造气生产工艺-

合集下载

煤制气基础知识

煤制气基础知识
但技术尚待完善。
03 煤制气产品及应用
煤制气的种类
1 2 3
煤焦油
煤焦油是煤制气过程中产生的一种液体产品,含 有多种复杂的有机化合物,可用于生产燃料、化 学品和添加剂等。
煤气化煤气
煤气化煤气是通过煤的气化过程产生的气体产品, 主要成分为一氧化碳、氢气和甲烷等,可用于工 业燃料和化工原料。
煤焦炉煤气
居民用气
煤制气可用于居民的炊事、取暖等日常生活。
工业用气
煤制气可作为工业生产过程中的燃料和原料,如 钢铁、化工、电力等行业。
交通用气
煤制气经过提纯后可作为车用燃料,替代传统的 汽油和柴油。
煤制气的发展历程
起步阶段
20世纪初,随着工业化的加速,煤制气技术开始起步。
发展阶段
20世纪中叶,随着环境保护意识的提高和能源需求的增加,煤制 气技术得到快速发展。
高效低耗技术
01
研发和应用高效低耗的煤制气技术,提高能源利用效率和降低
生产成本。
环保技术
02
加强环保技术的研发和应用,减少煤制气生产过程中的环境污
染。
智能化技术
03
运用智能化技术提升煤制气生产过程的自动化和信息化水平,
提高生产效率和安全性。
煤制气产业政策与建议
产业政策
技术创新
政府应制定和完善煤制气产业的政策法规 ,规范市场秩序,推动产业健康发展。
鼓励企业加大技术创新投入,提升煤制气 产业的技术水平和核心竞争力。
人才培养
国际合作
加强煤制气产业的人才培养和引进,为产 业发展提供充足的人才支持。
积极参与国际煤制气产业的交流与合作, 引进国外先进技术和管理经验,提升我国 煤制气产业的国际竞争力。

合成气的生产过程

合成气的生产过程

第五章合成气的生产过程5。

1 概述合成气是指一氧化碳和氢气的混和气,英文缩写是Syngas。

其H2/ CO(摩尔比)由1/2到3/1。

合成气在化学工业中有着重要作用。

5.1.1 合成气的生产方法(1)以煤为原料的生产方法:有间歇和连续两种操作方式。

煤制合成气中H2/ CO比值较低,适于合成有机化合物。

(2)以天然气为原料的生产方法:主要有转化法和部分氧化法.目前工业上多采用水蒸气转化法(steam reforming),该法制得的合成气中H2/ CO比值理论上是3,有利于用来制造合成氨或氢气。

(3) 以重油或渣油为原料的生产方法:主要采用部分氧化法(partial oxidation).5。

1。

2.1 工业化的主要产品(1)合成氨(2)合成甲醇(3)合成醋酸(4)烯烃的氢甲酰化产品(5)合成天然气、汽油和柴油5.1.2。

2 合成气应用新途径(1)直接合成乙烯等低碳烯烃(2)合成气经甲醇再转化为烃类(3)甲醇同系化制乙烯(4)合成低碳醇(5)合成乙二醇(6)合成气与烯烃衍生物羰基化产物5.2 由煤制合成气以煤或焦炭为原料,以氧气(空气、富氧或纯氧)、水蒸气等为气化剂,在高温条件下通过化学反应把煤或焦炭中的可燃部分转化为气体的过程,其有效成分包括一氧化碳、氢气和甲烷等。

5。

2.1。

1煤气化的基本反应煤气化过程的主要反应有:这些反应中,碳与水蒸气反应的意义最大,此反应为强吸热过程。

碳与二氧化碳的还原反应也是重要的气化反应。

气化生成的混合气称为水煤气.总过程为强吸热的。

提高反应温度对煤气化有利,但不利于甲烷的生成。

当温度高于900℃时,CH4和CO2的平衡浓度接近于零.低压有利于CO和H2生成,反之,增大压力有利于CH4生成。

5.2。

1.2 煤气化的反应条件(1)温度一般操作温度在1100℃以上。

(2) 压力一般为2。

5~3。

2MPa。

(3)水蒸气和氧气的比例H2O/O2比值要视采用的煤气化生产方法来定。

煤制天然气SNG技术

煤制天然气SNG技术

煤制天然气(SNG)技术现状1、煤制天然气技术路线传统的煤制天然气技术是以煤炭为原料,气化生产合成气,经净化和转化以后,在催化剂的作用下发生甲烷化反应,生产热值符合规定的替代天然气(Substitute Natural Gas),也被称为煤气化转化技术。

近年来,也出现了直接合成天然气技术,是将煤气化和甲烷化合并为一个单元直接由煤生产富甲烷气体,典型工艺有加氢气化工艺和催化气化工艺2种。

相比直接合成天然气技术,煤气化转化技术需要的设备较多,投资较高,但技术非常成熟,甲烷转化率高,技术复杂度略低,因此应用更加广泛,是煤制天然气中的主流工艺。

煤制天然气技术主要使用固定床反应器和流化床反应器,其中,固定床甲烷化技术比较成熟,应用也更加广泛。

催化剂以镍系催化剂为主,这种催化剂活性高,寿命长,但容易被硫毒化。

近年来出现了以钼系催化剂为代表的耐硫催化剂,节约了合成气脱硫成本,但活性没有镍系催化剂高。

2、煤气化转化技术制备天然气一般情况下,经煤气化得到的合成气的H2/CO比达不到甲烷化的要求,因此需要经过气体转换单元提高H2/CO比。

有些工艺有单独的气体转换单元,提高H2/CO比后再进入甲烷化单元,称为两步法甲烷化工艺;有些工艺将气体转换单元和甲烷化单元合并为一个部分同时进行,称为一步法甲烷化工艺。

2.1 两步法甲烷化工艺(1)Lurgi工艺19世纪六七十年代,固定床甲烷化气化单元普遍使用的是德国的Lu晒气化炉。

Lurgi公司和SA—SOL公司在南非的Sasolburg建立了一家试验工厂,另一家试验工厂由Lurgi公司和澳大利亚EL.Paso天然气公司建立。

在Lurgi和SASOL的基础上,第一家煤制天然气工厂--大平原合成燃料厂在美国的北达科他州建立。

工艺包括14个LurgiMark IV固定床气化炉,日处理褐煤18000t,使用的气化剂为氧气和水蒸气。

生产的气体中含有8%~10%的甲烷,经过分离工艺可得到富甲烷气体 (SNG),剩余气体富含有效合成气(CO+H2),这部分气体有1/3进入气体转换单元提高H/CO比,再经过低温甲醇洗除去烃类和硫化物,此时硫化物的含量可以控制在2×10 以下,可以保证催化剂的寿命维持在4a左右,然后合成气进入甲烷化单元,该单元由2个绝热固定床反应器组成,第一个反应器入气温度300℃,出气温度450℃,第二个反应器入气温度260℃,出气温度315℃。

