钻孔桩 低应变检测桩头处理要求
基桩完整性检测(低应变)作业指导书
基桩完整性检测(低应变法)1适用范围本作业指导书适用于基桩完整性现场检测。
2 执行标准JTG- F81-01-2004《公路工程基桩动测技术规程》3仪器设备基桩动测仪。
4检测目的检测桩身缺陷位置及影响程度,判定桩身完整性类别。
5资料收集在检测前,应该收集以下资料:1.工程名称、桥梁名称及平面布置图;2.建设、设计施工及监理单位名称;3.基桩的设计桩长、桩径、混凝土强度等级、桩顶及桩底标高;4.施工记录等相关资料;6现场检测6.1检测前准备工作应符合下列规定:1、被检工程应进行工程调查,搜集其工程地质资料、基桩设计图纸和施工记录、监理日志等,了解施工工艺及施工过程中出现的异常情况。
2、根据现场实际情况选择合适的激振设备、传感器及检测仪,检查测试系统各部分之间是否连接良好,确认整个测试系统处于正常工作状态。
3、桩顶应凿至新鲜混凝土面,并用打磨机将测点和激振点磨平。
4、应测量并记录桩顶截面尺寸5、混凝土灌注柱的检测宜在成柱14d以后进行。
6、打入或静压式顶制桩的检测应在相邻桩打完后进行。
6.2传感器安装应符合下列规定:1、传感器的安装可采用石膏、黄油、橡皮泥等耦合剂,粘结应牢固,并与桩顶面垂直。
2、对混凝土灌注桩,传感器宜安装在距桩中心12-2/3半径处,且距离桩的主筋不宜小于50mm。
当桩径不大于1000mm时不宜少于2个测点;当桩径大于1000mm时不宜少于4个测点。
3、对混凝土预制桩当边长不大于600mm时不宜少于2个测点;当边长大于600mm时不宜少于3个测点。
4、对预应力混凝土管桩不应少于2个测点。
6.3激振时应符合下列定:1、混凝土灌注桩、混凝土预桩的激振点宜在桩顶中心部位;预应力混凝土管桩的激振点和传感器安装点与桩中心连线的夹角不应小于45o。
2、激振和激振参数宜通过现场对比试验选定。
短桩或浅部缺陷桩的检测宜采用轻锤短脉冲激振;长桩、大直径桩或深部缺陷的桩宜采用重锤宽脉冲激振,也可采用不同的锤垫来调整激振脉冲宽度。
旋挖钻孔灌注桩检测方案
旋挖钻孔灌注桩检测方案一、工程概述本工程为_____项目,位于_____,总建筑面积为_____平方米。
其中,旋挖钻孔灌注桩基础作为本工程的重要组成部分,其施工质量直接关系到整个建筑物的稳定性和安全性。
为确保旋挖钻孔灌注桩的质量符合设计及规范要求,特制定本检测方案。
二、检测依据1、《建筑基桩检测技术规范》(JGJ 106-2014)2、《建筑地基基础工程施工质量验收规范》(GB 50202-2018)3、本工程的地质勘察报告、设计图纸及相关技术文件三、检测目的1、验证旋挖钻孔灌注桩的承载力是否满足设计要求。
2、检测桩身结构的完整性,查找可能存在的缺陷。
3、为工程验收提供可靠的依据。
四、检测数量及位置的确定1、检测数量根据相关规范及设计要求,本工程旋挖钻孔灌注桩的检测数量应不少于总桩数的 10%,且不得少于 10 根。
对于柱下三桩或三桩以下的承台抽检桩数不得少于 1 根。
2、检测位置检测桩位应随机选取,并应涵盖不同桩径、桩长及地质条件的桩。
同时,应优先选择施工过程中出现异常情况的桩,如桩身混凝土灌注过程中发生堵管、断桩等。
五、检测方法1、单桩竖向抗压静载试验(1)试验原理通过在桩顶逐级施加竖向荷载,观测桩顶随时间产生的沉降,从而确定单桩竖向抗压承载力。
