九年级数学竞赛讲座:由常量数学到变量数学

合集下载

9、从常量到变量数学-培优 数学张老师

9、从常量到变量数学-培优 数学张老师

9、从常量到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量(constant)数学时期;以函数(function)概念产生的变量(variable)数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,函数是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系(rectangular coordinates in tWO dimen。

ions)相关的概念、函数概念、函数的表示法、函数图象(graph)概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标(coordinates)是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.。

【例l】 (1)如图l,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(一7,一4),白棋④的坐标为(一6,一8),那么,黑棋①的坐标应该是..(2005年杭州市中考题) (2)如图2,已知边长为l的正方形OABC在直角坐标系中,A、B两点在第一象限内,0A与x轴的夹角为300,那么点B的坐标是.(全国初中数学联赛题)思路点拨对于(1),由自棋②、④的坐标确定原点位置,建立直角坐标系;对于(2),过A、B分别向x 轴作垂线,将求点的坐标转化为求线段的长.【例2】某水电站的蓄水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.已知某天0点到6点,进行机组试运彳亍,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示:给出以下3个判断:①0点到3点只进水,不出水;②3点到4点,不进水,只出水;③4点到6点不进水,不出水.则上述判断中一定正确的是( ).A.① B.② C.②③ D.①②③(2005年常州市中考题) 思路点拨从图象获取信息,确定该水池的蓄水量与时间的关系.【例3】如果将点P绕定点M旋转l800后与点Q重合,那么这点P与点Q关于点M对称,定点M叫做对称中心,此时,点M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A、B、0的坐标分别为(1,0)、(0,1)、(0,0).点到P1、P2、P3、…中相邻两点都关于△AB0的一个顶点对称,点P1与点P2关于点A 对称,点P2与点P3关于点B对称,点P3与点P4关于点0对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于0点对称,…对称中心分别是A,B,0,A,B,0,…且这些对称中心依次循环,已知P1的坐标是(1,1).试写出点P2、P7、P100的坐标.(2005年南京市中考题) 思路点拨通过实际操作,从寻找对称点变化规律人手.【例4】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.观将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y与x间的函数关系式,并写出X的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.(2004年河北省中考题) 思路点拨对于(2),通过求不等式组的正整数解,确定分配方案,并在此基础上,研究公司获得的最大收益.【例5】如图,在直角坐标系中,已知点A(4,0)点B(0,3),若有一个直角三角形与Rt△AB0全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程).思路点拨因公共边未指明,又未知顶点有不同的位置,故解本例的关键是分类讨论.1.已知点A(2a+3b ,一2)和点B(8,3a+2b)关于x 轴对称,那么a+b= .(2005年四川省中考题)2.如图所示的象棋盘上,若“帅”位于点(1,一2)上,“相”位于点(3,一2)上,则“炮”位于3.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB= 900,有直角三角形与Rt△AB0全等且以AB 为公共边,请写出这些直角三角 形未知顶点的坐标:4.已知函数,2213---=x y 则x 的取值范围是 ,若x 是整数,则此函数的最小值是 . (2005年厦门市中考题)5.如果代数式mn m 1+-有意义,那么直角坐标系中点P(m ,n)的位置在( ).A .第一象限B .第二象限C .第三象限D .第四象限(2005年荆门市中考题) 6.函数42113-+-=x x y 的自变量x 的取值范围是( ). A .x≥1且x≠2 B .x ≠ 2 C.x>1且x≠2 D .全体实数(2005年兰州市中考题) 7.平面直角坐标系中的点)21,2(m m P -关于x 轴的对称点在第四象限,则m 的取值范围在数轴上可表示为( ).(2005年荆州市中考题)8.图l 是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图象.给出下列对应:(1)(a)一(e);(2)(b)一(f);(3)(c)一(h);(4) (d)一(g),其中,正确的是( ). 、A .(1)和(2).B .(2)和(3)C .(1)和(3)D .(3)和(4)(2005年镇江市中考题)9.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形,解决下面的问题:(1)图中的格点△A B C 是由格点△ABC通过哪些变换方法得到的?(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(一3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.(2005年成都市中考题)10.煤炭是龙岩市的主要矿产资源之一,每天有大量的煤炭运往外地.某煤矿现有100吨煤炭要运往甲、乙两厂.通过了解获碍甲、乙两厂的有关信息如下表(表中运费栏“元/t·km”表示每吨煤炭运送1千米所需人民币):要把l00吨煤炭全部运出,试写出总运费y元与运往甲厂x吨煤炭之问的函数关系式;如果你是该矿的矿主,请设计出合理的运送方案,使所需的总运费最低,并求出最低的总运费.(2005年福建省龙岩市中考题)11.在平面直角坐标系中,已知点P。

初中数学竞赛第八讲由常量数学到变量数学(含答案)

初中数学竞赛第八讲由常量数学到变量数学(含答案)

第八讲由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为.思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的( )思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x 千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F 关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由.思路点拨(1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.(1)当AP=3cm时,求的值;(2)设AP=cm时,求y与x的函数关系式;(3)当y=2cm2,试确定点P的位置.思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学历训练A 组1. 如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 . 2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标).3.根据指令[S ,A](S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令[4,60°],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a -B .22a +C .22a --D .22a +-5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米;B .爸爸走了5分钟,小军仍在爸爸的前面;C .小军比爸爸晚到山顶;D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快。

新课标九年级数学竞赛辅导讲座_第03讲_充满活力的韦达定理

新课标九年级数学竞赛辅导讲座_第03讲_充满活力的韦达定理

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么b a a b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2 思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

湖南省临武县楚江中学九年级数学竞赛讲座(共10讲)

湖南省临武县楚江中学九年级数学竞赛讲座(共10讲)