氢气生产工艺

氢气生产工艺

H2制造工艺详解一.电解水制氢多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。

阳极出氧气,阴极出氢气。

该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。

这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。

像北京电子管厂和科学院气体厂就用水电解法制氢。

二.水煤气法制氢用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。

净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。

有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。

像北京化工实验厂和许多地方的小氮肥厂多用此法。

三.由石油热裂的合成气和天然气制氢石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。

四.焦炉煤气冷冻制氢把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。

此法在少数地方采用(如前苏联的Ke Mepobo工厂)。

五.电解食盐水的副产氢在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。

像化工二厂用的氢气就是电解盐水的副产。

六.酿造工业副产用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。

合成氨生产工艺简介

合成氨生产工艺简介

合成氨生产工艺简介目前国内生产合成氨的工艺大同小异,忽略各自的设备差异和工艺上的微小不同,我们可以将氨的生产过程,粗略的讲可分成一下几步:造气;脱硫;变换;变换后脱硫;铜洗;氨合成几个步骤,如下是此类流程的一个极简示意图:图1 合成氨的极简化流程1造气工段造气实质上是碳与氧气和蒸汽的反应,原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。

所制的半水煤气(主要成分为CO和H2,另有其他杂质气体)进入洗涤塔进行除尘降温,最后送入半水煤气气柜。

造气工段脱硫工段变换工段煤块水蒸汽CO, N2, H2H2S等其他杂质CO, N2, H2变换气脱硫工段CO2, N2, H2H2S等其他杂质甲醇合成工段少量CO, CO2,N2, H2精炼工段N2, H2极少量CO X等其他杂质氨合成工段N2, H2冷冻工段NH3液氨图2 造气工艺流程示意图2脱硫工段煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。

气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。

脱硫液再生后循环使用。

图3 脱硫工艺流程图3变换工段气体从脱硫工艺中处理过后,已不含H2S等有毒气体。

变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。

经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。

说明:合成气的中的CO(一氧化碳)经蒸汽转换成CO2(二氧化碳)与H2,转换后气体称为“变换气”。

图4 变换工艺流程图4变换气脱硫与脱碳经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。

固定床煤造气工艺

固定床煤造气工艺

固定床间歇造气技术资料一、概况1固定床间歇气化炉的发展固定床间歇气化煤气发生炉从1958年的Ф1980 mm开始,逐步扩径到Ф2260mm、Ф2400 mm、Ф2600 mm、Ф2800 mm、Ф3000等等规格。

它们的基本结构一样,即半水夹套锅炉,原设计高度为1845㎜,扩径改造过程中,在原水夹套设计基础上加高300~900㎜不等。

直筒型上炉体为内砌耐火材料,采用人工手动加焦(煤),后改为半自动到全自动加焦(煤)。

Ф1980~Ф2400 mm这几种炉持续使用近35年,现在仍然有一些小企业在用。

Ф2600 mm系列炉20世纪90年中期已开始改造,近10年使用后改为Ф2800 mm,已达到极限。

2各炉型经典改造过程我国建国初期结合国家的状况而设计。

刚开初对原料的要求比较苛刻,要求是高温冶金焦,且粒度为25~75㎜。

中期改为优质山西晋城无烟块煤。

煤气炉运行较稳定,气量和气质都很好(负荷轻)。

后期随着各企业规模扩大,煤炭紧张,改烧劣质煤,一些设备改造不匹配,没有系统性改造,暴露的问题就多了。

炉况不稳定,易恶化,“二差”、“三高”、“一短”随时出现,即发气量差,气质差,煤耗高,蒸汽消耗高,煤气温度高,设备寿命短。

为烧好劣质煤,广大造气专业人员和科技人员多年来共同努力,对煤气炉不断进行系统改造,使中国特色的小型炉又有新的生机。

经典的改造情况(系统性全方位改造)如下。

(1)煤气系统流程四炉—站—机—锅(组合)—塔,即四台炉共用一台油压泵站,一台空气鼓风机,一台废锅炉(上废锅下过热器),一台洗气塔。

(2)蒸气流程水夹套及废热锅炉自产蒸汽,去过热器过热,回蒸汽缓冲罐(罐容积不小于35~40 m3),放在四炉中间,尽量靠近炉子,蒸汽总管Ф377 mm或Ф426 mm,单炉支管Ф273 mm或Ф325 mm,四台炉以上可将缓冲罐连通使用。