(2)试验设备主要包括加载系统(千斤顶、油泵等)、反力系统(堆载平台、锚桩等)、沉降观测系统(位移传感器、基准梁等)。
(3)试验步骤①桩头处理:将桩顶凿平,并铺设 100mm 厚的中砂垫层。
②安装加载设备和沉降观测设备。
③分级加载:每级加载量为预估极限承载力的 1/10,第一级可取两倍加载量。
每级加载后,间隔 5、10、15min 各测读一次沉降量,以后每隔 15min 测读一次,累计 1h 后每隔 30min 测读一次。
④当出现下列情况之一时,即可终止加载:a 某级荷载作用下,桩顶沉降量大于前一级荷载作用下沉降量的 5 倍,且桩顶总沉降量超过 40mm。
低应变法检测技术规范
低应变法检测技术规范16.1 适用范围16.1.1本方法适用于检测混凝土桩的桩身完整性,分析桩身缺陷的程度及位置。
16.1.1【条文说明】考虑到目前使用方法的普遍程度和可操作性,本规程将反射波法(或瞬态时域分析法)简称为低应变法。
其余见《建筑基桩检测技术规范》。
16.1.2被测桩的桩长范围,应结合现场试验确定。
16.1.2【条文说明】根据低应变法的实际应用情况看,现场检测中,多数情况下能够通过同条件下的波形特征比较识别出桩底反射信号,分析被测桩的桩长范围。
这里所说的现场试验包含规程16.4.1条的内容。
若桩过长(含长径比较大)或灌注桩桩身阻抗多变且变化幅度较大或预制桩存在接桩缝隙等情况时,往往应力波尚未传到桩底,其能量已完全衰减或提前反射,测不到桩底反射信号。
此时,尽管无法对整根桩的完整性作出评价,但若被测桩桩长范围内存在缺陷,则实测信号中必有缺陷反射信号,低应变法仍可用于查明被测桩桩长范围是否存在缺陷。
16.2 仪器设备16.2.1检测仪器的主要技术性能指标应符合《基桩动测仪》JG/T 3055的有关规定,且应具有信号显示、储存和处理分析功能。
16.2.2瞬态激振设备应包括能激发宽脉冲和窄脉冲的力锤和锤垫,力锤可装有力传感器。
16.3 现场检测16.3.1被测桩(试件)应符合下列规定:1桩身强度应符合本规程第4. . 条第1款的规定。
2桩头的材质、强度、截面尺寸应与桩身基本等同。
3桩顶面混凝土应平整、密实、无积水并与桩轴线基本垂直。
16.3.2【条文说明】通常,被测桩的桩头的状态直接影响测试信号和分析判断结果的质量。
对被测桩(试件)的具体要求见附录C“低应变检测试件处理技术要求”。
16.3.2测试参数设定应符合下列规定:1采样时间间隔或采样频率应根据设定桩长、预设桩身波速合理选择;时域信号采样点数不宜少于1024点。
2时域信号记录的时间段长度,应大于2L/c时刻后延续不少于5ms。
3传感器的设定值应按计量检定结果设定。
桩基检测方案(低应变、超声波、钻芯及高应变法) 2
桩基检测方案工程名称:建设单位:检测方法:低应变法、声波透射法、钻芯法及高应变法编制单位:编制人:审批人:编制日期:一、工程概况本项目位于广东省,采用冲孔灌注桩基础,桩径为φ1200~φ1800mm,设计混凝土强度为C35,总桩数为72根。
二、检测目的和依据2.1 检测依据根据国家行业标准《建筑基桩检测技术规范》JGJ106-2003,现提供基桩检测的详细施测方案。
2.2 检测目的根据相关规范、规程要求及本项目的特点,确定采用以下检测方法进行检测:(1)低应变法检测:目的是检测桩身结构完整性,并为高应变和钻芯检测桩确定桩位提供依据。
(2)声波透射法检测:目的是检测桩身结构完整性。
