取就被提出来了【5】。

这些算法有能力解决系统中变化的参数比如说变化的载荷和体积弹性模量。

另一个重要的方法是结构变量的控制。

这几种观点促使了液压系统应用的发展【6,7】。

然而,一个很重要的实际问题是由于体积弹性模量的原因造成液压系统动态方程奇异(详见第二部分)。

因此,一个控制算法将会消耗大量的计算时间,在实时控制中将会累积大量的数值错误。

进一步的来讲,算法普遍需要尽快得出控制的结果,而这是不符合工程实际的。

(完整版)变量泵的原理及应用

(完整版)变量泵的原理及应用

1.1液压变量泵(马达)的发展简况、现状和应用1.1.1 简述液压变量泵及变量马达能在变量控制装置的作用下能够根据工作的需要在一定范围内调整输出特性,这一特点已被广泛地应用在众多的液压设备中,如:恒流控制、恒压控制、恒速控制、恒转矩控制、恒功率控制、功率匹配控制等。

采用变量泵(马达)系统,具有显著的节能效果,近年来使用越来越广泛,而且新的结构和控制方式发展迅速,各个生产厂也在不断改进设计,用以满足液压系统自动控制的不断发展需要。

使用液压系统的目的在于可使某一执行对象以预定的速度向正反两个方向运动。

此时,为调节速度需进行节流,致使能量有所损失,并导致系统效率降低,为此需采用变量泵实现容积控制。

使用变量泵进行位置和速度控制时,能量损耗最小。

正确地使用和调节泵的流量,可使其只排出满足负载运动速度需要的流量,而使用定量泵时只有部分流量供给负载,其余的流量需要旁通至油箱。

此外,为了在不增加管路阻力的条件下提高液压马达的速度,也有必要为减少液压马达的排量而采用变量马达。

表1-1 三大类泵的主要应用现状排量类型型式模型样式容积排量图1-1 三大类泵的变量调节1.1.2 叶片变量泵(马达)的研发历史和发展根据密封工作容积在转子旋转一周吸、排油次数的不同,叶片泵分为两类,即完成一次吸、排油的单作用叶片泵和完成两次吸、排油的双作用叶片泵。

根据叶片泵输出流量是否可调,又可分为定量叶片泵和变量叶片泵,双作用叶片泵均为定量泵。

根据叶片变量泵的工作特性不同可分为限压式、恒压式和恒流量式三类,其中限压式应用较多。

恒压式变量泵一般系单作用泵。

该泵的定子可以沿一定方向作平衡运动,以改变定子与转子之间的偏心距,即改变泵的流量。

它的变量机能由泵内的压力反馈伺服装置控制,能自动适应负载流量的需要并维持恒定的工作压力。

在工作中,还可根据要求调节其恒定压力值。

因此,在使用该泵的系统中,实际工况相当于定量泵加溢流阀,且没有多余的油液从系统中流过,使能耗和温升都大大降低,缩小了泵站的体积。

力士乐A10VSO-DFLR变量泵的控制原理档上课讲义

力士乐A10VSO-DFLR变量泵的控制原理档上课讲义

力士乐A10V S O-D F L R 变量泵的控制原理档
力士乐A10VSO-DFLR(恒压/流量/功率控制)变量泵的控制原理
我的问题已经提出好几天了.无人回帖.可能是我对问题的叙述不很清楚.最近几天我琢磨了一下,对于功率阀的调节原理,我先试着分析如下.是我个人的理解,请诸位指正.
功率阀相当于一个压力无级可调的(比例)溢流阀,它可无级地改变着进入流量调节器弹簧腔的压力P H.压力的无级可调是通过泵斜盘改变功率阀调压弹簧的压缩量X来实现的(泵斜盘带动拨杆改变功率阀套的位置,进而改变功率阀调压弹簧的压缩量X), 压缩量X与泵斜盘倾角β成反比.
在泵进入恒功率控制期间,流量调节器控制阀芯的位置也有3个.
压力P H作用在控制阀芯的右端(见图1),以形成一个对抗反力,与作用在控制阀芯左端的泵出口压力P P相平衡,使控制阀芯保持在中位(平衡位置),在此状态下,泵的斜盘倾角不变.
功率阀所决定的压力P H与泵压力P P应该是同比例变化(升降)的.并且P H的变化要比P P的变化滞后一点时间.
当泵压升高时,P P先将控制阀芯向右推离中位(平衡被破坏),并进入泵变量缸的无杆腔使泵的斜盘倾角β变小(流量减小), 随着倾角β的变小,功率阀调压弹簧的压缩量X则变大,阀的开启压力P H随之升高,升高了的P H又将控制阀芯推回中位恢复平衡状态.如此循环下去,控制阀芯连续的经历由平衡→不平衡→新的平衡的过程(用一位网友的话讲,就是控制阀芯在“中位振荡”),便实现了恒功率控制.
当泵压降低时,则会出现相反的过程.
恒功率控制始于起点的调整压力,终于切断点的限位柱(即死档铁).不知我分析的对不对,请各位点拨.。

