常微分方程第三版答案教学文稿

合集下载

常微分方程第三版答案.doc

常微分方程第三版答案.doc

习题 1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy -y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln x y 令xy=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案(00001)

常微分方程第三版课后答案常微分方程 2.11.xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程第三版课后习题答案

常微分方程第三版课后习题答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y =ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

2.5常微分方程课后答案(第三版)王高雄

2.5常微分方程课后答案(第三版)王高雄

习题2.52.ydy x xdy ydx 2=- 。

解:2x ,得:ydy x xdyydx =-2c y x yd +-=221即c y x y =+221 4.xyx ydx dy -=解:两边同除以x ,得xy x y dxdy -=1令u x y= 则dxdu x u dx dy += 即dx dux u dx dy +=uu -=1 得到()2ln 211y c u -=,即2ln 21⎪⎭⎫ ⎝⎛-=y c y x另外0=y 也是方程的解。

6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydxx d x yx d yy d x -=-2得到c x y x d +-=⎪⎪⎭⎫⎝⎛221即c x y x =+221 另外0=y 也是方程的解。

8.32xy x y dx dy += 解:令u xy= 则:21u x u dx du x u dx dy +=+= 即21u x dx du x= 得到22x dxu du =故c xu +-=-11 即211xx c y += 另外0=y 也是方程的解。

10. 21⎪⎭⎫⎝⎛+=dx dy dx dy x解:令p dxdy= 即pp x 21+=而p dx dy=故两边积分得到 c p p y +-=ln 212因此原方程的解为pp x 21+=,c p p y +-=ln 212。

12.x y xe dx dy e =⎪⎭⎫⎝⎛+-1 解:y x xe dxdy+=+1令 u y x =+则 dx du dx dy =+111-=-=u xe dx du dx dy 即xdx eduu =c x e u+=--221故方程的解为c x eyx =++221 14.1++=y x dxdy解: 令u y x =++1则dx du dx dy =+1 那么u dx du dx dy =-=1dx u du=+1求得: ()c x u +=+1ln故方程的解为()c x y x +=++1ln 或可写 为xce y x =++1 16.()y e dxdyx -=++211 解:令u e y=- 则u y ln -= ()1211-=+-u dxduu x ()dx x du u u 11121+-=-c x u u ++=-`1112 即方程的解为()c x y x e y+=+218.()0124322=-+dy y x dx y x 解: 将方程变形后得124322-=y x y x dx dy 22223412412y x y x y x y x dy dx -=-= 同除以2x 得:232412yy x dy dx x -=令3x z = 则24323yy z dy dz -= 23223cy y z +=即原方程的解为232323cy y x +=19.X(04)(2)2=+-x dxdyy dx dy 解:方程可化为2y()(24)(,4)()22dxdy x dx dy x y x dxdyx dx dy +=+= 令[][]ce t e t c dt e t y pdx dy e t x t p dy x e dxdyc x y x arctg xdx y x darctg xdx y x xdy ydx xdy y x x y y c y y x c y yy x dyy y y x d dy y y y xdy ydx y dy y xdy ydx dy y x ydx cy y x c y yx y d y x d dy y x ydx xy y e y xy x xy xNy M x x N x y M dy x y xydx dy y x y dx y x cye x c e yxy c e z y y e z y dy dz e z e dy dz y z e e z z e e z z ze e e z dy dx dy e z dx e dy dzy z dy dx yz x z y x dy yxe dx e y p c x y c tg c d c d x d d dy p dy dx y y p dx dy dx dy y x c yc c c x c x x c x x y cx p xdp pdx x y p xdp pdx p dp p x dx p p dp x xp dx p p dp p x x dx p p dx dp p x x p p dx dp p x p dx dp x p p x p x p x p x xp y p dx dy t t tt dx dydy y y xy xzzz z z z z z z z z z z yx y x +-+=++==+====-++===+-=-+-=+=+++-=+=+=-+=-=++-=-=-=-=-+=⎰-=-=-∂∂-∂∂-=∂∂=∂∂=-+=-+=+=+=+-=+-=+++=++-=+--+=+-=-=++====-++±==++=+∂=+∂∂=+∂∂=∂∂=∂∂∂∂=∂==∂==∂-∂===⎥⎦⎤⎢⎣⎡-+=+=+⋅===-±===-=∴=---=+-+-=-+--=--++=+=-==⎰⎰⎰----)1(,0.25.2,0)(.240),()111,1,)1(0)1(.23101,0)3(24282,6,20)3(2032.22)(,)(,ln ln 1,111)1(,)1()1(,0)1()1.(2110,1)sec cos cos cos sin sin 1sin ,cos 11(sin 1,sin 1)(1.20.42,2424,,0,24,040)4()4(0)4()4(,0)22()22(,)22()22(2222,2224,22222222222222322323242234422422322222222222222222222232222得由解:令所以方程的解为解:方程可化为也是解。