目录第一讲分式方程(组)的解法第二讲无理方程的解法第三讲简易高次方程的解法第四讲有关方程组的问题第五讲函数的基本概念与性质第六讲二次函数第七讲函数的最大值与最小值第八讲根与系数的关系及应用第九讲判别式及其应用第十讲一元二次不等式的解法第一讲分式方程(组)的解法分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根.例1 解方程解令y=x2+2x-8,那么原方程为去分母得y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0,y2-4xy-45x2=0,(y+5x)(y-9x)=0,所以y=9x或y=-5x.由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1.经检验,它们都是原方程的根.例2 解方程y2-18y+72=0,所以y1=6或y2=12.x2-2x+6=0.此方程无实数根.x2-8x+12=0,所以x1=2或x2=6.经检验,x1=2,x2=6是原方程的实数根.例3 解方程分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为整理得去分母、整理得x+9=0,x=-9.经检验知,x=-9是原方程的根.例4 解方程分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为即所以((x+6)(x+7)=(x+2)(x+3).例5 解方程分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为整理得去分母得x2+9x-22=0,解得x1=2,x2=-11.经检验知,x1=2,x2=-11是原方程的根.例6 解方程次项与常数项符号相反,故可考虑用合比定理化简.原方程变形为所以x=0或2x2-3x-2=2x2+5x-3.例7 解方程分析与解形式与上例相似.本题中分子与分母只是一次项的符号相反,故可考虑用合分比定理化简.原方程变形为当x≠0时,解得x=±1.经检验,x=±1是原方程的根,且x=0也是原方程的根.说明使用合分比定理化简时,可能发生增根和失根的现象,需细致检验.例8 解方程解将原方程变形为例9 解关于x的方程将x1=a-2b或x2=b-2a代入分母b+x,得a-b或2(b-a),所以,当a≠b时,x1=a-2b及x2=b-2a都是原方程的根.当a=b时,原方程无解.例10 如果方程只有一个实数根,求a的值及对应的原方程的根.分析与解将原方程变形,转化为整式方程后得2x2-2x+(a+4)=0.①原方程只有一个实数根,因此,方程①的根的情况只能是:(1)方程①有两个相等的实数根,即△=4-4·2(a+4)=0.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为0或2.(i)当x=0时,代入①式得a+4=0,即a=-4.这时方程①的另一个根是x=1(因为2x2-2x=0,x(x-1)=0,x1=0或x2=1.而x1=0是增根).它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×4-2×2+(a+4)=0,即a=-8.这时方程①的另一个根是x=-1(因为2x2-2x-4=0.(x-2)(x+1)=0,所以x1=2(增根),x2=-1).它不使分母为零,确是原方程的唯一根.因此,若原分式方程只有一个实数根时,所求的a的值分别是练习一1.填空:(3)如果关于x的方程有增根x=1,则k=____.2.解方程3.解方程4.解方程5.解方程6.解方程7.m是什么数值时,方程有根?第二讲无理方程的解法未知数含在根号下的方程叫作无理方程(或根式方程),这是数学竞赛中经常出现的一些特殊形式的方程中的一种.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法、配方法、因式分解法、设辅助元素法、利用比例性质法等.本讲将通过例题来说明这些方法的运用.例1 解方程解移项得两边平方后整理得再两边平方后整理得x2+3x-28=0,所以x1=4,x2=-7.经检验知,x2=-7为增根,所以原方程的根为x=4.说明用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.例2 解方程方公式将方程的左端配方.将原方程变形为所以两边平方得3x2+x=9-6x+x2,两边平方得3x2+x=x2+6x+9,例3 解方程即所以移项得例4 解方程解三个未知量、一个方程,要有确定的解,则方程的结构必然是极其特殊的.将原方程变形为配方得利用非负数的性质得所以x=1,y=2,z=3.经检验,x=1,y=2,z=3是原方程的根.例5 解方程所以将①两边平方、并利用②得x2y2+2xy-8=0,(xy+4)(xy-2)=0.xy=2.③例6 解方程解观察到题中两个根号的平方差是13,即②÷①便得由①,③得例7 解方程分析与解注意到(2x2-1)-(x2-3x-2)=(2x2+2x+3)-(x2-x+2).设则u2-v2=w2-t2,①u+v=w+t.②因为u+v=w+t=0无解,所以①÷②得u-v=w-t.③②+③得u=w,即解得x=-2.经检验,x=-2是原方程的根.例8 解方程整理得y3-1=(1-y)2,即(y-1)(y2+2)=0.解得y=1,即x=-1.经检验知,x=-1是原方程的根.整理得y3-2y2+3y=0.解得y=0,从而x=-1.例9 解方程边的分式的分子与分母只有一些项的符号不同,则可用合分比定理化简方程.根据合分比定理得两边平方得再用合分比定理得化简得x2=4a2.解得x=±2a.经检验,x=±2a是原方程的根.练习二1.填空:2.解方程3.解方程4.解方程5.解方程6.解关于x的方程第三讲简易高次方程的解法在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答.例1 解方程x3-2x2-4x+8=0.解原方程可变形为x2(x-2)-4(x-2)=0,(x-2)(x2-4)=0,(x-2)2(x+2)=0.所以x1=x2=2,x3=-2.说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样=0可化为bkx3+bx2+dkx+d=0,即(kx+1)(bx2+d)=0.方程ax4+bx3+cx+d=0也可以用类似方法处理.例2 解方程(x-2)(x+1)(x+4)(x+7)=19.解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得(x2+5x-14)(x2+5x+4)=19.设(y-9)(y+9)=19,即y2-81=19.说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之.例3 解方程(6x+7)2(3x+4)(x+1)=6.解我们注意到2(3x+4)=6x+8=(6x+7)+1,6(x+1)=6x+6=(6x+7)-1,所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令y=6x+7,①由(6x+7)2(3x+4)(x+1)=6得(6x+7)2(6x+8)(6x+6)=6×12,即y2(y+1)(y-1)=72,y4-y2-72=0,(y2+8)(y2-9)=0.因为y2+8>0,所以只有y2-9=0,y=±3.代入①式,解得原方程的根为例4 解方程12x4-56x3+89x2-56x+12=0.解观察方程的系数,可以发现系数有以下特点:x4的系数与常数项相同,x3的系数与x的系数相同,像这样的方程我们称为倒数方程.由例5 解方程解方程的左边是平方和的形式,添项后可配成完全平方的形式.所以经检验,x1=-1,x2=2是原方程的根.例6 解方程(x+3)4+(x+1)4=82.分析与解由于左边括号内的两个二项式只相差一个常数,所以设于是原方程变为(y+1)4+(y-1)4=82,整理得y4+6y2-40=0.解这个方程,得y=±2,即x+2=±2.解得原方程的根为x1=0,x2=-4.说明本题通过换元,设y=x+2后,消去了未知数的奇次项,使方程变为易于求解的双二次方程.一般地,形如(x+a)4+(x+b)4=c例7 解方程x4-10x3-2(a-11)x2+2(5a+6)x+2a+a2=0,其中a是常数,且a≥-6.解这是关于x的四次方程,且系数中含有字母a,直接对x求解比较困难(当然想办法因式分解是可行的,但不易看出),我们把方程写成关于a的二次方程形式,即a2-2(x2-5x-1)a+(x4-10x3+22x2+12x)=0,△=4(x2-5x-1)2-4(x4-10x3+22x2+12x)=4(x2-2x+1).所以所以a=x2-4x-2或a=x2-6x.从而再解两个关于x的一元二次方程,得练习三1.填空:(1)方程(x+1)(x+2)(x+3)(x+4)=24的根为_______.(2)方程x3-3x+2=0的根为_____.(3)方程x4+2x3-18x2-10x+25=0的根为_______.(4)方程(x2+3x-4)2+(2x2-7x+6)2=(3x2-4x+2)2的根为______.2.解方程(4x+1)(3x+1)(2x+1)(x+1)=3x4.3.解方程x5+2x4-5x3+5x2-2x-1=0.4.解方程5.解方程(x+2)4+(x-4)4=272.6.解关于x的方程x3+(a-2)x2-(4a+1)x-a2+a+2=0.第四讲有关方程组的问题在教科书上,我们已经知道了二元一次方程组、三元一次方程组以及简单的二元二次方程组的解法.利用这些知识,可以研究一次函数的图像、二次函数的图像以及与此有关的问题.本讲再介绍一些解方程组的方法与技巧.1.二元二次方程组解二元二次方程组的基本途径是“消元”和“降次”.由一个二次和一个一次方程组成的二元二次方程组的一般解法是代入法,由两个二次方程组成的二次方程组在中学阶段只研究它的几种特殊解法.如果两个方程的二次项的对应系数成比例,可用加减消元法消去二次项.例1 解方程组解②×2-①×3得4x+9y-6=0.方程组中含有某一未知数的对应项的系数的比相等,可用加减消元法消去这个未知数.例2 解方程组解②×(-2)+①得3y2+3y-6=0,所以y1=1,y2=-2.解方程组与得原方程组的解方程组中至少有一个方程可以分解为一次方程的方程组,可用因式分解法解.例3 解方程组解由②得(2x+y)(x-2y)=0,所以2x+y=0或x-2y=0.因此,原方程组可化为两个方程组与解这两个方程组得原方程组的解为如果两个方程都没有一次项,可用加减消元法消去常数项,再用因式分解法求解.例4 解方程组解由①-②×2得x2-2xy-3y2=0,即(x+y)(x-3y)=0,所以x+y=0或x-3y=0.分别解下列两个方程组得原方程组的解为2.二元对称方程组方程中的未知数x,y互换后方程保持不变的二元方程叫作二元对称方程.例如x2-5xy+y2-3x-3y=7,等都是二元对称方程.由二元对称方程组成的方程组叫作二元对称方程组.例如等都是二元对称方程组.我们把叫作基本对称方程组.基本对称方程组通常用代入法或韦达定理求解.例5 解方程组解方程组中的x,y分别是新方程m2-5m+4=0的两个解.解关于m的一元二次方程得m1=1,m2=4,所以原方程组的解是这个方程组亦可用代入法求解(略).由于一般的二元对称式总可以用基本对称式x+y和xy表示,因此在解二元对称方程组时,一定可以用x+y和xy作为新的未知数,通过换元转化为基本对称方程组.例6 解方程组解原方程组可变形为①×2+②得令u=x+y,则即而方程组无实数解.综上所述,方程组的解为例7 解方程组分析本题是一个对称方程组的形式,观察知它可转化为基本对称方程组的形式.解由①得xy=16.④由②,④可得基本对称方程组于是可得方程组的解为例8 解方程组分析本题属于二元轮换对称方程组类型,通常可以把两个方程相减,因为这样总能得到一个方程x-y=0,从而使方程降次化简.解①-②,再因式分解得(x-y)(x+y-10)=0,所以x-y-0或x+x-10=0.解下列两个方程组得原方程组的四组解为例9 解方程组解法1用换元法.设4x+5=A,4y+5=B,则有即③-④并平方得整理得所以因此A-B=0或分别解下列两个方程组与经检验,A=B=9适合方程③,④,由此得原方程组的解是解法2①-②得即所以x-1与y-1同号或同为零.由方程①得所以x-1与y-1不能同正,也不能同负.从而x-1=0,y-1=0.由此解得经检验,x=1,y=1是方程组的解.练习四1.填空:(1)方程组的解有_____组.(2)若x,y是方程组(3)已知3a+b+2c=3,且a+3b+2c=1,则2a+c=_____.(4)已知实数x,y,z满足方程组则xyz=________.2.解方程组:3.设a,b,c,x,y,z都是实数.若4.已知一元二次方程a(x+1)(x+2)+b(x+2)(x+3)+c(x+3)(x+1)=0 有两根0,1,求a∶b∶c.5.(1)解方程组第五讲函数的基本概念与性质函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究.1.求函数值和函数表达式对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题.例1 已知f(x-1)=19x2+55x-44,求f(x).解法1令y=x-1,则x=y+1,代入原式有f(y)=19(y+1)2+55(y+1)-44=19y2+93y+30,所以f(x)=19x2+93x+30.解法2f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30.可.例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5).解由题设f(-x)=-ax5+bx3-x+5=-(ax5-bx3+x+5)+10=-f(x)+10,所以f(-5)=-f(5)+10=3.例4 函数f(x)的定义域是全体实数,并且对任意实数x,y,有f(x+y)=f(xy).若f(19)=99,求f(1999).解设f(0)=k,令y=0代入已知条件得f(x)=f(x+0)=f(x·0)=f(0)=k,即对任意实数x,恒有f(x)=k.所以f(x)=f(19)=99,所以f(1999)=99.2.建立函数关系式例5 直线l1过点A(0,2),B(2,0),直线l2:y=mx+b过点C(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S,求S关于m的函数解析式,并画出图像.解因为l2过点C(1,0),所以m+b=0,即b=-m.设l2与y轴交于点D,则点D的坐标为(0,-m),且0<-m≤2(这是因为点D在线段OA上,且不能与O点重合),即-2≤m<0.故S的函数解析式为例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边x,试写出梯形面积S关于x的函数关系式.解设矩形ABCD的长BC大于宽AB的2倍.由于周长为12,故长与宽满足4<BC<6,0<AB<2.