变量泵的原理及应用

变量泵的原理及应用

液压变量泵(马达)的发展简况、现状和应用1.1.1 简述液压变量泵及变量马达能在变量控制装置的作用下能够根据工作的需要在一定范围内调整输出特性,这一特点已被广泛地应用在众多的液压设备中,如:恒流控制、恒压控制、恒速控制、恒转矩控制、恒功率控制、功率匹配控制等。

采用变量泵(马达)系统,具有显著的节能效果,近年来使用越来越广泛,而且新的结构和控制方式发展迅速,各个生产厂也在不断改进设计,用以满足液压系统自动控制的不断发展需要。

使用液压系统的目的在于可使某一执行对象以预定的速度向正反两个方向运动。

此时,为调节速度需进行节流,致使能量有所损失,并导致系统效率降低,为此需采用变量泵实现容积控制。

使用变量泵进行位置和速度控制时,能量损耗最小。

正确地使用和调节泵的流量,可使其只排出满足负载运动速度需要的流量,而使用定量泵时只有部分流量供给负载,其余的流量需要旁通至油箱。

此外,为了在不增加管路阻力的条件下提高液压马达的速度,也有必要为减少液压马达的排量而采用变量马达。

表1-1 三大类泵的主要应用现状排量类型型式模型样式容积排量图1-1 三大类泵的变量调节1.1.2 叶片变量泵(马达)的研发历史和发展根据密封工作容积在转子旋转一周吸、排油次数的不同,叶片泵分为两类,即完成一次吸、排油的单作用叶片泵和完成两次吸、排油的双作用叶片泵。

根据叶片泵输出流量是否可调,又可分为定量叶片泵和变量叶片泵,双作用叶片泵均为定量泵。

根据叶片变量泵的工作特性不同可分为限压式、恒压式和恒流量式三类,其中限压式应用较多。

恒压式变量泵一般系单作用泵。

该泵的定子可以沿一定方向作平衡运动,以改变定子与转子之间的偏心距,即改变泵的流量。

它的变量机能由泵内的压力反馈伺服装置控制,能自动适应负载流量的需要并维持恒定的工作压力。

在工作中,还可根据要求调节其恒定压力值。

因此,在使用该泵的系统中,实际工况相当于定量泵加溢流阀,且没有多余的油液从系统中流过,使能耗和温升都大大降低,缩小了泵站的体积。

油研比例变量泵系统简介

油研比例变量泵系统简介

油研比例变量泵系统简介比例变量泵是电液比例控制技术的重要元件之一,属容积调速控制系统范畴。

日本YUKEN、先后研制开发了多种比例变量泵,使比例控制技术得到了新的发展。

其节能效果明显的突出优点,适应了液压控制技术的发展趋势和客户的需求。

国外的一些高性能注塑机上已经应用了比例变量泵系统。

为使这一技术在国内塑机行业得到推广应用,震德公司新开发的CJ80M2V、CJ150M2V等机型率先配置了比例变量泵系统,使整机部分性能指标有了新的提高。

一、比例变量泵系统构成图1、图2分别是应用了比例变量泵的CJ80M2V、CJ150M2V机的液压原理图。

其中P1为负载敏感型比例变量柱塞泵,与CJ80M2、CJ150M2液压系统相比较,由原来的定量叶片泵+比例压力阀+比例方向流量阀转变为兼具比例压力、比例流量、负载压力反馈等多种复合控制功能的比例变量泵系统。