常微分方程第三版答案doc

常微分方程第三版答案doc

常微分方程第三版答案doc习题1.21.dyd某=2某y,并满足初始条件:某=0,y=1的特解。

解:dyy=2某d某两边积分有:ln|y|=某2+cy=e某2+ec=ce某2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y=ce某2,某=0y=1时c=1特解为y=e某2.2.y2d某+(某+1)dy=0并求满足初始条件:某=0,y=1的特解。

解:y2d某=-(某+1)dydy1y2dy=-某1d某两边积分:-1y=-ln|某+1|+ln|c|y=1ln|c(某1)|另外y=0,某=-1也是原方程的解某=0,y=1时c=e特解:y= ln|c(某1)|dy1y23.d某=某y某3y解:原方程为:dyd某=1y21y某某31y21ydy=某某3d某两边积分:某(1+某2)(1+y2)=c某24.(1+某)yd某+(1-y)某dy=0解:原方程为:1y某1ydy=-某d某两边积分:ln|某y|+某-y=c另外某=0,y=0也是原方程的解。

5.(y+某)dy+(某-y)d某=0解:原方程为:dyd某=-某y某y令ydy某=u则d某=u+某dud某代入有:-u11u21du=某d某ln(u2+1)某2=c-2arctgu即ln(y2+某2)=c-2arctgy某2.6.某dy22d某-y+某y=0解:原方程为:dyd某=y某+|某|某-(y2)则令y某=udydud某=u+某d某1du=gn某u2某d某arciny某=gn某ln|某|+c7.tgyd某-ctg某dy=0解:原方程为:dyd某tgy=ctg某两边积分:ln|iny|=-ln|co某|-ln|c|iny=1ccco某=co某另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为inyco某=c.y23某8dyed某+ydyey2解:原方程为:d某=3某ye2e3某-3ey2=c.9.某(ln某-lny)dy-yd某=0解:原方程为:dyyyd某=某ln某令y某=u,则dydud某=u+某d某u+某dud某=ulnuln(lnu-1)=-ln|c某|1+lny某=cy.10.dyd某=e某y解:原方程为:dy某d某=eeyey=ce某11dy2d某=(某+y)解:令某+y=u,则dydud某=d某-1du2d某-1=u11u2du=d某arctgu=某+carctg(某+y)=某+c12.dyd某=1(某y)2解:令某+y=u,则dyd某=dud某-1du1d某-1=u2u-arctgu=某+cy-arctg(某+y)=c.13.dy2某y1d某=某2y1解:原方程为:(某-2y+1)dy=(2某-y+1)d某某dy+yd某-(2y-1)dy-(2某+1)d某=0d某y-d(y2-y)-d某2+某=c某y-y2+y-某2-某=c14:dy某d某=y5某y2解:原方程为:(某-y-2)dy=(某-y+5)d某某dy+yd某-(y+2)dy-(某+5)d某=0d某y-d(12y2+2y)-d(122某+5某)=0y2+4y+某2+10某-2某y=c.15:dyd某=(某+1)2+(4y+1)2+8某y1解:原方程为:dyd某=(某+4y)2+3令某+4y=u则dy1dud某=4d某-141du14d某-4=u2+3dud某=4u2+13u=32tg(6某+c)-1tg(6某+c)=23(某+4y+1).16:证明方程某dyyd某=f(某y),经变换某y=u可化为变量分离方程,并由此求下列方程:1)y(1+某2y2)d某=某dy2)某dy2某2y2yd某=2-某2y2证明:令某y=u,则某dydud某+y=d某则dy1duud某=某d某-某2,有:某duud某=f(u)+1u(f(u)1)du=1某d某所以原方程可化为变量分离方程。