由题意,有如下两种情形:CE1=x,BE1=BC-x,AB=CD=2(BC-x),所以(2AB+x)+AB=6,所以3.含绝对值的函数一次函数的图像是一条直线,含有绝对值符号的函数所对应的图像是由若干条线段和射线所组成的折线;二次函数的图像是抛物线,而y=|ax2+bx+c|的图像是将y=ax2+bx+c 在x轴下方的图像按x轴为对称轴翻到x轴的上方.对于一些其他的含绝对值符号的函数和方程的图像,需要按区间分段讨论.例7 作函数y=|3-x|+|x-1|的图像.解当x<1时,y=(3-x)+(1-x)=-2x+4;当1≤x<3时,y=(3-x)+(x-1)=2;当x≥3时,y=(x-3)+(x-1)=2x-4.所以它的图像如图3-3所示.例8 作函数y=|x2-5x+6|的图像.解当x≤2或x≥3时,x2-5x+6≥0,于是y=x2-5x+6;当2<x<3时,x2-5x+6<0,于是y=-(x2-5x+6).所以于是,得图像如图3-4所示.例9 点(x,y)满足方程|x-1|+|y+2|=2,求它的图像所围成区域的面积.解当x≥1,y≥-2时,x-1+y+2=2,即y=-x+1.当x≥1,x<-2时,x-1-(y+2)=2,即y=x-5.当x<1,y≥-2时,-x+1+y+2=2,即y=x-1.当x<1,y<-2时,-x+1-(y+2)=2,即y=-x-3.于是,所得图像如图3-5所示.由此可知,|x-1|+|y+2|=2的图像是一个对角线长为4,边长为2例10m是什么实数时,方程x2-4|x|+5=m有四个互不相等的实数根?解法1将原方程变形为x2-4|x|+4=m-1.令y=x2-4|x|+4=m-1,则它的图像如图3-6,而y=m-1是一条与x轴平行的直线.原方程有四个互不相等的实根,即直线应与曲线有四个不同的交点.由图像可知,当0<m-1<4,即1<m<5时,直线与曲线有四个不同的交点,所以,当1<m<5时,方程x2-4|x|+5=m有四个互不相等的实数根.说明本题是一个方程问题,我们利用图形来研究,这是一种非常重要的思想方法——数形结合法.当然,本题不用图像也是可以解的,下面给出解法,请读者比较一下.解法2原方程变形为(|x|-2)2=m-1,练习五1.填空:(1)已知f(x-1)=19x2+55x-44,则f(x)=_______.(2)对所有实数x,f(x2+1)=x4+5x2+3,那么对所有实数x,f(x2-1)=_______.(3)设x与y2成反比例,y与z2成正比例.当x=24时,y=2;当y=18时,z=3,则z=1时,x=_______.(4)已知y=2x2+mx+5的值恒为正,且m为实数,则m的范围是_______.函数,且当x=2,x=3时,y的值都为19,则y的解析式为y=_______.(6)如果y+m与x+n成正比例,且当x=1时,y=2;当x=-1时,y=1,则y与x间的函数关系式是y=_______.2.在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=-x+6的图像上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.3.平面直角坐标上有点P(-1,-2)和点Q(4,2),取点R(1,m),试问当m为何值时,PR+RQ有最小值.试求k的取值范围.5.设y=|x+2|+|x-4|-|2x-6|,且2≤x≤8,试求y的最大值与最小值之和.6.作y=2|x-3|,y=x-a的图像,问a取什么值时,它们可以围出一个平面区域,并求其面积.7.m是什么实数时,方程|x2-4x+3|=m有三个互不相等的实数解.第六讲二次函数二次函数是一类十分重要的最基本的初等函数,也是初中数学的主要内容之一,它在中学数学中起着承上启下的作用,它与一元二次方程、一元二次不等式知识的综合运用,是初中代数的重点和难点之一.另外,二次函数在工程技术、商业、金融以及日常生活中都有着广泛的应用.通过对二次函数的学习,使我们能进一步理解函数思想和函数方法,提高分析问题、解决问题的能力.正确掌握二次函数的基本性质是学好二次函数的关键.1.二次函数的图像及其性质例1 (1)设抛物线y=2x2,把它向右平移p个单位,或向下移q个单位,都能使得抛物线与直线y=x-4恰好有一个交点,求p,q的值.(2)把抛物线y=2x2向左平移p个单位,向上平移q个单位,则得到的抛物线经过点(1,3)与(4,9),求p,q的值.(3)把抛物线y=ax2+bx+c向左平移三个单位,向下平移两个单位析式.解(1)抛物线y=2x2向右平移p个单位后,得到的抛物线为y=2(x-p)2.于是方程2(x-p)2=x-4有两个相同的根,即方程2x2-(4p+1)x+2p2+4=0的判别式△=(4p+1)2-4·2·(2p2+4)=0,抛物线y=2x2向下平移q个单位,得到抛物线y=2x2-q.于是方程2x2-q=x-4有两个相同的根,即△=1-4·2(4-q)=0,(2)把y=2x2向左平移p个单位,向上平移q个单位,得到的抛物线为y=2(x+p)2+q.于是,由题设得解得p=-2,q=1,即抛物线向右平移了两个单位,向上平移了一个单位.解得h=3,k=2.原二次函数为说明将抛物线y=ax2+bx+c向右平移p个单位,得到的抛物线是y=a(x-p)2+b(x-p)+c;向左平移p个单位,得到的抛物线是y=a(x+p)2+b(x+p)+c;向上平移q个单位,得到y=ax2+bx +c+q;向下平移q个单位,得到y=ax2+bx+c-q.例2 已知抛物线y=ax2+bx+c的一段图像如图3-7所示.(1)确定a,b,c的符号;(2)求a+b+c的取值范围.解(1)由于抛物线开口向上,所以a>0.又抛物线经过点(0,-1),合a>0便知b<0.所以a>0,b<0,c<0.(2)记f(x)=ax2+bx+c.由图像及(1)知所以a+b+c=a+(a-1)-1=2(a-1),-2<a+b+c<0.例3 已知抛物线y=ax2-(a+c)x+c(其中a≠c)不经过第二象限.(1)判断这条抛物线的顶点A(x0,y0)所在的象限,并说明理由;(2)若经过这条抛物线顶点A(x0,y0)的直线y=-x+k与抛物线的另一解(1)因为若a>0,则抛物线开口向上,于是抛物线一定经过第二象限,所以当抛物线y=ax2-(a+c)x+c的图像不经过第二象限时,必有a<0.又当x=0时,y=c,即抛物线与y轴的交点为(0,c).因为抛物线不经过第二象限,所以c≤0.于是所以顶点A(x0,y0)在第一象限.B在直线y=-x+k上,所以0=-1+k,所以k=1.又由于直线y=-x+1经过-2x2+2x.2.求二次函数的解析式求二次函数y=ax2+bx+c(a≠0)的解析式,需要三个独立的条件确定三个系数a,b,c.一般地有如下几种情况:(1)已知抛物线经过三点,此时可把三点坐标代入解析式,得到关于a,b,c的三元一次方程组,解方程组可得系数a,b,c.或者已知抛物线经过两点,这时把两点坐标代入解析式,得两个方程,再利用其他条件可确定a,b,c.或者已知抛物线经过某一点,这时把这点坐标代入解析式,再结合其他条件确定a,b,c.(2)已知抛物线的顶点坐标为(h,k),这时抛物线可设为y=a(x-h)2+k,再结合其他条件求出a.(3)已知抛物线与x轴相交于两点(x1,0),(x2,0),此时的抛物线可设为y=a(x-x1)(x-x2),再结合其他条件求出a.例4 设二次函数f(x)=ax2+bx+c满足条件:f(0)=2,f(1)=-1,解由f(0)=2,f(1)=-1,得即c=2,b=-(a+3).因此所求的二次函数是y=ax2-(a+3)x+2.由于二次函数的图像在x轴上所截得的线段长,就是方程ax2-(a+3)x+2=0两根差的绝对值,而这二次方程的两根为于是因此所求的二次函数表达式为例5 设二次函数f(x)=ax2+bx+c,当x=3时取得最大值10,并且它的图像在x轴上截得的线段长为4,求a,b,c的值.分析当x=3时,取得最大值10的二次函数可写成f(x)=a(x-3)2+10,且a<0.解因为抛物线的对称轴是x=3,又因为图像在x轴上截得的线段长是4,所以由对称性,图像与x轴交点的横坐标分别是1,5.因此,二次函数又可写成f(x)=a(x-1)(x-5)的形式,从而a(x-3)2+10=a(x-1)(x-5),所以例6 如图3-8,已知二次函数y=ax2+bx+c(a>0,b<0)的图像与x轴、y轴都只有一个公共点,分别为点A,B,且AB=2,b+2ac=0.(1)求二次函数的解析式;(2)若一次函数y=x+k的图像过点A,并和二次函数的图像相交于另一点C,求△ABC的面积.解(1)因二次函数的图像与x轴只有一个公共点,故b2-4ac=0,而b+2ac=0,所以b2+2b=0,b=-2(因为b<0).点B的坐标为(0,c),AB=2,由勾股定理得所以1+a2c2=4a2.因为ac=1,所以4a2=2,练习六1.填空:(1)将抛物线y=2(x-1)2+2向右平移一个单位,再向上平移三个单位,得到的图像的解析式为______.(2)已知y=x2+px+q的图像与x轴只有一个公共点(-1,0),则(p,q)=____.(3)已知二次函数y=a(x-h)2+k的图像经过原点,最小值为-8,且形(4)二次函数y=ax2+bx+c的图像过点A(-1,0),B(-3,2),且它与x轴的两个交点间的距离为4,则它的解析式为________.(5)已知二次函数y=x2-4x+m+8的图像与一次函数y=kx+1的图像相交于点(3,4),则m=___,k=_____.(6)关于自变量x的二次函数y=-x2+(2m+2)x-(m2+4m-3)中,m是不小于零的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边,则这个二次函数的解析式为____.2.设抛物线y=x2+2ax+b与x轴有两个不同交点.(1)把它沿y轴平移,使所得到的抛物线在x轴上截得的线段的长度是原来的2倍,求所得到的抛物线;(2)通过(1)中所得曲线与x轴的两个交点,及原来的抛物线的顶点,作一条新的抛物线,求它的解析式.3.已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点为C.(2)若△ABC是等腰直角三角形,求b2-4ac的值;(3)若b2-4ac=12,试判断△ABC的形状.4.有两个关于x的二次函数C1:y=ax2+4x+3a和C2:y=x2+2(b+2)x+b2+3b.当把C1沿x轴向左平移一个单位后,所得抛物线的顶点恰与C2的顶点关于x轴对称,求a,b.5.已知二次函数y=x2-2bx+b2+c的图像与直线y=1-x只有一个公共点,并且顶点在二次函数y=ax2(a≠0)的图像上,求a的取值范围第七讲函数的最大值与最小值我们常常遇到求最大值和最小值的问题,在许多情况下可以归结为求函数的最大值与最小值.这类问题涉及的知识面广,综合性强,解法灵活,因而对于培养学生的数学能力具有重要作用.本讲从四个方面来讨论如何求解函数的最大值与最小值问题.1.一次函数的最大值与最小值一次函数y=kx+b在其定义域(全体实数)内是没有最大值和最小值的,但是,如果对自变量x 的取值范围有所限制时,一次函数就可能有最大值和最小值了.例1 设a是大于零的常数,且a≠1,求y的最大值与最小值.大值a.例2 已知x,y,z是非负实数,且满足条件x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.分析题设条件给出两个方程,三个未知数x,y,z,当然,x,y,z的具体数值是不能求出的.但是,我们固定其中一个,不妨固定x,那么y,z都可以用x来表示,于是u便是x的函数了.解从已知条件可解得y=40-2x,z=x-10.所以u=5x+4y+2z=5x+4(40-2x)+2(x-10)=-x+140.又y,z均为非负实数,所以解得10≤x≤20.由于函数u=-x+140是随着x的增加而减小的,所以当x=10时,u有最大值130;当x=20时,u有最小值120.2.二次函数的最大值与最小值例3 已知x1,x2是方程x2-(k-2)x+(k2+3k+5)=0解由于二次方程有实根,所以△=[-(k-2)]2-4(k2+3k+5)≥0,3k2+16k+16≤0,例4 已知函数有最大值-3,求实数a的值.解因为的范围内分三种情况讨论.-a2+4a-1=-3例5 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图3-12),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解设矩形PNDM的边DN=x,NP=y,于是矩形PNDM的面积S=xy,2≤X≤4.易知CN=4-x,EM=4-y,且有二次函数S=f(x)的图像开口向下,对称轴为x=5,故当x≤5时,函数值是随x的增加而增加,所以,对满足2≤x≤4的S来说,当x=4时有最大值例6 设p>0,x=p时,二次函数f(x)有最大值5,二次函数g(x)的最小值为-2,且g(p)=25,f(x)+g(x)=x2+16x+13.求g(x)的解析式和p的值.解由题设知f(p)=5,g(p)=25,f(p)+g(p)=p2+16p+13,所以p2+16p+13=30,p=1(p=-17舍去).由于f(x)在x=1时有最大值5,故设f(x)=a(x-1)2+5,a<0,所以g(x)=x2+16x+13-f(x)=(1-a)x2+2(a+8)x+8-a.由于g(x)的最小值是-2,于是解得a=-2,从而g(x)=3x2+12x+10.3.分式函数的最大值与最小值法是去分母后,化为关于x的二次方程,然后用判别式△≥0,得出y的取值范围,进而定出y的最大值和最小值.解去分母、整理得(2y-1)x2+2(y+1)x+(y+3)=0.△≥0,即△=[2(y+1)]2-4(2y-1)(y+3)≥0,解得-4≤y≤1.时,取最小值-4,当x=-2时,y取最大值1.说明本题求最值的方法叫作判别法,这也是一种常用的方法.但在用判别法求最值时,应特别注意这个最值能否取到,即是否有与最值相应的x值.解将原函数去分母,并整理得yx2-ax+(y-b)=0.因x是实数,故△=(-a)2-4·y·(y-b)≥0,由题设知,y的最大值为4,最小值为-1,所以(y+1)(y-4)≤0,即y2-3y-4≤0.②由①,②得所以a=±4,b=3.4.其他函数的最大值与最小值处理一般函数的最大值与最小值,我们常常用不等式来估计上界或下界,进而构造例子来说明能取到这个上界或下界.解先估计y的下界.又当x=1时,y=1,所以,y的最小值为1.说明在求最小(大)值,估计了下(上)界后,一定要举例说明这个界是能取到的,才能说这就是最小(大)值,否则就不一定对了.例如,本题我们也可以这样估计:但无论x取什么值时,y取不到-3,即-3不能作为y的最小值.例10 设x,y是实数,求u=x2+xy+y2-x-2y的最小值.分析先将u看作是x的二次函数(把y看作常数),进行配方后,再把余下的关于y的代数式写成y的二次函数,再配方后,便可估计出下界来.又当x=0,y=1时,u=-1,所以,u的最小值为-1.例11 求函数的最大值,并求此时的x值,其中[a]表示不超过a的最大整数.练习七。