这样便于蒸汽压力的稳定,有利于造气炉工况的稳定。

(3)吹风气回收流程无论上第二代(中燃式)还是第三代(下燃式)吹风回收系统,采用微负压的工艺(有数种流程)。

合成气体的制备方法

合成气体的制备方法

合成气体的制备方法合成气体是一种由多种气体组成的混合气体,其主要成分为一氧化碳和氢气。

合成气体的制备方法众多,根据不同的原料和工艺,可以分为煤气化法、蒸汽重整法、焦炉煤气法、部分氧化法等几种常见的制备方法。

煤气化法是一种将固体煤转化为合成气体的常用方法。

在这一工艺中,煤炭经过煤气化炉高温、高压条件下与氧、水蒸气和二氧化碳等反应,生成合成气体。

煤气化法的优点是原料资源丰富,适用于许多地区。

但是,煤气化法存在工艺复杂、设备投资大、环境问题等缺点。

蒸汽重整法是一种通过将烃类物质与水蒸气反应,生成合成气体的方法。

在这个过程中,烃类物质与加热后的水蒸气在催化剂的作用下发生水蒸气重整反应,生成一氧化碳和氢气。

蒸汽重整法制备合成气体的优点是能够利用多种烃类原料,生成的合成气体品质稳定,适用于多种化工工艺。

焦炉煤气法是指利用高炉、焦炉等工业设施产生的煤气,通过净化、除尘等工艺处理后,得到合成气体。

焦炉煤气法的优点是原料易得,能够充分利用冶金工业废气,减少环境污染。

但是,焦炉煤气法的煤气组分相对不稳定,需要经过复杂的净化工艺。

部分氧化法是一种将烃类物质通过与氧气部分燃烧的方法,生成合成气体的制备方法。

在这个过程中,烃类物质部分燃烧产生的热量使烃类分子发生裂解,生成一氧化碳和氢气。

部分氧化法的优点是工艺相对简单,催化剂使用量较少,能够利用多种烃类原料。

除了以上几种常见的制备方法,还有许多其他方法可以制备合成气体,如气化法、电解法等。

不同的制备方法适用于不同的工业领域和实际需求,选择适合的制备方法是确保合成气体质量和效率的关键。

合成气体作为重要的化工原料和能源,广泛应用于合成氨、甲醇、合成油等领域,对于推动经济发展和减少环境污染具有重要作用。

化学工艺学 第 2 章 合成气

化学工艺学  第 2 章  合成气
原则:不析碳,原料充分利用,能耗小。
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.5 转化反应工艺流程及转化炉
燃料用天然气 11
8 9 过 热 蒸 汽
5
2
1 3
一段转化
4
二段转化
对流段
7 10 蒸汽 空气 原料天然气 锅炉给水 转化气去变换 6
氢氮气来自合成
天然气蒸汽转化工艺流程
1、钴钼加氢反应器;2、氧化锌脱硫槽;3、对流段;4、辐射段(一段炉);5、二段转化炉;6、第一废热锅炉;7、批二废热 锅炉;8、汽包;9、辅助锅炉;10、排风机;11、烟囱
图解法或迭代法求解x,y
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素

水碳比 反应温度 反应压力
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素

温度增加,甲烷平衡含量下降,反应温度每降低 10℃,甲烷平衡含量约增加1.0%-1.3%;

增加压力,甲烷平衡含量随之增大;
增加水碳比,对甲烷转化有利; 甲烷蒸汽转化在高温、高水碳比和低压下进行有利
立式圆筒,内径约3米,高约13米;壳体材质 为碳钢,内衬不含硅的耐火材料,炉壳外保温。
上部有燃烧空间的固定床绝热式催化反应器。

氮肥行业工艺流程

氮肥行业工艺流程

煤/天然气化工(化肥)工艺流程概述整个生产过程可以分为造气、脱硫、压缩、变换、脱碳、合成、甲醇、尿素等主要单元(工段)。

上述各单元(工段)的操作在工艺上密切联系,但在地域上分散、在控制上相对独立。

1、造气造气一般是以块煤为原料,采用间歇式固定层常压气化法,在高温和程控机油传动控制下,交替与空气和过热蒸汽反应.反应方程式:吹风 C+O2→CO2+QCO2+C→2CO-Q上、下吹 C+H2O(g)→CO+H2—QA、吹风阶段吹风阶段的主要作用是产生热量,提高燃料温度。

B、上吹(加氮)阶段上吹阶段的主要作用是置换炉底空气,吸收热量、制造半水煤气,同时加入部分氮气。

C、下吹阶段下吹阶段作用是制取半水煤气,吸收热量,使上吹后上移的气化层下移。

D、二上吹阶段二上吹的主要作用是将炉底及进风管道中煤气吹净并回收,确保生产安全。

E、吹净阶段吹净的主要作用是回收造气炉上层空间的煤气及补充适量的氮气,以满足合成氨生产对氮氢比的要求。

2、变换工艺简介经过压缩有一定压力的半水煤气先经过油水分离器,除去煤气中的油物。

然后进入饱和塔的下部与热水进行交换后升至一定温度,经过气水分离器分离出煤气中的水份。

去除水分的煤气进入预热交换器,与中变炉出口的高温煤气进行两次热交换后,进入中变炉,在触媒的催化作用下,煤气中的一氧化碳发生反应,生成二氧化碳,中变炉的炉体内有三层反应区,在正常的工艺状况下,第一层的反应温度控制在450℃左右,第二层反应温度控制在400℃左右,第三层的反应温度控制在380℃左右。

反应后出中变炉的变换气进入与入口水煤气进行热交换的两级热交换器后,再进入低变炉使变换气中的一氧化碳进一步变换,经过两次变换的水煤气成为合格的变换气后,经热水塔,冷却塔之后送入下一工段进行后续处理。

3、脱碳工艺简介含有一定浓度(CO2)的变换气进入吸收塔内。

气体中CO2被逆流流下的碳酸丙烯酯所吸收。

净化CO2气脱至所要求的浓度由塔顶排出,成为可供用户使用的工艺气。

2合成气(化学工艺学)

2合成气(化学工艺学)
氢气的主要来源有:气态烃类转化、固体燃料
气化和重质烃类转化 气态和液态烃类主要采用蒸汽转化和部分氧化 法,固体燃料主要采用间歇气化法。
2.1.1 烃类蒸汽转化
合成氨的生产需 要高纯氢气和氮气, 以天然气为原料的气 态烃类转化过程,经 济效益最高。 天然气主要成份为甲烷(CH4), 还含有乙烷、丙烷及其它少量烯 烃等,其中也有极少量的S等对 催化剂有害的元素。一般以甲烷 为代表来讨论气态烃类蒸汽转化 的主要反应及其控制条件。
2.1.1.4 转化反应的工艺条件
a. 压力 通常为3~4MPa 能量合理利用 全厂流程统筹
采用加压条件的主要原因:
降低能耗 提高余热利用价值
减少设备体积降低投资
b. 温度: 一段炉温度
综合经济效益
理论上,温度↑反应越有利。 主要考虑投资费用及设备寿命, 一般选择760~800℃
原因:一段炉最重要最贵的合金钢管在温度为950℃时寿命8.4万小时, 960℃时减少到6万小时。 一段炉投资约为全厂30%,其中主要为合金钢管。
废热锅炉流程
利用废热锅炉间接换热,副产高压蒸汽。 原料气出废热锅炉后进一步冷却到45℃左右, 经脱硫后进入变换工序,因此废热锅炉流程对 硫含量无限制,但比激冷流程回收的热量少 10%-20%。
1.原料油和气化剂 (O2+H2O)的预热 2.高温下部分氧化 3.出口高温合成气 的热能回收 4.碳黑的消除 与回收
(1-x)/(1+m+2x)· P
(m-x-y)/(1+m+2x) ·P (x-y)/(1+m+2x) ·P (3x+y)/(1+m+2x) ·P
1
m
1-x