常微分方程第三版课后习题答案

常微分方程第三版课后习题答案

习题1.21.dxdy =2xy,并满足初始条件:x=0,y=1的特解。

解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令xy =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx duu+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u+du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y + 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2xu ,有: u x dx du =f(u)+1 )1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。

《常微分方程》(王高雄)第三版课后答案

《常微分方程》(王高雄)第三版课后答案

(2).
x y
dy dx
=
2+ 2−
x2 y2 x2 y2
证明:因为xy = u,关于x求导导得y + x dy = dy ,所以x dy = du − y
dx dx
dx dx
得:1 du −1 = f(u),
du
= u (f(u) + 1) = 1 (uf(u) + u)
y dx
dx = y(f(u) + 1) x
17. dy = 2x3 + 3xy + x
dx 3x2 y + 2 y3 − y
解:原方程化为 dy = x(2x2 + 3y 2 + 1) ;;;;; dy 2 = 2x2 + 3y 2 + 1
dx y(3x 2 + 2 y 2 −1) dx 2 3x 2 + 2 y 2 −1
令 y 2 = u,;;;;; x2 = v;;;;;;;则 du = 2v + 3u + 1.......(1)
解:对原式进行变量分离得:
− 1 dx = 1 dy,当y ≠ 0时,两边同时积分得;ln x + 1 = 1 + c,即y = 1
x +1
y2
y
c + ln x + 1
当y = 0时显然也是原方程的解。当x = 0, y = 1时,代入式子得c = 1,故特解是
y= 1 。 1 + ln1 + x
2. dx +3x=e 2t dt
解:原方程可化为 : dx =-3x+e 2t dt
∫ 所以:x=e ∫ −3dt ( e 2t e − ∫ −3dt dt + c )

常微分方程第三版课后习题答案

常微分方程第三版课后习题答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程第三版课后答案

常微分方程第三版课后答案

常微分方程 2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

噶米常微分方程第三版课后习题答案

噶米常微分方程第三版课后习题答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程第三版课后习题答案

常微分方程第三版课后习题答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程(第三版)课后答案解析

常微分方程(第三版)课后答案解析

常微分方程 2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程王高雄第三版答案文库

常微分方程王高雄第三版答案文库

常微分方程王高雄第三版答案_百度文库百度首页 | 百度知道 | 百度文库首页 | 手机文库 | 注册 | 登录新闻网页贴吧知道MP3 图片视频百科文库帮助全部 DOC PDF PPT XLS TXT百度文库 > 高等教育下载收藏分享加入文辑常微分方程王高雄第三版答案高等教育出版社《常微分方程》王高雄第三版答案高等教育出版社《常微分方程》王高雄第三版答案<<隐藏下载本文档需要登录,并付出相应财富值。

如何获取财富值?大小: 638.1KB所需财富值: 20喜欢此文档的人还喜欢4268人阅读常微分方程第三版答案(王高雄) 19829人阅读常微分方程王高雄第三版答案6103人阅读常微分方程(第三版)课后答案 1570人阅读常微分方程第三版——答案 1192人阅读第三版常微分方程答案.doc 文库书店等你来逛点击进入书店 prevnext当前文档信息4.5已有160人评价浏览:10591次下载:1285次贡献时间:2010-02-13贡献者: dengliang19854 手不释卷四级文档关键词文档关键词暂无收录此文档的文辑信息与计算科学专业电子资...创建者:某某丙哥收藏量:2常微分,微分几何,数学建模...创建者:nazai娜收藏量:0家教创建者:gaojunzi0830 收藏量:0更多相关推荐文档常微分方程答案4.114人评 2页常微分方程08秋重修11人评 4页常微分方程答案 4.212人评 6页常微分方程试题参考答案计分...5人评 5页高雄餐旅大学发展5人评 1页更多同分类热门文档政治无敌笔记43139人评 27页处理人际关系的55个绝招37631人评 9页新东方美文背诵30篇38598人评 25页16天记住7000考研单词18523人评 30页Excel的使用方法与技巧49012人评 68页如要投诉或提出意见建议,请到百度文库投诉吧反馈。