初中数学教案变量与常量

初中数学教案变量与常量

初中数学教案变量与常量初中数学教案:变量与常量引言:数学是一门严谨而有趣的学科,而初中数学作为数学学习的基础课程,需培养学生的逻辑思维和问题解决能力。

其中,理解和掌握变量与常量的概念至关重要。

本教案旨在通过寓教于乐的方式帮助学生深入理解变量与常量的含义、作用以及它们在数学问题中的应用。

一、背景知识的概述1. 变量与常量的定义在数学中,变量是指可改变的量,常用字母表示;而常量是指固定不变的量,常用数字或字母表示。

2. 变量与常量的作用变量与常量在数学问题中起着不同的作用。

学生需要理解这两个概念的区别,以及它们在算术、代数以及其他实际问题中的应用。

二、教学目标在本课中,学生将能够:1. 定义变量与常量的概念;2. 区分变量与常量,并举例说明;3. 运用变量与常量解决实际问题。

三、教学内容和方法1. 引入利用一个有趣的情境或问题,引起学生的兴趣,并提出相关问题,如:在一次志愿者活动中,有多少人愿意为植树活动做贡献?请你们想一想,这个数字应该是一个变量还是一个常量?2. 讲解变量与常量的概念通过示意图、实例等方式,清晰地解释变量与常量的定义,并与学生进行互动讨论。