合成气的生产过程

合成气的生产过程
天然气
优质、清洁、环境友好的能源。
5.3.1 天然气制合成气的工艺技术及其进展
天然气制合成气的方法:蒸汽转化法 部分氧化法
产 品 甲醇 乙烯 乙醛 乙二醇
合成气合成有机物所需的H2/CO(mol)
反 应 式 CO+2H2=CH3OH H2/CO 2/1 2/1 3/2 3/2
2CO+4H2=C2H4+2H2O 2CO+3H2=CH3CHO+H2O 2CO+3H2=HOCH2CH2OH
以重油或渣油为原料的生产方法
合成气的生产方法
(1)以煤为原料的生产方法 高温条件下,以水蒸气和氧气为气化剂;
C H 2 O CO H 2
特点:H2/CO比值较低,适于合成有机化合物 (煤化工)
(2)以天然气为原料的生产方法
水蒸气转化法 Steam reforming
CH 4 H 2O CO 3H 2 H (298K ) 206kJ / mol
As、Cu、Pb会引起催化剂永久失活(As≯ 1μ l/m3) 卤素引起催化剂因烧结而永久失活 中毒 ( Cl≯ 5μl/m3 常出现在水蒸汽中) 硫化物通过吸附引起催化剂暂时性中毒 (xNi+H2S NixS+H2 ≯ 0.5μl/m3 0.1ml/m3长期 )
失活判断标准: ① 出口气体中甲烷含量升高; ② 出现“红管”现象(Q吸<Q供); ③ 出口处平衡温距增大。

副反应 (析碳)
2CO C CO2
CO H 2 C H 2O

炭黑覆盖在催化剂表面,堵塞微孔,降 低催化剂活性。 影响传热,使局部反应区产生过热而缩
析 炭 危 害

短反应管使用寿命。

造气工艺流程

造气工艺流程

造气工艺流程
《造气工艺流程》
造气工艺是一种将固体或液体燃料转化为可燃气体的技术。

这种工艺能够将废弃物转化为有用的能源,同时减少对自然资源的依赖。

下面是一个简单的造气工艺流程。

首先,将原料送入反应器中。

原料可以是煤、木材、生物质或废弃物。

这些原料经过一系列处理后进入反应器,开始进行化学反应。

其次,反应器内的原料受到高温和压力的影响,发生热化学反应。

在这个过程中,原料中的有机物会被分解,产生一种混合气体,其中含有一定比例的一氧化碳、氢气和其他气体。

接着,将产生的混合气体进行处理和净化。

这个步骤非常重要,因为混合气体中的某些物质可能对环境和人类健康造成危害。

因此,必须对混合气体进行过滤、洗涤和再生等处理,使其达到国家标准并可以安全使用。

最后,经过处理和净化的混合气体可以用于燃烧发电、制冷或供热。

与直接燃烧原料相比,利用造气工艺生产燃气更加高效,而且减少了对大气环境的污染。

总的来说,《造气工艺流程》是一种技术先进、环保和高效的能源转化技术,可以有效地利用资源,减少对环境的影响。


着能源需求的增加和环境污染的加剧,这种工艺将会在未来得到更广泛的应用和推广。

煤制天然气工艺简介

煤制天然气工艺简介

• 之后煤气水依次进入初焦油分离器和最终油
分离器,分别将焦油和中油分离出来作为产 品。而来自低温甲醇洗的含油煤气水则进入 含油煤气水膨胀器进行泄压闪蒸,闪蒸气也 是送往热电锅炉处理;然后煤气水进入油分 离器和最终油分离器,将中油分离出来作为 产品;分离出焦油和中油之后的酚水送往酚
氨回收进行脱酚和脱氨处理。
别送往煤气水分离装置。
INET
3.煤气水分离装置
• 煤气水分离装置为四系列,是将气化、变换冷却和
低温甲醇洗装置来的煤气水进行物理分离,将焦油
、中油、闪蒸汽分离出来,之后酚水送酚氨回收;
其采用的原理就是泄压闪蒸和重力沉降。
• 气化和变换冷却来的含尘煤气水经换热器冷却后首 先进入膨胀槽进行泄压闪蒸,将煤气水中含带的二 氧化碳等气体闪蒸出来送往热电锅炉处理;
碳压缩机和2台循环气压缩机) • 混合制冷装置2系列 • 硫回收装置1系列
1、低温甲醇洗
• 在原料气净化工艺中,无论采用哪一 种原料或者那一种气化方法制得的合 成原料气,除含有H2、CO、CO2、 CH4以外,还含有其余相当数量的组 分均为合成反应所不需要的各种杂质 ,如:硫化物、氮化物、氢氰酸、惰 性气体、煤焦油等。
2、混合制冷(采取以氨为制冷剂 )
• 制冷为甲醇洗装置、空分装置的各氨冷却器提供不 同等级的制冷液氨,同时又把返回的气氨在此压缩 、冷凝成液氨。
• 此方案是将蒸发后的气氨经离心式氨压机提压后再去吸 收制冷,避免了吸收器在负压下操作,使生产操作更加 稳妥可靠,混合制冷采用工艺副产的低压蒸汽作热源, 系统中的溶解热及冷凝热由冷却水带出。
气化装置工艺流程示意图

煤斗
煤锁 氧气 气 化 蒸汽 炉 洗 涤 冷 却 器 废 热 锅 炉

煤制天然气 工艺技术方案

煤制天然气 工艺技术方案

XXX 公司
WEC
XX 公司山西大同 SNG 项目可行性研究
4-2
根据煤气化炉的结构特点和燃料在气化炉中进行转化时的运动方式, 煤气化工艺 可分为三种类型:固定床(移动床) 、流化床和气流床。 (1) 固定床煤气化工艺 固定床气化炉中通常煤从炉顶部加入,气化剂从炉底部送入。炉中一般分为干燥 层、干馏层、还原层和燃烧层,在不同的区域中,各个反应过程所对应的反应区域界 面比较明显。 传统的常压固定床煤气化炉以空气(或富氧)和水蒸汽为气化剂,大多以无烟块 煤为原料,具有单炉气化强度小、碳转化率低、排出的污染物多等缺点。 ★ 碎煤加压气化技术 加压固定床气化炉在高于大气压力下进行煤的气化操作, 以氧气和水蒸汽为气化 剂, 以褐煤、 长焰煤或不粘煤为原料。 在工业中运用比较成熟的为碎煤加压气化工艺。 其主要特点为: ① 原料适应范围广,除黏结性较强的烟煤外,从褐煤到无烟煤都能气化,并能气化 高水分、高灰份的劣质煤; ② 合成气中含有大量的CH4,对于以煤为原料生产城市煤气更有利; ③ 单元装置投资低。 但该工艺也存在缺点,主要表现在: ① 气化及后序处理单元产生废水多,废水成份复杂,废水处理困难,处理成本较高; ② 煤气中含有较多的焦油、酚、氨等杂质,后工序不易处理。 ★ BGL煤气化工艺 英国燃气公司在原鲁奇固定床加压气化炉技术基础上,开发了液态排渣的BGL 煤气化工艺。自上世纪70-80 年代技术开发至90 年代初,经过对大量的英国、美国、 欧洲的烟煤、焦炭和欧洲的褐煤在工业化规模试验炉上的试烧和运行可靠性验证, BGL 技术完成大规模中试和工业化示范,直径 2.3 米的气化炉可达到日投煤量 500 吨的水平,气化强度高出原鲁奇加压气化炉近3 倍。BGL 熔渣气化技术在工业化规 模试验炉上对超过18 万吨的英国和美国许多煤种以及石油焦等投料作了累计超过 1 万4 千3 百小时的试烧,最长连续开车达90 天,积累了大量的试烧数据,开发了完 整的气化模拟分析软件、操作手册和设计手册。 90 年代中后期,在德国东部德累斯顿附近的黑水泵(Schwarze Pumpe)煤气 化厂建设了一台内径3.6 米的BGL气化炉生产合成气,为大型发电厂提供燃料气、为