系统工作时,通过改变I1、I2两个电信号,对比例变量泵的排量参数(斜盘倾角)进行控制和调整,就可向系统提供驱动负载所需的压力和流量,控制十分简洁。

具体而言,比例变量泵系统除具有常规比例控制系统的特点外,更具有如下特点:1.相同功率的机器,注射速率可提高25%,更适应薄壁精密注塑需要。

2.系统发热降低,液压元件使用寿命延长。

节流、溢流损失是系统发热的主要原因。

由于比例变量泵系统节流、溢流损失减小,系统发热大大降低。

3.整机运行时压力,流量控制更稳定准确,操控简便快捷。

4.能量损耗减少,系统效率提高。

由于比例变量泵本身所具有的良好的自适应性,其输出的流量和压力能够与负载需求相一致,解决了节流调速系统的流量不适应和压力不适应的问题,节流、溢流损失降低,能量损耗减少,系统效率提高,其节能效果十分明显,与标准机型相比较,可节电20%以上。

四、使用注意事项1.厂内试机时,第一次起动油泵马达前,需从泵体上部的注油口(有明显标志)注入清洁的液压油,注满后把原来的油塞装回,拧紧。

2.使用本机需注意保持液压系统的清洁,以延长油泵的使用寿命。

比例变量泵介绍、

比例变量泵介绍、

比例变量泵的介绍比例变量泵是电液比例控制技术的重要元件之一,属容积调速控制系统范畴。

日本YUKEN、NACHI、德国REXROTH、BOSH等公司先后研制开发了多种比例变量泵,使比例控制技术得到了新的发展。

其节能效果明显的突出优点,适应了液压控制技术的发展趋势和客户的需求。

国外的一些高性能注塑机上已经应用了比例变量泵系统。

为使这一技术在国内塑机行业得到推广应用,震德公司新开发的CJ80M2V、CJ150M2V等机型率先配置了比例变量泵系统,使整机部分性能指标有了新的提高。

一、比例变量泵系统构成图1、图2分别是应用了比例变量泵的CJ80M2V、CJ150M2V机的液压原理图。

其中P1为负载敏感型比例变量柱塞泵,与CJ80M2、CJ150M2液压系统相比较,由原来的定量叶片泵+比例压力阀+比例方向流量阀转变为兼具比例压力、比例流量、负载压力反馈等多种复合控制功能的比例变量泵系统。

系统工作时,通过改变I1、I2两个电信号,对比例变量泵的排量参数(斜盘倾角)进行控制和调整,就可向系统提供驱动负载所需的压力和流量,控制十分简洁。

二、结构和工作原理图3所示为负载敏感型比例变量柱塞泵的结构图。

由该图可以看出,整个比例变量泵由斜盘式变量柱赛泵、比例先导溢流阀、比例先导节流阀、压力反馈阀、流量反馈阀、手动压力调整机构、手动流量调整机构等部分组成。

其工作原理是:当系统处于流量控制状态时,首先给油泵上的比例先导溢流阀输入一个电信号I1,由负载决定的系统工作压力在比例溢流阀设定的压力范围内变化时,比例先导溢流阀能可靠地关闭,油泵出口压力与负载压力保持一定的压差△P,在最高限压范围内能适应负载的变化,系统处于流量调节状态。

比例先导节流阀随给定的电信号I2的不同,保持相应的开口,在进出口压差确定的情况下,其输出流量只与I2有关,不受负载变化或油泵马达转速波动的影响。

这一结果的理论依据是下面的公式:Q=a.A 2.△P? ф其中:Q 一通过阀口的流量L/min a 一流量因子0.6~0.9(由液压油粘度和节流口形状决定)A一节流口面积cm2 △P 一节流口前后压差bar ф一液压油密度kg/m3 √对于一特定的电信号I2,若比例先导节流阀进出口压差不变,表示油泵输出的流量与输入信号相对应。

(完整版)恒压与恒功率变量泵

(完整版)恒压与恒功率变量泵

动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。

这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。

这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。

泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图 6 ,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。

反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传YCY14-1B :斜盘式压力补偿变量(恒功率)柱塞泵/ 马达结构剖视YCY14-1B :斜盘式压力补偿变量柱塞泵/ 马达工作原理主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。

这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。

压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。

当来自主体部分的高压油通过通道(a)、(b)、(c)进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f )进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),推动变量活塞向下运动,使泵的流量增加。