3. 变量与常量的区分通过多个实例,与学生一起分析问题,并要求他们判断出变量与常量在不同情景中的应用与区别。

4. 变量与常量的应用数学中变量与常量的应用非常广泛,可以引导学生在解决实际问题中灵活运用这两个概念。

可以设计实际问题,要求学生在解决问题时运用变量与常量,并进行解答。

5. 知识总结综合归纳变量与常量的定义及其应用,并通过提问和讨论的形式巩固学生的理解。

四、教学辅助工具和评估方式1. 辅助工具课件、黑板、粉笔、实物物品等。

2. 评估方式可以设计小组活动、个人作业或小测验等方式对学生对变量与常量的理解进行评估。

五、课堂延伸1. 拓展思维鼓励学生思考变量与常量的应用在其他学科和实际生活中的重要性,如化学中化学方程式中的变量、经济学中的变量等。

初中数学竞赛第二十九讲由正难则反切入(含答案)

初中数学竞赛第二十九讲由正难则反切入(含答案)

第二十九讲 由正难则反切入人们习惯的思维方式是正向思维,即从条件手,进行正面的推导和论证,使问题得到解决.但有些数学问题,若直接从正面求解,则思维较易受阻,而“正难则反,顺难则逆,直难则曲”是突破思维障碍的重要策略.数学中存在着大量的正难则反的切入点.数学中的定义、公式、法则和等价关系都是双向的,具有可逆性;对数学方法而言,特殊与一般、具体与抽象、分析与综合、归纳与演绎,其思考方向也是可逆的;作为解题策略,当正向思考困难时可逆向思考,直接证明受阻时可间接证明,探索可能性失败时转向考察不可能性.由正难则反切入的具体途径有:1. 定义、公式、法则的逆用; 2.常量与变量的换位; 3.反客为主; 4.反证法等. 【例题求解】 【例1】 已知x 满足222322=--+x x xx ,那么x x 22+的值为 .思路点拨 视x x 22+为整体,避免解高次方程求x 的值.【例2】 已知实数a 、b 、c 满足b a ≠,且0)()(2002)(2002=-+-+-a c c b b a 求2)())((b a a c b c ---的值.思路点拨 显然求a 、b 、c 的值或寻求a 、b 、c 的关系是困难的,令x =2000,则2002=2x ,原等式就可变形为关于x 的一元二次方程,运用根与系数关系求解.注:(1)人们总习惯于用凝固的眼光看待常量与变量,认为它们泾渭分明,更换不得,实际上将常量设为变量,或将变量暂时看作常量,都会给人以有益的启示.(2)人的思维活动既有“求同”和“定势”的方面,又有“求异”和“变通”的方面.求同与求异,定势与变通是人的思维个性的两极,充分利用知识和方法的双向性,是培养思维能力的重要途径.正难则反在具体的解题中,还表现为下列各种形式: (1)不通分母通分子; (2)不求局部求整体;(3)不先开方先平方; (4)不用直接挖隐含; (5)不算相等算不等; (6)不求动态求静态等.【例3】 设a 、b 、c 为非零实数,且022=++c bx ax ,022=++a cx bx ,022=++b ax cx ,试问:a 、b 、c 满足什么条件时,三个二次方程中至少有一个方程有不等的实数根.思路点拨 如从正面考虑,条件“三个方程中至少有一个方程有不等的实数根”所涉及的情况比较复杂,但从其反面考虑情况却十分简单,只有一种可能,即三个方程都没有实数根,然后从全体实数中排除三个方程都无实数根的a 、b 、c 的取值即可.注:受思维定势的消极影响,人们在解决有几个变量的问题时,总抓住主元不放,使有些问题的解决较为复杂,此时若变换主元,反客为主,问题常常能获得简解.【例4】 已知一平面内的任意四点,其中任何三点都不在一条直线上,试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一内角不大于45°?请证明你的结论.思路点拨 结论是以疑问形式出现的,不妨先假定是肯定的,然后推理.若推出矛盾,则说明结论是否定的;若推不出矛盾,则可考虑去证明结论是肯定的.【例5】 能够找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够,请说明理由.思路点拨 先假设存在正整数1n ,2n ,3n ,4n 满足22000m n n j i =+ (i ,j =1,2,3,4,m 为正整数).运用完全平方数性质、奇偶性分析、分类讨论综合推理,若推出矛盾,则原假设不成立.注:反证法是从待证命题的结论的反面出发,进行推理,通过导出矛盾来判断待证命题成立的方法,其证明的基本步骤是:否定待证命题的结论、推理导出矛盾、肯定原命题的结论.宜用反证法的三题特征是: (1)结论涉及无限; (2)结论涉及唯一性; (3)结论为否定形式;(4)结论涉及“至多,至少”; (5)结论以疑问形式出现等.学历训练A 组1.由小到大排列各分数:116,1710,1912,2315,3320,9160是 . 2.分解因式2232)1(a ax x a x +--+= .3.解关于x 的方程:0433*******=+++--a ax x ax x x (a ≥81-)得x = .4.100999910013223121121++++++ 的结果是 .5.若关于x 的三个方程,0324422=++++m m mx x , 0)12(22=+++m x m x ,012)1(2=-++-m mx x m 中至少有一个方程有实根,则m 的取值范围是 .6.有甲、乙两堆小球,如果第一次从甲堆拿出和乙堆同样多的小球放到乙堆,第二次从乙堆拿出和甲堆剩下的同样多的小球放到甲堆,如此挪动4次后,甲、乙两堆小球恰好都是16个,那么,甲、乙两堆最初各有多少个小球?7.求这样的正整数a ,使得方程074)12(22=-+-+a x a ax 至少有一个整数解.8.某班参加运动会的19名运动员的运动服号码恰是1~19号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的3名运动员,他们运动服号码之和不小于32,请说明理由.9.如正整数a 和b 之和是n ,则n 可变为ab ,问能不能用这种方法数次,将22变成2001?10.证明:如果整系数二次方程02=++c bx ax a (0≠a )有有理根,那么a ,b ,c 中至少有一个是偶数.11.在ΔABC 中是否存在一点P ,使得过P 点的任意一直线都将该ΔABC 分成等面积的两部分?为什么?12.求证:形如4n+3的整数是(n为整数)不能化为两个整数的平方和.13.13位小运动员,他们着装的运动服号码分别是1~13号.问:这13名运动员能否站成一个圆圈,使得任意相邻的两名运动员号码数之差的绝对值都不小于3,且不大于5?如果能,试举一例;如果不能,请说明理由.14.有12位同学围成一圈,其中有些同学手中持有鲜花,鲜花总数为13束,他们进行分花游戏,每次分花按如下规则进行:其中一位手中至少持有两束鲜花的同学拿出两束鲜花分给与其相邻的左右两位同学,每人一束.试证:在持续进行这种分花游戏的过程中,一定会出现至少有7位同学手中持有鲜花的情况.参考答案。