合成氨工艺简介

合成氨工艺简介

摘要煤气化法是我国合成氨的主要制气方法,也是未来更替天然气和石油资源所必将采用的制气方法;即利用无烟煤、蒸汽和空气在碳发生炉内生产合成氨所需要的气体,俗称半水煤气;在已制得的半水煤气中,除了含有按合成工艺所需要的氮气和氢气外,还含有许多杂质和有害气体;由于这些杂质和有害气体很容易使合成触媒中毒而降低触媒效能;为保护触媒,延长其使用寿命,保证合成氨生产的正常进行,半水煤气中的杂质和有害气体必须在合成之前得以及时清除,这就需要对混合气体进行净化处理,并且要求连续性作业,以达到化学反应稳定进行,从而构成了合成氨工艺流程错综复杂和连续性强的生产特点;一合成氨的生产方法简介氨的合成,必须制备合成氨的氢、氮原料气;氮可取之于空气或将空气液化分离而制得,氮气或使空气通过燃料层汽化将产生CO或CO2转化为原料气;氢气一般常用含有烃类的各种燃料制取,亦通过焦碳,无烟煤,重油等为原料与水作用的方法制取;由于我国煤储量丰富,所以以煤为原料制氨在我国工业生产中广泛使用;合成氨的过程一般可分为四个步骤:1.造气:即制备出含有氮一定比例的原料气;2.净化:任何制气方法所得的粗原料气,除含有氢和氮外,还含有硫化氢、有机硫、一氧化碳、二氧化碳和少量氧,这些物质对氨合成催化剂均有害,需进行脱除,直至百万分之几的数量级为止;在间歇式煤气炉制气流程中,脱硫置于变换之前,以保护变换催化剂的活性;3.精炼:原料气的最终精炼包括清除微量一氧化碳、二氧化碳、氧、甲烷和过量氮,以确保氨合成催化剂活性和氨合成过程的经济运行;4.合成:将合格的氢氮混合气体压缩到高压,在催化剂作用下合成氨气;二合成氨反应的基本原理1. 造气:合成氨的原料——氢氮可以用下列两种方法取得(1)以焦碳与空气、水蒸气作用(2)将空气分离制取氮,由焦炉气分离制氢采用煤焦固定床间歇式汽化法;反应方程如下:C+H2O=CO +H2 1CO+O2=CO2 22.脱硫:无论以固体煤作原料还是以天然气、石油为原料制备氢氮原料气都含有一定成分的硫元素,无机硫主要含有硫化氢;有机硫主要含有二硫化碳、硫化氧碳等等;硫化氢对合成氨生产有着严重危害,但不能与铁反应生成硫化亚铁,而且进入变换及合成系统能使铁催化剂中毒,进入铜洗系统使铜液的低价铜生成硫化亚铜的低价沉淀,使操作恶化,铜耗增加;所以半水煤气总的无机碳化物和有机硫化物必须在进入变换、合成系统前除去;以煤为原料采用间歇式造气炉制半水煤气时,通常先将煤气进行湿法氧化法脱硫,使硫化氢含量降低至30~50毫克/立方米以下,然后经中温变换,使有机硫转化为硫化氢;然后,在脱除二氧化碳过程中和铜氨液洗涤过程中进行更精细的除净;下面介绍螯合铁法脱硫螯合铁法是采用为氧化催化剂,完成的析硫过程;由于铁离子在碱性脱硫溶液中不稳定极易生成沉淀而从溶液中析出,为此,必须添加螯合剂以使和稳定存在于液相;HS— + 3Fe3+络——>2Fe2+络 + S + H+再生塔中再汽化为络,即4Fe2+络+ O2 + 2H2O ——> 4Fe3+络 + 4OH—3.变换变换方法:COg+ H2Og==CO 2+ H2 g工艺流程:半水煤气进入变换炉反应前,先混合蒸汽预热到673K,为此由脱硫塔的半水煤气加压后首先进入饱和塔的底部,与塔内自上而下的热水逆流接触,使气体温度升高,并被水蒸气所饱和然后由塔顶引出,在管道内与外供之高压蒸汽混合后主热交换器和中间热交换器进入炉内一般,此时约80%的CO被交换为H2,反应热使温度升至420度左右进入交换炉二段,此时气体CO含量降至%以下,液体温度为430度由炉底逸出依次经过水加热器、热水塔、冷凝塔降温后进行二次脱硫;4.脱碳经变换二次脱硫后气体中含有大量CO2,还有少量的CO等其它有害气体,它们会使氨的合成催化剂中毒,必须除去;工业上脱碳的方法很多,通常用碳酸丙烯酯PC法脱CO 2;含有一定浓度的原料气进入吸收塔内,气体CO2被逆流下的丙碳PC吸收;净化气中CO2脱至所要求的浓度由塔顶排出,成为可使用的工艺气;吸收CO2后的PC富液经涡轮机回收能量,在后一级闪蒸槽内闪蒸,再到常压闪蒸槽进行常压闪蒸,常压闪蒸液在气提塔内经空气气体提再生;再生后的PC贫液经循环液泵送回吸收塔循环使用,气提空气由通风机从气提塔底送入;一级闪蒸气中含有CO2及部分工艺气,对于合成氨变换气脱碳,一级闪蒸气可全部或部分返回压缩与原料气汇合,以吸收N 2与H 2气;为减少PC的损失,各排放气排出系统先经过水洗回收PC;问题:吸收需要高压低温,如何实现:压缩机产生高压,换热器产生低温;PC的回收:解吸,还可以回收CO2解吸需要高温和低压,如何实现;物料在此过程中如何流动5.铜洗变换气经过净化后仍含有少量的CO、CO2、O2、H 2S等有害气体,工业上常用铜洗法精制原料气;铜洗法的溶液醋酸铜氨溶液是又醋酸铜和氨通过化学反应后制成的一种溶液,简称铜液,其组成为CuNH32Ac醋酸亚铜络二氨吸收CO、CO2和O2、H2S反应如下:同理:吸收和解吸,物料的输送,能量的综合利用;6合成氨的合成是高温高压下,在触媒存在条件下而生成的;反应式如下:3H2+N2——2NH3+Q由上式可知反应产生较大的热量,我们采用后置式废热式锅炉回收,并副产蒸汽;为了保持合成塔塔壁温度不合成过高,冷态气体先从塔壁自上而下,然后经塔外预热器预热后进入合成塔出口气经废热式锅炉回收热量后,进塔外预热器预热为入塔气体;此采用无油滑往复循环机,故循环机位置设于合成塔进口处;附图1 变换车间工艺流程图。