(3)钻芯法检测:目的是检验桩身砼质量、桩身砼强度是否满足设计要求;桩底沉渣是否符合设计及施工验收规范要求;桩底持力层是否符合设计要求;施工记录桩长是否属实。
(4)高应变法检测:目的是检测单桩竖向抗压承载力是否满足设计要求。
三、检测项目和具体内容3.1 低应变检测3.1.1 检测数量根据本项目的要求,确定抽检数量为37根。
检测桩号由相关单位确定3.1.2 检测设备检测仪器采用岩海公司出产的RS-1616K(p)基桩动测仪。
3.1.3 检测原理基桩反射波法检测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的到时、幅值和波形特征,就能判断桩的完整性。
假设桩为一维线性弹性杆,其长度为L,横截面积为A,弹性模量为E,质量密度为ρ,弹性波速为C(C2 = E/ρ),广义波阻抗为Z=AρC,推导可得桩的一维波动方程:∂2u/∂t2=C2∂2u/∂x2-R/ρA假设桩中某处阻抗发生变化,当应力波从介质I(阻抗为Z1)进入介质II(阻抗为Z2)时,将产生速度反射波Vr和速度透射波Vt。
令桩身质量完好系数β=Z2/Z1,则有Vr=Vi×(1-β) /(1+β)Vt=Vi×2/(1+β)缺陷的程度根据缺陷反射的幅值定性确定,缺陷位置根据反射波的时间tx由下式确定Lx=C×tx/23.1.4 技术要求1、检测桩头处理(由施工单位完成)(1)凿去桩顶浮浆、松散或破损部分,露出坚硬的混凝土表面,使桩顶表面平整干净无且无水。
基桩完整性-低应变法
省公路工程试验检测中心有限公司标准化作业指导书(结构所)受控状态:发放编号:持有人:发布日期:2019年月日实施日期:2019年月日省公路工程试验检测中心有限公司标准化作业指导书(结构所)批准:审核人:主要参加编写人员:省公路工程试验检测中心有限公司标准化作业指导书目录省公路工程试验检测中心有限公司基桩完整性(低应变法)标准化作业指导书一、依据的检测标准及技术要求本作业指导书依据的检测标准及技术要求是:1.1《建筑基桩检测技术规范》(JGJ 106-2014)中的“低应变法”;1.2《公路工程基桩动测技术规程》(JTG/T F81-01-2004)中的“低应变反射波法”。
二、适用范围适用于混凝土预制桩(混凝土预制方桩、预应力混凝土管桩)、混凝土灌注桩(钻孔灌注桩、沉管灌注桩、树根桩)等刚性材料桩的完整性检测。
三、试验目的检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
四、试验原理本方法的实质是将混凝土桩视为一维线弹性杆件,当桩顶受一冲击力后,其应力(应变或位移)以波动形式在桩身中传播,遇到波阻抗差异界面后,产生反射波信号,通过分析入射波和反射波的波形、相位、振幅、频率及波的到达时间等特征,达到检测桩身完整性的目的。
检测示意图如图4.1所示:图4.1 低应变法检测示意图五、仪器设备本公司应用于低应变动测的仪器为ZBL-P810型基桩动测仪。
该仪器为集信号放大、数据采集、显示记录和分析处理于一体的高性能仪器,由主机系统、速度传感器、ICP 加速度传感器、手锤、AC-DC 电源、信号线等部件组成。
检测仪器的主要技术性能指标符合现行行业标准《基桩动测仪》(JG/T 3055-1999)和检测规范的有关规定。
ZBL-P810型基桩动测仪的主要性能指标见表5.1所示。