新课标九年级数学竞赛辅导讲座 第六讲 转化—可化为一元二次方程的方程【教案】

新课标九年级数学竞赛辅导讲座 第六讲 转化—可化为一元二次方程的方程【教案】

第六讲 转化—可化为一元二次方程的方程数学(家)特有的思维方式是什么?若从量的方面考虑,通常运用符号进行形式化抽象,在一个概念和公理体系内实施推理计算,若从“转化”这个侧面又该如何回答?匈牙利女数学家路莎·彼得在《无穷的玩艺》一书中写道:“作为数学家的思维来说是很典型的,他们往往不对问题进行正面攻击,而是不断地将它变形,直至把它转化为已经能够解决的问题.”转化与化归是解分式方程和高次方程(次数高于二次的整式方程)的基本思想.解分式方程,通过去分母和换元;解高次方程,利用因式分解和换元,转化为一元二次方程或一元一次方程去求解.【例题求解】【例1】 若0515285222=-+-+-x x x x ,则1522--x x 的值为 .思路点拨 视x x 522-为整体,令y x x =-522,用换元法求出y 即可.【例2】 若方程x x p -=-2有两个不相等的实数根,则实数p 的取值范围是( )A .1->pB .0≤pC .01≤<-pD .01<≤-p思路点拨 通过平方有理化,将无理方程根的个数讨论转化为一元二次方程实根个数的讨论,但需注意注02≥-=-x x p 的隐含制约.注:转化与化归是一种重要的数学思想,在数学学习与解数学题中,我们常常用到下列不同途径的转化:实际问题转化大为数学问题,数与形的转化,常量与变量的转化,一般与特殊的转化等.解下列方程:(1)121193482232222=+-++-++x x x x x x xx ;(2)1)1998()1999(33=-+-x x ;(3)42)113(1132=+-++-x x x x x x .按照常规思路求解繁难,应恰当转化,对于(1),利用倒数关系换元;对于(2),从1)1998()1999(=-+-x x 受到启示;对于(3),设113+-=x x y ,则可导出y x +、xy 的结果.注:换元是建立在观察基础上的,换元不拘泥于一元代换,可根据问题的特点,进行多元代换.【例4】 若关于x 的方程xkx x x x x k 1122+=---只有一个解(相等的解也算作一个),试求k 的值与方程的解.思路点拨 先将分式方程转化为整式方程,把分式方程解的讨论转化为整式方程的解的讨论,“只有一个解”内涵丰富,在全面分析的基础上求出k 的值.注:分式方程转化为整式方程不一定是等价转化,有可能产生增根,分式方程只有一个解,可能足转化后所得的整式方程只有一个解,也可能是转化后的整式方程有两个解,而其中一个是原方程的增根,故分式方程的解的讨论,要运用判别式、增根等知识全面分析.【例5】 已知关于x 的方程655)(2-=--+xa x x ax 有两个根相等,求a 的值. 思路点拨 通过换元可得到两个关于x 的含参数a 的一元二次方程,利用判别式求出a 的值.注:运用根的判别式延伸到分式方程、高次方程根的情况的探讨,是近年中考、竞赛中一类新题型,尽管这种探讨仍以一元二次方程的根为基础,但对转换能力、思维周密提出了较高要求.学历训练1.若关于x 的方程0111=--+x ax 有增根,则a 的值为 ;若关于x 的方程122-=-+x a x 曾=一1的解为正数,则a 的取值范围是 .2.解方程121)10)(9(1)2)(1(1)1(1)1(1=+++++++++-x x x x x x x x 得 .3.已知方程m x m x -=+2123有一个根是2,则m = . 4.方程9733322=-+-+x x x x 的全体实数根的积为( )A .60B .一60C .10D .一10 5.解关于x 的方程1112+=---x x x k x x 不会产生增根,则是的值是( ) A .2 B .1 C .不为2或一2 D .无法确定6.已知实数x 满足01122=+++x x xx ,那么x x 1+的值为( ) A .1或一2 B .一1或2 C .1 D .一27.(1)如表,方程1、方程2、方程3、……,是按照一定规律排列的一列方程,解方程1,并将它的解填在表中的空格处;(2)若方程11=--bx x a (b a >)的解是1x =6,2x =10,求a 、b 的值.该方程是不是(1)中所给的一列方程中的一个方程?如果是,它是第几个方程? n 个方程和它的解,并n8.解下列方程:(1)619122112222=++++++++x x x x x x x ; (2)081318218111222=--+-++-+x x x x x x ; (3)120)4)(3)(2)(1(=++++x x x x ; (4)1)1(3)1(222=+-+x x xx . 9.已知关于x 的方程02212222=-+-++m x x m x x ,其中m 为实数,当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.10.方程222121x x xx +=--的解是 .11.解方程214127165123112222=++++++++++x x x x x x x x 得 .12.方程87329821+++++=+++++x x x x x x x x 的解是 . 13.若关于x 的方程03121422=-+x x a 恰有两个不同的实数解,则实数a 的取值范围是 .14.解下列方程:(1)6)1)(43()76(2=+++x x x ;(2)222222)243()672()43(+-=+-+-+x x x x x x ;(3)3)1(22=++x x x ; (4)310221=+++x x x. 15.当a 取何值时,方程2212212--+=+----x x a x x x x x 有负数解? 16.已知01585234=+-+-x x x x ,求xx 1+的值. 17.已知:如图,四边形ABCD 为菱形,AF ⊥上AD 交BD 于E 点,交BC 于点F .(1)求证:AD 2=21 DE ×DB ; (2)过点E 作EG ⊥AE 交AB 于点G ,若线段BE 、DE(BE<DE)的长为方程02322=+-m mx x (m>0)的两个根,且菱形ABCD 的面积为36,求EG 的长.参考答案。

初中数学竞赛辅导讲义1

初中数学竞赛辅导讲义1

初中数学竞赛辅导讲义1初中数学竞赛是培养学生数学能力的一种重要途径,也是考验学生数学素质和思维能力的有效方法。

竞赛的题目一般会有一定的难度,需要学生具备较高的数学知识和思维能力。

为此,我们推出这份初中数学竞赛辅导讲义1,旨在为广大学生提供一些在数学竞赛中常用的数学方法和技巧。

一、数的分解1.1 质因数分解对于一个正整数,我们可以将其分解为若干个质数的乘积的形式,这种分解方式称为质因数分解。

质数是指只能被1和它本身整除的正整数,常见的质数有2、3、5、7等。

在竞赛中,质因数分解是一个非常常见的题型。

例如,对于数字28,它可以表示为2×2×7的形式,因此28的质因数分解式是28=2×2×7。

1.2 分解因式在数学竞赛中,分解因式也是一种很常见的题型。

分解因式即将一个多项式拆分成多个因数的乘积,许多数学问题可以用分解因式的方式解决。

例如,求解一个一次方程或二次方程就需要先进行分解因式。

例如,对于多项式x2+3x+2,我们可以将其拆分成(x+2)×(x+1)的形式,因此x2+3x+2的因式分解式是(x+2)×(x+1)。

二、方程的解法2.1 一元一次方程的求解在数学竞赛中,一元一次方程的求解是一个很基础的知识点。

一元一次方程是指只有一个未知数且未知数的最高次幂为1的方程。

例如,解方程2x+3=7,我们可以将其转化为2x=4,再将其化简为x=2,因此方程的解为x=2。

2.2 二元一次方程的求解在数学竞赛中,二元一次方程也是一种常见的题型。

二元一次方程指的是含有两个未知数且未知数的最高次幂为1的方程。

例如,解方程2x+3y=7,x-y=1,我们可以利用消元法或其他方法来求解未知数的值。

三、几何基础知识3.1 圆的相关知识在数学竞赛中,圆的相关知识也是一个非常重要的内容。

圆是平面上一组点构成的集合,其中任意两点之间的距离相等,这个距离被称为圆的直径。

【初中数学】初中数学知识点:常量与变量

【初中数学】初中数学知识点:常量与变量

【初中数学】初中数学知识点:常量与变量基本定义:
变量:在某一变化过程中,数值发生变化的量。

常量:在某一变化过程中,数值始终不变的量。

变量和常量往往是相对的,相对于某个变化过程,在不同研究过程中,作为变量与常量的“身份”是可以相互转换的。

常量与变量的认定:
变量:就是没有固定值,只是用字母表示,可以随意给定值的量。

常量:就是存有紧固应该量(可以就是字母也可以就是数字)
例如:
1.y=-2x+4y,x都没固定值,就是变量;4就是紧固的,所以就是常量。

2.n边形的对角线条数l与边数n的关系:l=n(n-3)/2同上理由,n是变量;1,2,3是常量
3.圆的周长公式:c=2πr因为π就是个紧固的数字(3.1415926535...)只不过就是用字母则表示,所以就是常量,2也就是常量;r和c没确认值,都就是变量。

判断一个量是常量还是变量,需看两个方面:
在事物的变化过程中,我们表示数值发生变化的量为变量,而数值始终保持维持不变的量称作常量。

常量与变量必须存有于一个变化过程中。

①看它是否在一个变化的过程中;
②看看它在这个变化过程中的值域情况。

自变量的取值范围有无限的,也有有限的,还有的是单独一个(或几个)数的;
在一个函数解析式中,同时存有几种代数式时,函数的自变量的值域范围应当就是各种代数式中自变量的值域范围的公共部分。