(完整版)变量泵的原理及应用

(完整版)变量泵的原理及应用

1.1液压变量泵(马达)的发展简况、现状和应用1.1.1 简述液压变量泵及变量马达能在变量控制装置的作用下能够根据工作的需要在一定范围内调整输出特性,这一特点已被广泛地应用在众多的液压设备中,如:恒流控制、恒压控制、恒速控制、恒转矩控制、恒功率控制、功率匹配控制等。

采用变量泵(马达)系统,具有显著的节能效果,近年来使用越来越广泛,而且新的结构和控制方式发展迅速,各个生产厂也在不断改进设计,用以满足液压系统自动控制的不断发展需要。

使用液压系统的目的在于可使某一执行对象以预定的速度向正反两个方向运动。

此时,为调节速度需进行节流,致使能量有所损失,并导致系统效率降低,为此需采用变量泵实现容积控制。

使用变量泵进行位置和速度控制时,能量损耗最小。

正确地使用和调节泵的流量,可使其只排出满足负载运动速度需要的流量,而使用定量泵时只有部分流量供给负载,其余的流量需要旁通至油箱。

此外,为了在不增加管路阻力的条件下提高液压马达的速度,也有必要为减少液压马达的排量而采用变量马达。

表1-1 三大类泵的主要应用现状排量类型型式模型样式容积排量图1-1 三大类泵的变量调节1.1.2 叶片变量泵(马达)的研发历史和发展根据密封工作容积在转子旋转一周吸、排油次数的不同,叶片泵分为两类,即完成一次吸、排油的单作用叶片泵和完成两次吸、排油的双作用叶片泵。

根据叶片泵输出流量是否可调,又可分为定量叶片泵和变量叶片泵,双作用叶片泵均为定量泵。

根据叶片变量泵的工作特性不同可分为限压式、恒压式和恒流量式三类,其中限压式应用较多。

恒压式变量泵一般系单作用泵。

该泵的定子可以沿一定方向作平衡运动,以改变定子与转子之间的偏心距,即改变泵的流量。

它的变量机能由泵内的压力反馈伺服装置控制,能自动适应负载流量的需要并维持恒定的工作压力。

在工作中,还可根据要求调节其恒定压力值。

因此,在使用该泵的系统中,实际工况相当于定量泵加溢流阀,且没有多余的油液从系统中流过,使能耗和温升都大大降低,缩小了泵站的体积。

电液控制概念

电液控制概念

1.2 电液比例控制的概念在液压传动与控制中,能够接受模拟式或数字式信号,使输出的流量或压力边续成比例地受到控制,都可以被称为电液比例控制系统。

例如数字控制系统、脉宽调节(PWM)控制系统以及一般意义上的电液比例控制系统。

虽然比例控制与伺服控制都可以用于开环和闭环系统。

但就目前来前者主要用于开环控制,而后者主要用于闭环控制。

理解伺服装置与比例控制装置的差别是有意义的。

伺服控制装置总是带有内反馈,任何检测到的误码差都会引起系统状态栏改变,而这种改变正是强迫这个误差为零。

误码差为零时伺服系统会处于平衡状态,直到新的误差检测出来。

比例控制装置是一种有确定增益的转换器。

例如,比例阀可以把一个线性运动(手动或电磁铁驱动)转换成比例的油流量或压力,转换常数取决于阀的几何尺寸及它的制造精度。

闭环比例阀也可以用于外部反馈闭环系统。

在伺服控制系统中,平衡状态控制信号(误差)理论上为零,而比例控制系统却水远不会为零。

在比例控制系统中,主控制元件可以有无限种状态,分别对应于受控对象的无限种运动。

与比例控制对应的还有开关控制。

由于开关控制中控制元件只有两种状态,即开启或关闭。

因此要实现高质量的复杂控制时,必须有足够大量的元件,把各元件调整成某一特殊的状态。

必要时选通这一元件,从而实现使受控对象按预定的顺序和要求动作。

比例控制和开关控制都可以是手动或按程序自动进行,不同的是在比例控制中,比例元件根据接收的控制信号,自动转换状态,因而使系统大为简化。

在工程实际应用中,由于大多为九被控对象仅需要有限的几种状态。

因而开关控制也有可取之处。

开关元件通常简单可靠,不存在系统不稳定的情况。

可以利用计算机输出的数字信号经放大后驱动开关元件,省去昂贵的数模转换元件,从而使电气控制变得简单。

在模拟比例控制中,如果需要计算机来控制,则必须具有A/D、D/A接口元件与计算机联接,这增加了成本和对使用者的要求。

近年来,已开发出其不意些数字式比例元件,其输出量与脉冲数、脉宽或脉冲频率成比例。

浅谈电液比例泵的工作原理及其应用

浅谈电液比例泵的工作原理及其应用

内燃机与配件0引言电液比例控制技术作为连接现代微电子、计算机和液压技术的桥梁,在近20年来得到了快速的发展,应用领域得以拓展,已成为机电一体化的基本技术构成之一。