表5.1 ZBL-P810基桩动测仪主要性能指标1. 激振锤2. 加速度传感器3. 基桩动测仪4. 手提式计算机(可选)六、试验准备6.1 收集和了解检测工程概况6.1.1 工程项目名称,建设、设计、施工、监理单位名称;6.1.2 场地工程地质勘察报告;6.1.3 基本参数:桩型、桩径、桩长、桩身砼强度、持力层及极限承载力;6.1.4 桩位图及桩基施工记录。
低应变检测前准备工作须知
低应变检测前准备工作须知
1、凿去桩顶浮浆或松散、破损部分,露出坚硬的混凝土表面。
2、桩顶表面应平整干净且无积水。
3、在桩顶表面打磨出平整光滑的检测面(检测面约为:
10cm~15cm),面内不得有气孔及松动区域,并保持检测面的
干燥。
打磨传感器激振点示意图如下:
4、测试时桩头不得与混凝土承台或垫层相连,而将其与桩侧断开。
5、检测时间:桩砼龄期7天以上。
6、提供工程地质勘察报告、施工记录及所需测桩桩号、设计桩长、
实际桩长、桩径、灌注日期、成孔工艺(钻孔或挖孔或其它)、桩类型,并对资料的真实性负责。
7、准备传感器耦和剂(黄油或建筑胶等)。
低应变反射波法检测桩头具备条件及信号处理
低应变反射波法检测桩头具备条件及信号处理摘要:低应变反射波法是国内外进行桩基完整性检测普遍使用的一种有效方法,它以其机理清晰、测试方法简便、成果较可靠、成本低、便于对桩基工程进行普查等特点而受到工程界的欢迎,可在桩基质量检测中充分发挥作用。
因此,对用低应变反射波法检测桩基结构完整性的研究有深远意义,故促使人们对该方法进行深入的研究。
桩基检测是一项非常重要的工作,其不可预见影响因素非常复杂. 钻孔灌注桩的桩身完整性检测历来是一个比较麻烦的事情。
其原因在于,同预制桩相比,在桩径、横截面形态、桩身混凝土强度、钢筋笼的位置等方面,钻孔灌注桩都有种种不确定性,有时甚至是令人瞠目的不规则。
随即造成用低应变反射波法检测桩身完整性的曲线复杂、多变、信号相互重叠,没有规律,难以辨认和判别。
检测桩的桩头处理、传感器的安装、激振频率的选择情况以及桩周土阻力、信号处理等,都会对检测数据结论产生一定的影响,这就要求检测人员在检测过程中,分析克服外界不利影响因索,寻求最佳检测手段,追求最准确的判断。
关键词:低应变法、桩头具备条件、信号处理;1低应变反射波法的检测原理低应变反射波法,该法以一维波动理论为基础(即):桩顶实施锤击后,激起桩顶顶点的振动,运动在混凝土桩身中传播而形成应力波,应力波在下行途中,如果遇到阻抗减小(缩径、离析等),即产生上行的拉伸波,该拉伸波上行达到桩顶面时,将导致顶面质点向下的速度增加;反之,如果遇到阻抗增大(扩径等),则产生上行的压缩波,该波运行至桩顶面将导致质点向下的速度减小;这些信息都被安装于桩顶的加速度传感器接收,根据初始激励与桩身阻抗变化处反射达到时刻之间的时间差△t及应力波在桩身混凝土介质中的传播速度C来推求阻抗变压的位置X(X=C△t/2);根据速度曲线的上下起伏大小来判断桩身的阻抗变化程度。
2桩头应具备的条件(1)桩头应具备的条件桩顶条件和桩头处理好坏直接影响测试信号的质量。
为了避免检测过程中产生虚假的信号,导致影响评判结果的正确性,要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本等同。
桩基检测方案(低应变、超声波、钻芯及高应变法)