初中数学竞赛讲义:第08讲-由常量数学到变量数学

初中数学竞赛讲义:第08讲-由常量数学到变量数学

第八讲由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为.思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x 的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的()思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运若这批水果在运输(包括装卸)过程中的损耗为200元/小时,记A、B两市间的距离为x 千米.(1)如果用W l、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出W l、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由W l—W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F 关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由.思路点拨(1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy 与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P 与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y .(1)当AP =3cm 时,求的值;(2)设AP=cm 时,求y 与x 的函数关系式;(3)当y=2cm 2,试确定点P 的位置.(2001年天津市中考题)思路点拨 对于(2),由于点P 的位置不同,y 与x 之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x 值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1. 如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 . 2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标).3.根据指令[S ,A](S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令[4,60°],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a -B .22a +C .22a --D .22a +-5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). 8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?9.如图,在平面直角坐标系中有一个正方形ABCD ,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点).10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是 .11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为 .12.在直角坐标系中,已知A(1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .1个B .2个C . 3个D .4个13.已知点P 的坐标是(a +2l ,b +2),这里a 、b 是有理数,PA 、PB 分别是点P 到x 轴和y轴的垂线段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个B.2个C.3个D.4个14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V l与V2(Vi<V2),甲用一半的路程使用速度V l、另一半的路程使用速度V2;关于甲乙二人从A 地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交级别…(1)某公民2002年10月的总收人为1350元,问他应交税款多少元?(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y 关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D作AB垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元?18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC 上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ 是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由.参考答案。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

初中数学变量与常量教案

初中数学变量与常量教案

教案:初中数学——变量与常量教学目标:1. 了解常量和变量的概念,能够区分两者。

2. 能够运用常量和变量解决实际问题。

3. 理解变量在数学中的作用,培养学生的抽象思维能力。

教学内容:1. 常量与变量的定义。

2. 常量与变量的应用。

教学过程:一、导入(5分钟)1. 引入话题:在我们日常生活中,有哪些事物是经常变化的?有哪些事物是不变的?2. 学生回答,教师总结:像身高、体重、年龄等都是经常变化的事物,我们称之为变量;而像圆周率、地球的质量等都是不变的事物,我们称之为常量。

二、新课讲解(15分钟)1. 讲解常量的概念:常量是在某个过程中不变的量。

2. 讲解变量的概念:变量是在某个过程中可以取不同值的量。

3. 举例说明:如圆的周长公式C=2πr,其中r是变量,π是常量。

三、课堂练习(10分钟)1. 请学生独立完成教材P38的练习题1-3。

2. 学生互相交流答案,教师讲解正确与否。

四、应用拓展(10分钟)1. 请学生举例说明生活中常见的常量和变量。

2. 学生分组讨论,每组选出一个实际问题,用常量和变量来解决。

3. 各组汇报讨论结果,教师点评。

五、总结(5分钟)1. 回顾本节课所学内容,让学生复述常量和变量的概念。

2. 强调常量和变量在实际问题中的应用。

教学评价:1. 课后作业:请学生完成教材P39的练习题1-5。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。

教学反思:本节课通过导入、新课讲解、课堂练习、应用拓展和总结等环节,让学生掌握了常量和变量的概念及应用。

在课堂练习和应用拓展环节,学生能够主动思考、合作交流,提高了解决问题的能力。

但在教学过程中,要注意引导学生正确理解常量和变量的区别,避免混淆。

初中数学竞赛辅导讲座19讲全套.docx

初中数学竞赛辅导讲座19讲全套.docx

第一讲有理数一、冇理数的概念及分类。

二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。

三、例题示范1、数轴与大小例1、己知数轴上有A、B两点,A、B之间的距离为1,点A与原点0的距离为3, 那么满足条件的点B与原点0的距离之和等于多少?满足条件的点B有多少个?例2、将—122Z,_97 1998 98这四个数按由小到大的顺序,用连结起来。

1998 98 1999 99提示1:四个数都加上1不改变大小顺序;提示厶先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。

例3、观察图中的数轴,用字母a、b、c依次表示点A、B、C对应的数。

试确定三个数丄,丄丄的大小关系。

cib b-a c3 3分析:由点B在A右边,知b・a〉O,而A、B都在原点左边,故ab〉O,又c>l>0,故耍比较丄,丄丄的大小关系,只要比较分母的大小关系。

ab b- a c例4、在有理数a与b(b>a)之间找出无数个冇理数。

捉示:Pp + 山5为大于是的自然数) n注:P的表示方法不是唯一的。

2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。

例5、在数1、2、3、…、1990前添上“ + ”和“一”并依次运算,所得可能的最小非负数是多少?提水:造零:n-(n+1 )-(n+2)+(n+3)=0注:造零的基本技巧「两个相反数的代数和为零。

3、算对与算巧例6、计算-1-2-3— -2000-2001-2002提示:1、逆序相加法。

2、求和公式:S二(首项+末项)x项数+2。

例7、计算1+2—3—4+5+6—7-8+9+…—2000+2001+2002提示:仿例5,造零。

结论:2003o例8、计算99...9x99・・・9 + 199 (9)s_V~v_V_z x~V~'n个9 拜个9 〃个9提示1:凑整法,并运用技巧:199…9二10"+99…9, 99・・・9二10"-1。

初中数学专题常量与变量(含答案)

初中数学专题常量与变量(含答案)

第七章一次函数【本章学习要点和训练重点】●了解常量、变量和函数的概念及函数的3种表示方法;•会列简单实际问题的函数解析式,会求函数值和简单函数的自变量的取值范围;理解正比例函数、一次函数的概念,会求正比例函数、一次函数的解析式,会求一次函数的值,会根据已知一次函数的解析式表示直角坐标系中的直线,借助图像了解一次函数的增减性,会根据自变量的取值范围求函数的取值范围,会根据函数的取值范围求自变量的取值范围;会用函数图像刻画两个变量之间的关系,会根据一次函数图像求二元一次方程的解(或近似解),初步具有综合运用知识解决实际问题的能力.7.1 常量与变量课内同步训练1.半径是R的圆的周长C=2πR,,下列说法正确的是()A.C、π、R是常量; B.C是常量,2、π、R是常量;C.R是常量,2、π、C是常量; D.C、R是常量,2、π是常量.2.汽车以80km/h的速度行驶t时,S(km)表示行驶路程,其中常量是________,•变量是________.3.指出下列的各问题中,哪些量是变量,哪些量是常量?(1)半圆形花坛的半径为r,花坛面积为S,怎样用含r的式子表示S?(2)出租车行驶不超过3km,收起步价8元,3km后1.4元/km,出租车车费为y元,•怎样用含乘坐的路程x(x>3,单位:km)的式子表示y?(3)为改善生态环境,保护生态平衡,某乡遵照上级指示,将耕地还林、耕地还草,还林和还草的比为7:5,怎样用含还草的耕地xha•的式子表示还林、•还草的总耕地yha (1ha=10m)?(4)某运动员在400m一圈的跑道上训练,他跑一圈所用的时间t(s)与速度v(m/s)的关系怎样?4.举出一些变化的实例,指出其中的常量与变量.课外延伸训练1.一个三角形的底边长5cm,h可以任意伸缩,写出s随h变化的关系式,•并指出其中的常量与变量.2.给定了火车的速度v=60km/h,要研究火车运行的路程s与时间t之间的关系.在这个问题中,常量是_____,变量是________;若给定路程s=100km,要研究速度v与t之间的关系.在这个问题中,常量是______,变量是________.由这2个问题可知,常量与变量是________ 的.3.分别指出下列各关系式中的变量与常量:(1)如果直角三角形中一个锐角的度数为α,那么另一个锐角的度数β与α之间的的关系式是β=90-α.(2)如果某种报纸的单价为a元,x表示购买这种报纸的份数,•那么购买报纸的总价y(元)与x之间的关系式是y=ax.(3)n边形的内角和的度数S与边数n的关系式是S=(n-2)×180.4.A、B两地相距10km,小王由A骑车到B,速度为12km/h,在小王由A到B•这个过程中,有哪几个量?其中哪些是常量,哪些是变量?它们有何限制?7.1 常量与变量(答案) [课内同步训练]1.D 2.80km,t、s3.(1)S=12πR2,其中12、π是常量,S、R是变量(2)y=8+1.4(x-3),其中8、1.4、3是常量,x、y是变量(3)y=125x,其中125是常量,x、y是变量(4)t= 400s,其中400是常量,s、t是变量 4.略[课外延伸训练]1.s=52h,其中52是常量,h、s是变量 2.60,V、h;100、V、t 相对3.(1)常量是90,变量是β、α(2)常量是a,变量是x、y(3)常量是2、180°,变量是n、s4.•共有路程、速度、时间三个量,其中路程、时间是变量,速度是常量,• 它们满足关系式:•S=12t(其中0≤S≤10).。