造气基础知识学习

造气基础知识学习

目录一.工艺指标及工艺条件的选择二.主要设备参数三.控制要点四.阀门开关情况五.造气开停炉及开停车操作要点六.事故案例原因分析及防范措施一.造气工艺指标一、循环时间及百分比1、循环时间目前我们一个循环周期为120秒,也可调为135秒一个制气周期。

2、各循环阶段百分比吹风28% 上吹21% 下吹40% 二次上吹7% 吹净4%二、炉温1、小块炭:上行温度180-220℃下行温度220-300℃2、中块炭:上行温度200-250℃下行温度200-280℃3、灰仓温度:≤250℃,温差≤50℃4、蒸汽温度:180-240℃三、气体成分1、半水煤气CO2 CO 29-34% H2 43-48% N2 10-20% O2≤% 2、惰气O2≤%CO+H2:5-7%CO2:15-17%四、压力1、蒸汽方面压前蒸汽压力≥ Mpa压后蒸汽压力≤ Mpa蒸汽缓冲罐压力≤ Mpa夹套汽包压力≤ Mpa2、油泵站压力:3、蓄能器: Mpa4、软水压力: 五、电机温度D600风机电机≤120℃KD600风机电机≤120℃油泵电机温度≤65℃工艺条件的选择固定层间歇式煤气炉的工艺操作条件的选择,必须合乎科学规律,才能实现生产的安全、稳定、高产和低耗。

否则,就会使气体的产量和质量降低,或发生设备和人身安全事故,直至生产无法正常进行。

(1)吹风率和吹风时间吹风率是指单位时间内的入炉空气量。

在吹风率一定的情况下,入炉空气总量则是由吹风时间决定的。

煤气炉生产负荷高低,实际上就是入炉空气量的多少。

在确立煤气炉的运行负荷以后,吹风率与吹风时间,即成为反比关系。

吹风阶段理想的情况是力求多生成二氧化碳。

在气化层里生成二氧化碳的化学反应速度,比二氧化碳还原反应的速度快得多,而且二氧化碳还原反应与接触时间有关。

适当增加吹风率,空气在燃料层内流速加快,有利于生成二氧化碳的化学反应。

因空气流速的提高,相应缩短了二氧化碳与碳的接触时间,减少一氧化碳的生成,同时由于生成二氧化碳的反应放出大量的热量,使燃料层具有比较高的温度,增加了炉内热量的积蓄,提高了吹风效率,制气阶段的蒸汽用量可相应增加,从而提高了煤气炉的气化强度。

合成气

合成气

表5-2
固定床层煤气发生炉中燃料层的各区特性
为了保证温度波动不致过大,各步经历的时间应尽量缩短,一般 3min完成一个工作循环。 缺点:非制气时间较多,生产强度低,而且,阀门开关频繁,阀 件易损坏,因而工艺较落后。 优点:只用空气而不用纯氧,成本和投资费用低。
2. 固定床连续式气化制水煤气法:德国鲁奇公司开发。
2.合成气应用新途径
(1)将合成气转化为乙烯或其他烃类,然后再进一步加工成化 工产品; (2)先合成为甲醇,然后再将其转化为其他产品; (3)直接将合成气转化为化工产品。
表5-1
工业煤气的组成,%/(燃烧为焦碳)
(1)空气煤气:以空气为气化剂制得。 含大量的氮,一定量的一氧化碳和少量二氧化碳。 (2)发生炉煤气(混合煤气) :以空气为主要气化剂,与适量的蒸汽混合进 行气化制得。 含有一定量的CO 、N2和少量的CO2以及一些由蒸汽分解所制得的氢。 (3)水煤气:以蒸汽为气化剂制得。 主要含有一氧化碳和氢、只含少量的氮。 (4)半水煤气: 半水煤气的气化剂为适量空气(或富氧空气)与水蒸气。 是分阶段制得空气煤气和水煤气,然后将两者按一定比例配合,当混 合气中„H2十CO)与N2之比接近3.1:1~3.2:1,即含N2为21%~22%时、 称为半水煤气。
5.1
概 述
合成气:一氧化碳和氢气的混合物,英文缩写是Syngas。H2与
CO的比值随原料和生产方法不同而异,其H2/CO(摩尔比)由1 /2 到3/1。 合成气是有机合成原料之一,也是氢气和一氧化碳的来源,在 化学工业中有着重要作用。
原料:多种多样。 C1化工技术:利用合成气转化成液体和气体燃料、大吨位化工
产品和高附加值的精细有机合成产品,实现这种转化的重要 技术。 CH3OH等参与反应的化学。

纯氧制气CO2为气化剂制备CO造气工艺

纯氧制气CO2为气化剂制备CO造气工艺

河北制氢厂CO2为气化剂制备CO造气工艺第一部分:固体燃料气化制气基础知识●概述● 1、造气:是用气化剂对固体燃料进行热加工,生成可燃性气体(煤气)的过程。

固体燃料为各种煤和焦炭;气化剂有空气、富氧空气、纯氧、水蒸汽和二氧化碳。

进行气化的设备称为煤气发生炉。

造气炉的结构:●造气炉的主要构件如下(附图):从上往下依次为:1. 液压炉口加焦机2. 炉顶大盖3. 炉体(上气道)4. 夹套锅炉5. 炉篦6. 炉底总成7. 灰仓、灰斗、鼓风箱8. 炉条机、灰犁等辅件● 2、固定层煤气炉生产的煤气种类●(一)煤气的分类:●(1)、空气煤气:以空气为气化剂而制成的煤气,又称为吹风气。