桩基检测方案工程名称:建设单位:检测方法:低应变法、声波透射法、钻芯法及高应变法编制单位:编制人:审批人:编制日期:一、工程概况本项目位于广东省,采用冲孔灌注桩基础,桩径为φ1200~φ1800mm,设计混凝土强度为C35,总桩数为72根。
二、检测目的和依据2.1 检测依据根据国家行业标准《建筑基桩检测技术规范》JGJ106-2003,现提供基桩检测的详细施测方案。
2.2 检测目的根据相关规范、规程要求及本项目的特点,确定采用以下检测方法进行检测:(1)低应变法检测:目的是检测桩身结构完整性,并为高应变和钻芯检测桩确定桩位提供依据。
(2)声波透射法检测:目的是检测桩身结构完整性。
(3)钻芯法检测:目的是检验桩身砼质量、桩身砼强度是否满足设计要求;桩底沉渣是否符合设计及施工验收规范要求;桩底持力层是否符合设计要求;施工记录桩长是否属实。
(4)高应变法检测:目的是检测单桩竖向抗压承载力是否满足设计要求。
三、检测项目和具体内容3.1 低应变检测3.1.1 检测数量根据本项目的要求,确定抽检数量为37根。
检测桩号由相关单位确定3.1.2 检测设备检测仪器采用岩海公司出产的RS-1616K(p)基桩动测仪。
3.1.3 检测原理基桩反射波法检测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的到时、幅值和波形特征,就能判断桩的完整性。
假设桩为一维线性弹性杆,其长度为L,横截面积为A,弹性模量为E,质量密度为ρ,弹性波速为C(C2 = E/ρ),广义波阻抗为Z=AρC,推导可得桩的一维波动方程:∂2u/∂t2=C2∂2u/∂x2-R/ρA假设桩中某处阻抗发生变化,当应力波从介质I(阻抗为Z1)进入介质II(阻抗为Z2)时,将产生速度反射波Vr和速度透射波Vt。
令桩身质量完好系数β=Z2/Z1,则有Vr=Vi×(1-β) /(1+β)Vt=Vi×2/(1+β)缺陷的程度根据缺陷反射的幅值定性确定,缺陷位置根据反射波的时间tx由下式确定Lx=C×tx/23.1.4 技术要求1、检测桩头处理(由施工单位完成)(1)凿去桩顶浮浆、松散或破损部分,露出坚硬的混凝土表面,使桩顶表面平整干净无且无水。
低应变检测桩头处理方法
低应变检测桩头处理方法
低应变检测桩头处理的步骤和方法主要包括以下几个方面:
.
桩头清理:长期使用的桩头上可能会积累土石颗粒和其他污染物,导致桩头表面不平整或有磨损或损坏。
因此,需要进行清理,可以使用机械或手工方式去除表面的附着物和不平整部分,以保证桩头表面的光洁和平整。
.
.
桩头尺寸测量:桩头尺寸对于检测结果至关重要,因此在检测前应对桩头尺寸进行精确的测量,使用专业测量工具如千分尺、游标卡尺等进行测量,确保其符合规定的要求。
.
.
抗蚀处理:如果桩头用于海洋或河流等高腐蚀环境,则需要进行抗蚀处理,如涂抹抗蚀涂料或热浸锌,以延长桩头的使用寿命并保护桩头不受腐蚀和污染的影响。
.
.
其他注意事项:在进行低应变检测桩头之前,应进行验收检查桩头的质量和规格;安装时应确保桩肩和桩身的连接牢固可靠;并在使用后定期进行检查和维护,以及时发现并处理损坏和腐蚀问题1。
.
.
桩顶处理:桩顶的处理包括凿除浮浆、松散或破损的部分,露出坚硬的混凝土表面,并对桩顶表面进行平整清洁处理2。
.
.
声波透射法检测:在准备进行声波透射法检测时,应预埋声测管并灌满水,确保声测管的正确工作;检测点应打磨平整,并且桩中部的检测点应特别处理;必要时,应将妨碍检测的外露主筋割掉3。
.