而做为构成电液比例技术的液压传动及控制系统的基础元件(泵、阀、液压缸和液压马达等)的研究开发是至关重要的。

针对这种情况和用户的要求,本文作者团队研制出一种采用液比例控制排量的液压泵,它的特点是①控制精度高,液压泵既是动力元件又是控制元件,可与电子技术,计算机技术配合控制灵活,可达到功率匹配的要求,高效节能;②它廉价于电液伺服控制;③抗油污染能力强于电液伺服控制机构;④由于变量机构结构简单、廉价和制造容易,易于推广。

该泵已应用于石油勘探工程车上的液压发电的系统上,获得了很好的应用。

1电液比例泵的工作原理调节机构由图2的右部的件6、7、8、9、10、11组成;其工作原理如下:调节机构初始处于一个图示的平衡状态,当电子放大器输给比例减压阀的电流信号增加一△i 时,比例减压阀输出一的压力增加△P2,该力作用在活塞9上,该力与复位弹簧力相平衡,其变形量为△Xt ,同时使三通阀7的A 口打开,液压油进入差动活塞6上腔,其压力增加,使差动活塞下移,下移到使A 口关闭为止,差动活塞不再移动,即直接位置反馈,即差动活塞的移动跟随三通阀移动,且移动距离相等;反之当放大器输给比例减压阀的电流信号减小时,比例减压阀输出一的压力亦减小,三通阀在复位弹簧作用下使其上移打开B 口,使差动活塞上腔压力降低,差动活塞在其小端压力油的作用下使其上移,直到将B 口关闭为止,差动活塞不再移动,差动活塞移动的距离与三通阀移动上移的距离相等,就是复位弹簧8的压缩量;在结构上差动活塞的位移Xp ,会使变量斜盘5的倾角α改变,随之泵的排量Vp 也改变,它们是线性关系。

因此排量Vp 与输给比例电磁铁一电流信号i 相对应,成比例关系。

2电液比例位移直接反馈式排量调节机构的特性的分析静态特性的分析:该调节机构静态特性方程表如下式:①比例减压阀的特性方程P2=Kv ·i (1)式中,i ———比例减压阀的入电流;P2———比例减压阀的输出压力;———————————————————————作者简介:刘峰(1969-),男,硕士,沈阳工业大学,工程师,主要从事液压与气压传动的教学和研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

※比例变量泵系统简介
比例变量泵是电液比例控制技术的重要元件之一,属容积调速控制系统范畴。

日本YUKEN、NACHI、德国REXROTH、BOSH等公司先后研制开发了多种比例变量泵,使比例控制技术得到了新的发展。

其节能效果明显的突出优点,适应了液压控制技术的发展趋势和客户的需求。

国外的一些高性能注塑机上已经应用了比例变量泵系统。

为使这一技术在国内塑机行业得到推广应用,震德公司新开发的CJ80M2V、CJ150M2V等机型率先配置了比例变量泵系统,使整机部分性能指标有了新的提高。

一、比例变量泵系统构成图1、图2分别是应用了比例变量泵的CJ80M2V、CJ150M2V机的液压原理图。

其中P1为负载敏感型比例变量柱塞泵,与CJ80M2、CJ150M2液压系统相比较,由原来的定量叶片泵+比例压力阀+比例方向流量阀转变为兼具比例压力、比例流量、负载压力反馈等多种复合控制功能的比例变量泵系统。

系统工作时,通过改变I1、I2两个电信号,对比例变量泵的排量参数(斜盘倾角)进行控制和调整,就可向系统提供驱动负载所需的压力和流量,控制十分简洁。

二、结构和工作原理图3所示为负载敏感型比例变量柱塞泵的结构图。

由该图可以看出,整个比例变量泵由斜盘式变量柱赛泵、比例先导溢流阀、比例先导节流阀、压力反馈阀、流量反馈阀、手动压力调整机构、手动流量调整机构等部分组成。

其工作原理是:当系统处于流量控制状态时,首先给油泵上的比例先导溢流阀输入一个电信号I1,由负载决定的系统工作压力在比例溢流阀设定的压力范围内变化时,比例先导溢流阀能可靠地关闭,油泵出口压力与负载压力保持一定的压差△P,在最高限压范围内能适应负载的变化,系统处于流量调节状态。