&copy;2011 Baidu使用百度前必读文库协议iPhone2.0震撼升级文库iPhone华丽升级2.0,超逼真3D翻页,支持多格式、原文档下载,享受原汁原味的文档盛宴…马上体验。

常微分方程(第三版)课后答案

常微分方程(第三版)课后答案

常微分方程 2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123 yxy dx dyx y 321++=解:原式可化为:x x y x x yx yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程第三版答案4.3

常微分方程第三版答案4.3

常微分方程第三版答案4.3【篇一:常微分方程4】>[教学目标]1. 理解高阶线性微分方程的一般理论,n阶齐次(非齐次)线性微分方程解的性质与结构,熟练掌握n阶常系数齐次线性微分方程的待定指数函数解法。

2. 掌握n阶非齐次线性微分方程的常数变易法,理解n阶常系数非齐次线性微分方程特解的待定系数法和laplce变换法。

3. 熟练欧拉方程与高阶方程的降阶法和幂级数解法。

4. 掌握高阶方程的应用。

[教学重难点] 重点是线性微分方程解的性质与结构,高阶方程的各种解法。

难点是待定系数法求特解。

[教学方法] 讲授,实践。

[教学时间] 16学时[教学内容] 线性微分方程的一般理论,齐次(非齐次)线性微分方程解的性质与结构,非齐次线性微分方程的常数变量易法;常系数线性方程与欧拉方程的解法,非齐线性方程的比较系数法与拉氏变换法;高阶方程的降阶法和幂级数解法及高阶方程的应用。

[考核目标]1.理解高阶线性微分方程的一般理论,能够求解高阶常系数线性微分方程。

2.掌握n阶非齐次线性微分方程的常数变易法。

3.n阶常系数非齐次线性微分方程特解的待定系数法和laplce变换法。

4.熟练高阶方程的降阶法和幂级数解法及高阶方程的应用。

4.1线性微分方程的一般理论4.1.1引言讨论n阶线性微分方程dxdtnn?a1(t)dn?1xdtn?1???an?1(t)dxdt?an(t)x?f(t)(4.1)其中ai(t)(i?1,2,?,n)及f(t)都是区间a?t?b上的连续函数如果f(t)?0,则方程(4.1)变为:dxdtnn?a1(t)dn?1xdtn?1???an?1(t)dxdt?an(t)x?0(4.2)称它为n阶齐线性微分方程,而称一般的方程(4.1)为n阶非齐线性微分方程,并且通常把方程(4.2)叫对应于方程(4.1)的齐线性方程。

,,n及)f(t)都是区间a?t?b上的连续函数,则对于任一t0??a,b? 定理1 如果ai(t)(i?1,2?x0,x0,?,x0(1)(n?1),方程(4.1)存在唯一解x??(t),定义于区间a?t?b上,且满足初始条件:d?(t0)dtdn?1?(t0)?x0,?x(1),?,?(t0)n?1dt?x0n?((4.3)1)从这个定理可以看出,初始条件唯一地确定了方程(4.1)的解,而且这个解在所有ai(t)(i?1,2,?,n)及f(t)连续的整个区间a?t?b上有定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程第三版答案习题1.21.dxdy =2xy,并满足初始条件:x=0,y=1的特解。

解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dxdy =-y x y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x1dx arcsinxy =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =y e y 2e x 3 2 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx du u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+ln xy =cy. 10. dxdy =e y x - 解:原方程为:dxdy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u+du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1 )1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。