综上所述,低应变检测桩头涉及多个步骤,从简单的清理和尺寸测量到复杂的抗蚀处理和声波检测前的准备工作,每个步骤都需要认真对待以确保检测结果的准确性。
建筑桩基检测规范_低应变桩基检测规范
建筑桩基检测规范_低应变桩基检测规范建筑桩基检测规范_低应变桩基检测规范附录A 桩身内力测试A.0.1 基桩内力测试适用于混凝土预制桩、钢桩、组合型桩,也可用于桩身断面尺寸基本恒定或已知的混凝土灌注桩。
A.0.2 对竖向抗压静载试验桩,可得到桩侧各土层的分层抗压摩阻力和桩端支承力;对竖向抗拔静荷载试验桩,可得到桩侧土的分层抗拔摩阻力;对水平力试验桩,可求得桩身弯矩分布,最大弯矩位置等;对打入式预制混凝土桩和钢桩,可得到打桩过程中桩身各部位的锤击压应力、锤击拉应力。
A.0.3 基桩内力测试宜采用应变式传感器或钢弦式传感器。
根据测试目的及要求,宜按表A.0.3中的传感器技术、环境特性,选择适合的传感器,也可采用滑动测微计。
需要检测桩身某断面或桩底位移时,可在需检测断面设置沉降杆。
表A.0.3 传感器技术、环境特性一览表A.0.4 传感器设置位置及数量宜符合下列规定:1 传感器宜放在两种不同性质土层的界面处,以测量桩在不同土层中的分层摩阻力。
在地面处(或以上)应设置一个测量断面作为传感器标定断面。
传感器埋设断面距桩顶和桩底的距离不应小于1倍桩径。
2 在同一断面处可对称设置2~4个传感器,当桩径较大或试验要求较高时取高值。
A.0.5 应变式传感器可视以下情况采用不同制作方法:1 对钢桩可采用以下两种方法之一:1)将应变计用特殊的粘贴剂直接贴在钢桩的桩身,应变计宜采用标距3~6mm的350Ω胶基箔式应变计,不得使用纸基应变计。
粘贴前应将贴片区表面除锈磨平,用有机溶剂去污清洗,待干燥后粘贴应变计。
粘贴好的应变计应采取可靠的防水防潮密封防护措施。
2)将应变式传感器直接固定在测量位置。
2 对混凝土预制桩和灌注桩,应变传感器的制作和埋设可视具体情况采用以下三种方法之一:1)在600~1000mm长的钢筋上,轴向、横向粘贴四个(二个)应变计组成全桥(半桥),经防水绝缘处理后,到材料试验机上进行应力-应变关系标定。
标定时的最大拉力宜控制在钢筋抗拉强度设计值的60%以内,经三次重复标定,应力-应变曲线的线性、滞后和重复性满足要求后,方可采用。
桩基低应变完整性检测(精制实操)
桩基低应变完整性检测引言近几十年,我国工程建设蓬勃发展,桩基础在高层建筑、大型厂房、桥梁码头、海上钻井平台及核电站等重要工程中被广泛应用。
由于桩基属于地下隐蔽工程,桩基施工过程中受到所处地质条件、施工技术工艺等多种因素的影响,成桩难免存在各种不足,影响成桩的质量和使用效果,比如缩径、扩径、离析或夹泥,甚至断桩等不利缺陷。
如何快速、准确的评价桩身质量,是桩基检测工程一直所关注的话题。
而低应变检测具有设备简单轻便、检测快速等优点被广泛应用于桩基检测工程中。
技术原理反射波法检测是建立在一维波动理论基础上,在数学上模拟桩的一维应力波传播,计算反射、透射和波的叠加,根据波形的异常情况推断桩的完整性。
反射波法检测,是通过敲击桩顶,产生的应力脉冲以波的形式沿桩体传播,应力波在传播的过程中遇到桩体界面变化时,将表现为桩身阻抗变化而产生反射波,通过安装在桩顶的传感器接收到波的变化,由应力波沿桩身向下传播遇到有缺陷的界面或到达桩底产生反射然后返回桩顶的时间来判断桩身内的缺陷位置。
对于嵌固于土体中的桩,由于桩长L一般远大于桩径d,因此,将桩作为一维弹性值杆,考虑桩土相互作用,则桩身质点振动速度v(x,y)满足下面的一维波动方程:在式(1)中:χ-振动质点到震源的距离;t-质点振动的时间;k-桩周土弹性参数;c-桩周土阻尼系数;A-桩的截面积;C-纵波在桩中的传播速度,且满足关系,其中ρ为桩的密度;E为桩的弹性模量。