比例先导节流阀随给定的电信号I2的不同,保持相应的开口,在进出口压差确定的情况下,其输出流量只与I2有关,不受负载变化或油泵马达转速波动的影响。

这一结果的理论依据是下面的公式:Q=a.A 2.△P? ф 其中:Q 一通过阀口的流量L/min a 一流量因子0.6~0.9(由液压油粘度和节流口形状决定)A 一节流口面积cm2 △P 一节流口前后压差bar ф 一液压油密度kg/m3 √ 对于一特定的电信号I2,若比例先导节流阀进出口压差不变,表示油泵输出的流量与输入信号相对应。

而当负载压力变化时,可能会有两种情况:第一,比例先导节流阀口两端压差减小,说明油泵的输出流量低于输入电信号的对应值,这时,系统压力会通过流量、压力反馈阀反馈给变量机构,变量柱塞泵斜盘倾角随之变大,油泵输出排量自动增加;第二,比例先导节流阀口两端压差增大,说明油泵的输出流量高于输入电信号的对应值,这时,系统压力同样会反馈给变量机构,变量柱塞泵倾角随之变小,油泵输出排量自动减少。

当系统进入压力控制状态时,一方面,给比例先导节流阀输入一个电信号,保证油泵有一定流量输出。

此时,通过改变比例先导溢流阀的输入电信号I1,就可得到与之成比例的油泵输出压力。

在这种状态下,变量柱塞泵的斜盘倾角很小,油泵输出的流量很小,只保证形成保压压力的需要。

三、系统性能特点比例变量泵的应用,实现了注塑机液压系统由阀控向泵控的转变,使常规的节流调速系统转变为容积调速系统,整机的部分性能指标有了新的提高。

具体而言,比例变量泵系统除具有常规比例控制系统的特点外,更具有如下特点:1.相同功率的机器,注射速率可提高25%,更适应薄壁精密注塑需要。

2.系统发热降低,液压元件使用寿命延长。

节流、溢流损失是系统发热的主要原因。

由于比例变量泵系统节流、溢流损失减小,系统发热大大降低。

3.整机运行时压力,流量控制更稳定准确,操控简便快捷。

4.能量损耗减少,系统效率提高。

由于比例变量泵本身所具有的良好的自适应性,其输出的流量和压力能够与负载需求相一致,解决了节流调速系统的流量不适应和压力不适应的问题,节流、溢流损失降低,能量损耗减少,系统效率提高,其节能效果十分明显,与标准机型相比较,可节电20%以上。

四、使用注意事项1.厂内试机时,第一次起动油泵马达前,需从泵体上部的注油口(有明显标志)注入清洁的液压油,注满后把原来的油塞装回,拧紧。

2.使用本机需注意保持液压系统的清洁,以延长油泵的使用寿命。

机器出厂前油箱、过滤器等已经过严格的清洗,系统污染度控制在较低水平(NAS1O级以下)。

为延长油泵的使用寿命,连续生产以后,新机工作1000小时后需第一次更换液压油和滤芯,同时清洗油箱。

工作5000小时后第二次更换液压油及滤芯并清洗油箱。

以后每半年更换一次。

更换新液压油时,必须经过过滤(过滤精度为20μm),切忌将未经过滤的液压油直接加入或新油、旧油混合使用。

3.机器出厂前,比例变量泵部分及整个系统已经过调试,一般无需特别调整即可开机。

若开机后有压力波动现象,可按以下程序处理:①、用板手松开油泵出油口上方之比例
控制先导阀尾部的排气螺钉。

②、将射移前进、后退之速度、压力设定为30%。

③、手动使射台前后反复移动,并检查排气螺钉处,直到有液压油连续流出为止。

此时压力波动可消除。

④、清洗油箱,更换液压油时,一般无需移动油泵。

若因各种原因移动油泵而导致泵体内液压油流出,重新安装后第一次开机时,需从泵体上部注油口(有明显标志)向泵体内注满清洁的液压油,然后再行开机,以延长油泵的使用寿命。

相关文档
最新文档