人教版九年级数学课件-常量与变量

人教版九年级数学课件-常量与变量
21.2 解一元二次方程 21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
人教版 九年级(上)
第二十一章 一元二次方程
21.2 解一元二次方程 21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
人教版 九年级(上)
第二十一章 一元二次方程
21.2 解一元二次方程 21.2.1 配方法
人数.
第二十一章 (1)题中有几个变量? 一元二次方程
21.2 解一元二次方程
解:(1)有两个变量,餐桌的张数 x 和可坐人数 y (2)你能写出两个变量之间的关系吗?
21.2.1 配方法
(2)观察图形:当 x=1第时1,课y=时6;用当直x=接2开时平,方y=法10解;一当元x 二次方程
=3 时,y=14…… 可见每增加 1 张桌子,便增加 4 个座位,∴x
第二十一章 一元二次方程 之间的关系式,并指出其中的常量与变量.
21.2 解一元二次方程
解:y=12x2(0≤x≤10),x,y 是变量,12是常量.
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
15.按如图方式摆放餐桌和椅子.用 x 来表示餐桌的张数,用 y 来表示可坐
人教版 九年级(上)
解:(1)常量是 8,变量是 v,s
一元二次方程
21.2 解一元二次方程
(2)常量是 45,-2,变量是 s,t
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
(3)常量是 100,变量是 v,t
11.分析并指出下列关系中的变量与常量:
人教版 九(1)球年的级表(面积上S)cm2 与球的半径 R cm 的关系式是 S=4πR2;
_____________t_______,变量是_____a_,__s____; 21.2 解一元二次方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学竞赛讲座:由常量数学到变量数学数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期.函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法.在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题.【例题求解】【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. (河南省竞赛题)思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x的方程.注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有:(1)利用几何计算求;(2)通过解析式求;(3)解由解析式联立的方程组求.【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的函数关系,大致是下列图象中的( )思路点拨向烧杯注水需要时间,并且水槽中水面上升高0h.注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.【例3】南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参考数据如下表所示:运输工具途中速度(千米/时)途中费用(元/千米)装卸费用(元)装卸时间(小时)飞机200 16 1000 2火车100 4 2000 4汽车50 8 1000 2x千米.(1)如果用Wl 、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求出Wl 、W2、W3与小x间的函数关系式.(2)应采用哪种运输方式,才使运输时的总支出费用最小?(湖北省黄冈市中考题)思路点拨每种运输工具总支出费用=途中所需费用(含装卸费用)+损耗费用;总支出费用随距离变化而变化,由Wl —W2=0,W2一W3=0,先确定自变量的特定值,通过讨论选择最佳运输方式.【例4】已知在菱形ABCD中,∠BAD=60°,把它放在直角坐标系中,使AD边在y轴上,点C的坐标为(23,8).(1)画出符合题目条件的菱形与直角坐标系;(2)写出A、B两点的坐标;(3)设菱形ABCD的对角线交点为P.问:在y轴上是否存在一点F,使得点P与点F关于菱形ABCD的某条边所在的直线对称,如果存在,写出点F的坐标;如果不存在,请说明理由. (江苏省常州市中考题)思路点拨 (1)关键是探求点A是在y轴正半轴上、负半轴上还是坐标原点,只须判断∠COy与∠CAD的大小;(2)利用解直角三角形求A,B两点坐标;(3)设轴上存在点F(0,y),则P与F只可能关于直线DC对称.注:建立函数关系式,实际上都是根据具体的实际问题和一些特殊的关系、数据而抽象、归纳建立函数的模型.【例5】如图,已知在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC 边上的中点,若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的右侧作正方形PQMN,记PQMN与矩形EDBF的公共部分的面积为y.(1)当AP=3cm时,求的值;(2)设AP=cm时,求y与x的函数关系式;(3)当y=2cm2,试确定点P的位置.(2001年天津市中考题)思路点拨对于(2),由于点P的位置不同,y与x之间存在不同的函数关系,故需分类讨论;对于(3),由相应函数解析式求x值.注:确定几何元素间的函数关系式,首先是借助几何知识与方法把相应线段用自变量表示,再代入相应的等量关系式,需要注意的是:(1)当图形运动导致图形之间位置发生变化,需要分类讨论;(2)确定自变量的几何意义,常用到运动变化、考虑极端情形、特殊情形等思想方法.学力训练1.如图,在直角坐标系中,已知点A(4,0)、B(4,4),∠OAB =90°,有直角三角形与Rt △ABO 全等且以AB 为公共边,请写出这些直角三角形未知顶点的坐标 . (贵州省中考题)2.在直角坐标系中有两点A(4,0),B(0,2),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为 时,使得由点B 、O 、C 组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标). (广西桂林市中考题)3.根据指令(S ≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离S .现机器人在直角坐标系的坐标原点,且面对x 轴的正方向,(1)若给机器人下了一个指令,则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(一5,5).(浙江省杭州市中考题)4.如图,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 的坐标为(一2,0),点B 在x 轴上方,设AB =a ,那么点B 的横坐标为( ) A .22a- B .22a + C .22a -- D .22a +-(年南昌市中考题)5.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程(米)与登山所用的时间(分钟的关系)(从爸爸开始登山时计时),根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米 B .爸爸走了5分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟之后登山的速度比小军快 (江苏省淮安市中考题) 6.若函数mx x y ++=212的自变量x 的取值范围为一切实数,则m 的取值范围是( )A .m<lB .m=1C . m>lD .m ≤17.如图,在直角坐标系中,已知点A(4,0)、点B(0,3),若有一个直角三角形与Rt △ABO 全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(不必写出计算过程). (常州市中考题)8.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (n 表示第n 个图形)的函数关系式; (2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需花多少元钱购买瓷砖? (4)是否存在黑瓷砖与白瓷砖块数相等情形?请通过计算说明为什么?(吉林省中考题)9.如图,在平面直角坐标系中有一个正方形ABCD,它的4个顶点为A(10,0),B (0,10),C(一10,0),D(0,一10),则该正方形内及边界上共有 个整点(即纵横坐标都是整数的点). (上海市初中数学竞赛题)10.如图,已知边长为l 的正方形OABC 在直角坐标系中,A 、B 两点在第一象限内,OA与x轴的夹角为30°,那么点B的坐标是.11.如图,一个粒子在第一象限运动,在第一分钟内它从原点运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在1989分钟后这个粒子所处位置为.(美国高中数学考试题)12.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )A.1个 B.2个 C. 3个 D.4个 (2001年湖北赛区选拔赛题)13.已知点P的坐标是(a+2l,b+2),这里a、b是有理数,PA、PB分别是点P到x轴和y轴的垂线段,且矩形OAPB的面积为2,则P点可能出现的象限有()A.1个 B.2个 C.3个 D.4个 (江苏省竞赛题)14.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度Vl与V 2(Vi<V2),甲用一半的路程使用速度Vl、另一半的路程使用速度V2;关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析.其中横轴t表示时间,纵轴s 表示路程,其中正确的图示分析为( )A.图(1) B.图(1)或图(2) C.图(3) D.图(4)(河北省初中数学创新与知识应用竞赛试题)15.依法纳税是每个公民应尽的义务.《中华人民共和国个人所得税法》规定,公民每月工资、薪金收入不超过800元,不需交税;超过800元的部分为全月应纳税所得额,都应交税,且根据超过部分的多少按不同的税率交税,详细的税率如下表:级别全月应纳税所得额税率(%)1 不超过500元部分 52 超过500元至2000元部10分3 超过2000元至5000元部分15……(1)(2)设表示每月收入(单位:元),y表示应交税款(单位:元),当1300<x≤2800时,请写出y关于x的函数关系式;(3)某企业高级职员2002年11月应交税款55元,问该月他的总收入是多少元?(四川省竞赛题)16.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是AB上任意一点(A、B两点除外),过D 作AB垂线与△ABC的直角边相交于E,设AD=x,△ADE的面积为y,当点D在AB上移动时,求y关于x之间的函数关系式.17.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用6000元,使用月型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节月型B车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最高?最少运费为多少元? (广州市中考题)18.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含x的代数式表示);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含x的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的x的值和P、Q的坐标;如不可能,请说明理由. (苏州市中考题)参考答案。

相关文档
最新文档