●(2)、水煤气:以水蒸气为气化剂而制成的煤气,又称为兰气。

●(3)、混合煤气:以水蒸气和适量空气混合为气化剂而制成的煤气,又称为发生炉煤气。

●(4)、半水煤气:是混合煤气的一种特例,其组成符合(H2+CO)/N2=3.1~3.2,又称为合成氨原料气。

●(二)固定层煤气炉间歇法制气●各阶段生产的煤气种类:●(1)、吹风阶段:生成空气煤气。

●(2)、上吹制气阶段:①有使用“加氮空气”时生成混合煤气。

②没有用“加氮空气”时生成水煤气。

●(3)、下吹制气阶段:生成水煤气。

●(4)、二次上吹阶段:生成的煤气与上吹制气阶段相同。

●(5)、空气吹净阶段:生成空气煤气。

●所以,单台煤气炉制成的一般不是半水煤气,必须是多台煤气炉生产的煤气混合,在气柜中形成半水煤气。

● 3、富氧连续法制气生成的一般是混合煤气。

● 4、炉子的气化效率:单位煤量产生的煤气有效成分量。

间歇制气时,1千克块煤正常可以生产2Nm3半水煤气。

● 5、以固体燃料为原料,制取合成氨原料气的方法主要有:●5.1①、固定层间歇气化法;②、固定层连续气化法(分为常压和加压两种)(加压连续气化的代表工艺是鲁奇炉);③、沸腾层(流化床)气化法(如恩德炉和灰熔聚工艺);④气流层气化法(壳牌粉煤加压气化,德士古水煤浆加压气化)●表1:固定床、流化床、气流床三种煤气化工艺对煤种的要求:●●表2:几种煤气化工艺出炉气组分对比%●5.1.1固定层间歇气化法:用水蒸汽和空气为气化剂,交替地通过固定的燃料层,使燃料气化,制得半水煤气。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
富氧空气总管 加氮空气总管
富 氧 空 气 与
上吹蒸汽阀 蒸
汽 混 配 器
富氧空气阀
下吹蒸汽阀
煤气发生炉 水冷壁夹套锅炉
空气总管 0.08-0.098Mpa低压蒸汽总管
0.5Mpa废锅蒸汽总管 锅炉给水总管
26#循环污水
吹风气去集中回收 煤气去洗气塔
上行煤气阀 上吹旋风除尘器
下行煤气阀
废热锅炉 洗汽箱
6
三化合成氨生产工培训资料
4、粘结性 有些煤(烟煤)在加热到一定温度时,炭质受热分解而成 塑性状态,继而出现软化、熔融现象,产生热分解后的液态产物,在 炭粒之间的接触和膨胀压力的作用下,使炭粉相互粘结在一起而变成 多孔性硬块,即所谓焦炭,这种煤称为粘结性煤。无烟煤不发生或稍 微发生熔融粘结现象,而在放出挥发份后其本身成为粉末状的残渣, 这种煤称为不粘结性煤。
7、化学活性 煤的化学活性也称为反应能力,是指煤与气化剂中氧、蒸汽或二氧化 碳等相互作用的反应(还原气化剂的能力,气化剂被还原的数量愈多表示其化学活 性愈好,通常是以CO2在一定温度和一定时间下通过一定厚度的煤层后转化为CO的 百分率来表示)。煤的化学活性是随着比重和粘结性的增大而提高;随着气孔率和 表面积的增大而提高;随着焦化程度的降低而提高;煤化程度越低活性越高;气化 温度越高(T3以下)活性也越高。在气化炉内,煤的化学活性的增高不仅表现在 CO2和蒸汽的还原系数的升高,而且表现在碳消耗量的增加,也就是煤气的产量与 质量均会得到提高,随着碳的燃烧,最初燃料的化学活性不断提高达到最大值而迅 速下降,这是因为反应物表面灰化而使气化剂不易与燃料中的碳接触的原因。
3
三化合成氨生产工培训资料
煤的化学性质:

1、水份 固体燃料的水份以三种形式存在即吸附水、游离水和化合水。
煤里的水份含量多少与煤化(即煤腐殖化)程度有关,煤化程度越低则煤
里的水份就越高,煤的质地就越致密,这种水份称之为物理吸附水或固有
水份;煤的外在水份(附着水份)是指地下水和雨水附着在煤上的水份。
1、氨的合成反应 3H2+N2=2NH3+Q
2、碳铵反应 NH3+H2O+CO2=NH4HCO3+Q
3、尿素反应 2NH3+CO2=CO(NH2)2+H2O+Q
4、甲醇反应 2H2+CO=CH3OH+Q

3H2+CO2=CH3OH+H2O+Q
氨的主要性质:在常温常压下有刺激性臭味的无色气体、有毒、 比重0.596.易溶于水并放出热量,燃烧呈黄色火焰。
此外还有燃料的成渣性能、发热量等。
5
三化合成氨生产工培训资料
⑷煤的物理性质 1、热稳定性 又叫抗热强度,可以理解为固体燃料在落入高温区
时保持其块度的性质,该性质除了与煤形成年代有关外,主要与 煤化程度有关。 2、机械强度 指煤破碎的难易程度,一般来说,煤的机械强度与 煤的形成年代有关,年代愈久,强度愈大。机械强度差的煤其热 稳定性必然也差。 3、灰熔点 在气化炉内煤中所含的灰份达到一定的温度时就会出 现变形、软化和熔融状态(t),当固体灰份变为液态时达到的温度 就叫灰熔点。 煤的灰熔点是影响炉内工况好坏和温度高低的主要因素之一。灰 熔点低,气化层温度不能太高,否则会造成炉内结大块,使炉床 阻力不均,严重时会造成气化炉不能正常生产下去,因此煤的灰 熔点越高越有利于提高气化效率,有利于高产低耗。
8
三化合成氨生产工培训资料
三、煤气炉制气工艺的理论基础: 1、煤气制造的方法很多,典型的有:固定层间歇气化法(分为常
压和加压两种)(加压连续气化的代表工艺是鲁奇炉)、固定层富 氧连续气化法、沸腾层(流化床)气化法(如恩德炉和灰熔聚工 艺)、气流层气化法(壳牌粉煤加压气化,德士古水煤浆加压气化) 等。 我厂目前采用前二种方法。 2、固定层间歇气化法:用水蒸汽和空气为气化剂,交替地通过固 定的燃料层,使燃料气化,制得半水煤气。通入空气的目的是让空 气中的氧与燃料中的碳燃烧,以便提高燃料层的温度,为蒸汽与碳 的吸热反应提供热量,并为合成氨提供氮气(吹风和吹净过程)。 然后向燃料层通入蒸汽(或者配入一定的加氮空气)与碳反应,生 成的水煤气和回收的吹风气混合得到半水煤气。 3、固定层富氧连续气化法:以富氧空气(或者氧气)与蒸汽的混 合气为气化剂,连续通过固定的燃料层进行气化。
烟囱
三化合成氨生产工培训资料
吹风阶段 流程:空 气—煤气炉底部— 燃料层—炉顶—上 旋风除尘器—废热 锅炉—烟囱放空或 送吹风气系统回收
空气从炉底中心管 送入煤气炉,经过 炉篦均匀分布通过 灰渣层预热后,进 入气化层,空气中 的氧和赤热的燃料 发生燃烧(氧化) 反应,放出大量的 反应热,贮存在燃 料层中,为制气阶 段碳与水蒸汽进行 气化(吸热)反应 提供热量。
3、灰份 固体燃料完全燃烧后所剩余的残留物,灰份主要的组分为二氧化 硅、三氧化二铝、四氧化三铁、氧化钙、氧化镁等物质,这些物质的含量 对灰熔点有决定性影响。固定层煤气炉一般要求燃料的灰份含量不超过 30%,灰份含量过高,相对地减少了有效碳使煤的发热值降低,而且在燃 烧或气化过程中会妨碍气化剂与碳的接触,影响气化剂的扩散,同时降低 了燃料的化学活性,灰份含量过高时不仅使气化条件复杂化,还加重了排 灰机械的负荷,使设备磨损加剧。