1) 令xy=u 则dx dy =x 1dx du -2xu (1)原方程可化为:dx dy =xy [1+(xy )2] (2) 将1代入2式有:x 1dx du -2x u =x u (1+u 2) u=22+u +cx17.求一曲线,使它的切线坐标轴间的部分初切点分成相等的部分。

解:设(x +y )为所求曲线上任意一点,则切线方程为:y=y ’(x- x )+ y 则与x 轴,y 轴交点分别为:x= x 0 - '0y y y= y 0 - x 0 y’ 则 x=2 x 0 = x 0 -'0y y 所以 xy=c 18.求曲线上任意一点切线与该点的向径夹角为0的曲线方程,其中α =4π 。

解:由题意得:y ’=x y y 1dy=x 1 dx ln|y|=ln|xc| y=cx.α =4π 则y=tg αx 所以 c=1 y=x. 19.证明曲线上的切线的斜率与切点的横坐标成正比的曲线是抛物线。

证明:设(x,y)为所求曲线上的任意一点,则y ’=kx则:y=kx 2 +c 即为所求。

常微分方程习题2.11.xy dxdy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e x x y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,1112 3 y xy dx dy x y 321++= 解:原式可化为: x x y x x y x y x yy x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsinln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dxdy dxdy xy cy u d uu dx x x y u dx xy dy x y ydx dy y x x c dy yy y y dx dy c x y tgxdxctgydy ctgxdy tgydx c x x x y c x x u dx x x du x dx du dx du x u dx dy ux y u x y y dxdy xc x arctgu dx x du u u u dx du x u dxdu x u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e ex y uu x y x u u x y x y y x x x+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

代回原变量得:则有:令解:方程可变为:解:变量分离,得两边积分得:解:变量分离,得::也是方程的解。

另外,代回原来变量,得两边积分得:分离变量得:则原方程化为:解:令:。

两边积分得:变量分离,得:则令解:.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy yy dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:cx y x arctg cx arctgt dx dt dx dt dxdt dx dy t y x dx dy cdxdy dxdy t t y x e e e e e x y x y y x +=++==++=+==+=+===+-)(,11111,.11222)(代回变量得:两边积分变量分离得:原方程可变为:则解:令两边积分得:解:变量分离,12.2)(1y x dx dy += 解cx y x arctg y x c x arctgt t dx dt t t tdx dt dx dt dx dy t y x +=+-++=-=++=-==+)(1111222,代回变量,两边积分变量分离,原方程可变为,则令变量分离,则方程可化为:令则有令的解为解:方程组UU dX dU X U X Y YX Y X dX dY Y y X x y x y x y x y x y x dx dy U 21222'22,31,3131,31;012,0121212.132-+-==--=+=-==-==+-=--+---= .7)5(72177217)7(,71,1,525,14)5(22c x y x c x t dx dt t t t dx dt dxdt dx dy t y x y x y x dx dy y x t +-=+--+-=----=--===---+-=+-代回变量两边积分变量分离原方程化为:则解:令15.18)14()1(22+++++=xy y x dx dy原方程的解。

,是,两边积分得分离变量,,所以求导得,则关于令解:方程化为c x y x arctg dx du u u dx du dx du dx dy x u y x y x xy y y x x dxdy +=++=++==+=+++++=+++++++=6)383232(941494141412)14(181816122222216.2252622yx xy x y dx dy +-= 解:,则原方程化为,,令u y xxy x y dx dy x xy y x y dx dy =+-==+-=32322332322232]2)[(32(2)(126326322222+-=+-=xu x u xxu x u dx du ,这是齐次方程,令cx x y x y c x y x y c x x y x y c x z z dx x dz dz z z z z x y x y z z z z z z z dx dz x dx dz x z z z dx dz x z dx du z x u 15337333533735372233222)2()3(023)2()3,)2()3112062312306)1.(..........1261263=+-=-===+-=+-=--+≠---==-===--+--=+=+-+==的解为时。

相关文档
最新文档