4NH3+3O2=2N2+6H2O
在有水存在时,氨对铜及铜合金有较强的化学腐蚀作用。(氨用 阀门、仪表不用含铜的)
2
三化合成氨生产工培训资料
二、合成氨原料气的生产----半水煤气的制造: 所谓造气就是用气化剂对固体或其他原料进行热加工的过程,其生成物为可燃性气
体(煤气)。固体燃料为各种煤和焦炭;气化剂有空气、富氧空气、氧和水蒸汽、 CO2。进行气化的设备称为煤气发生炉。 固体燃料气化生成的煤气可分为: 1、空气煤气:以空气为气化剂制的煤气。 2、混合煤气:以空气和适量水蒸汽混合为气化剂制的煤气。 3、水煤气:以水蒸汽为气化剂制的煤气。 4、半水煤气:是以空气(或富氧空气)和适量的水蒸汽为气化剂制取的符合 (H2+CO)/N2=3.1~3.2的煤气。(混合煤气的特例) 造气生产路线按原料不同可分为: 1、气体——以天然气为造气原料。 2、液体——以重油为造气原料。 3、固体——以块煤(焦炭)或以粉煤为原料制成的型煤。 我厂使用的是固体燃料制气。 可用于气化的固体燃料有:1、无烟煤 2、粘结性烟煤与不粘结性烟煤(包括贫煤、 炼焦煤、气煤、气焰煤、肥煤、焰煤) 3、褐煤 4、木质褐煤 5、泥煤 6、由粘结 性烟煤或不同结焦性能的混合煤制得的焦炭和半焦,以及从褐煤制得的半焦 7、由 粉煤制成的型煤 8、碳化煤球等 我厂根据目前的现状主要以使用型煤为主,无烟块煤与焦丁为辅。 造气车间的任务就是生产合格的(氢氮比符合合成氨要求的)半水煤气。
d、灰渣层 由于固体燃料中含有20%左右的灰分。固体燃料气化后遗留下来 的残留物形成了灰渣区,灰渣区厚度为150~250毫米。在灰渣区不发生任何 化学反应,该区温度﹤700℃,预热从下而上的气化剂后被冷却,起到均布 气化剂、保护炉蓖和灰盘的作用。
另外,干燥区的上部是自由空间,起到聚集上行煤气和均匀分布下吹蒸汽 的作用。
合成氨造气生产基础知识

三化第一造气车间王太平 2019.5.18
1
三化合成氨生产工培训资料
一、合成氨概况:
1904年~1908年哈柏氏研究了氨的平衡反应,并得出反应平衡关 系,同时由波士协助解决了机械问题开始了工业合成氨的生产, 1913年4月在德国奥堡建立了世界第一个合成氨厂。合成氨是在 高温高压下将空气中的氮和用不同方法得来的氢化合制成氨。
煤的外在水份和分析取样水份之和称为煤的全水份。煤的化合水份(结合 水份)在煤中是以结晶水形式存在的,与煤化程度无关,即使加热到馏(隔绝空气)析出的气体(碳氢化合物), 在气化过程中能分解变成氢气、甲烷以及焦油蒸汽等。它与煤化程度有关 煤化程度越低挥发份越高,含量少的1~3%,多的达50%以上,一般来讲挥 发份高的煤粘结性较强,挥发份低的煤粘结性较差,挥发份较高的燃料其 机械强度、热稳定性一般都比较差。
9
三化合成氨生产工培训资料
四、固体燃料在煤气炉内的分区情况: 固定层煤气炉制气过程燃料层内的分区: 由于在气化过程中,炉内固体燃料层的各区域发生着不同的
物理或化学变化,据此,将燃料层从上而下分为五个区域:
a、干燥层 燃料层的最上部,刚投入的燃料受到下层温度较 高的燃料层的热辐射,以及由下而上通过的热气体的热交换 作用,区域温度达到200℃左右,使新加入的燃料中水分 (主要是游离水、吸附水)被蒸发干燥,因此这一区域叫干 燥区。该区厚度为150~250毫米。(实际厚度随燃料层的高 度不同而异)。
必须说明,炉内燃料层几个区域的厚度并非一成不变。因为炉体高度不同或 随燃料的种类、性质的不同及所采用的制气方法,使用气化剂和气化条件的 不同而不一样。而且各区间也没有明显的分界,往往是相互交错的。
11
三化合成氨生产工培训资料
五、固定层间歇气化法一个制气循环分为五个阶段的目的及工艺流程:
三化公司第一造气车间煤气炉间歇法制气工作循环目前采用120秒,一个制气 工作循环分为五个阶段,各个阶段的流程和作用如下。
4
三化合成氨生产工培训资料
4、硫份 煤中的硫份在气化过程中转化为含硫气体,不仅腐蚀设备管道,而且使催 化剂中毒。
5、固定碳 固体燃料中除去灰份、挥发份、水份和硫份以外,其余可燃性物质称为 固定碳,它是固体燃料中的有效物质。
6、矿物质 煤中除了在工业分析和元素分析中的成分外,还有微量的矿物质成分, 这些矿物质在氧化区内完成高温转化,变成由SiO2、Al2O3、Fe2O3、FeO、CaO、 MgO、Na2O、K2O等。有些物质对于气化反应都是有害物质,含量越少越好。煤经 过气化后重量减轻为原来的1/4左右,若是排出的炉渣中只有灰无渣,则表明气化炉 失常。
相关文档
最新文档