应力波在桩体中的传播时间(Δt)及桩长(L),可用下式计算出不同岩土介质中桩的纵波波速:布置方案根据桩径大小,桩心对称布置2~4个安装传感器的检测点:实心桩检测点宜在距桩中心2/3 半径处:空心桩的激振点和检测点宜为桩壁厚的1/2,激振点和检测点与桩中心连线形成的夹角宜为90°检测采集数据时需要注意的地方主要有以下几点:1.安装传感器部位的混凝土应平整;2.传感器安装应与桩顶面垂直,应与锤击点保持在一个水平面上;3.用耦合剂粘结时,应具有足够的粘结强度;4.传感器安装位置应远离钢筋笼的主筋,以减少外露主筋对测试产生干扰信号。
低应变检测过程中的应注意一些问题
低应变检测过程中应注意的问题前言由于桩基工程是地下隐蔽工程,桩基施工过程中难免会出现诸如断桩、夹层、离析等这样或那样的缺陷,成桩质量直接影响到桩的承载力能否满足设计要求。
目前,在我国桩基质量检测方法有多种,其中反射波法由于其基本原理简单、快速无损、资料判读直观、准确度较高在桩基检测中占据主流地位。
但是如果操作者不能认真对待检测过程中的每一步骤,都可能造成误判、漏判,以至造成工程隐患。
1、基本原理反射波法又叫应力波法,是以手锤或力棒等激震装置撞击桩顶,产生一纵向应力波信号沿桩身传播,由传感器(速度型或加速度型)拾取桩身缺陷及不同界面的反射信号,再通过一系列分析处理来判定桩身质量。
由于该方法受外界环境、人员素质等多种因素影响,采集到的信号往往是包含多种频率成分的动态信号,所以应针对桩基检测的各个步骤采取相应的措施和手段,来获取桩身响应的真实信号。
低应变反射波法桩基检测可分为两个阶段:现场采集数据阶段和室内数据分析处理阶段。
2、现场数据采集2.1 桩头处理桩基测试依据的信号是由偶合在桩顶的传感器接收到的响应信号,所以桩头处理是取得结果的关键。
在测试前,应认真清理桩头浮浆及破碎部分,直到露出新鲜混凝土界面,且要求桩头有一定的强度,至少应在成桩后8~15天方可检测。
2.2 感器的选择及安装桩土体系的自振频率是由体系的质量和刚度决定的。
在质量一定的情况下,刚度越大,则体系的自振频率越高;刚度越小则体系的自振频率越低。
在刚度一定的情况下,质量越大,则体系的自振频率越低;质量越小则体系的自振频率越高。
目前,在反射波法测试中,应用速度计和加速度计都取得了良好的测试效果。
加速度计的频带宽,高频特性较好;速度计的频带窄,但低频特性较好。
在现场测试时,应视具体工程、具体场合选用不同的传感器,以期及时取得良好的曲线。
通常在短桩、小直径桩检测时采用加速度计,发现浅部缺陷,减少浅部“盲区”;在大直径、长桩的检测中采用速度计,取得深部缺陷及良好的桩底反射信号。
低应变法检测桩身完整性规程
低应变法8.1 适用范围8.1.1 本方法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
8.1.2 本方法的有效检测桩长范围应通过现场试验确定。
8.2 仪器设备8.2.1 检测仪器的主要技术性能指标应符合现行行业标准《基桩动测仪》JG/T 3055的有关规定,且应具有信号显示、储存和处理分析功能。
8.2.2 瞬态激振设备应包括能激发宽脉冲和窄脉冲的力锤和锤垫;力锤可装有力传感器;稳态激振设备应包括激振力可调、扫频范围为10~2000Hz 的电磁式稳态激振器。
8.3 现场检测8.3.1 受检桩应符合下列规定:1 桩身强度应符合本规范第3.2.6 条第1 款的规定。
2 桩头的材质、强度、截面尺寸应与桩身基本等同。
3 桩顶面应平整、密实,并与桩轴线基本垂直。
8.3.2 测试参数设定应符合下列规定:1 时域信号记录的时间段长度应在2L/c 时刻后延续不少于5ms ;幅频信号分析的频率范围上限不应小于2000Hz 。
2 设定桩长应为桩顶测点至桩底的施工桩长,设定桩身截面积应为施工截面积。
3 桩身波速可根据本地区同类型桩的测试值初步设定。
4 采样时间间隔或采样频率应根据桩长、桩身波速和频域分辨率合理选择;时域信号采样点数不宜少于1024 点。
5 传感器的设定值应按计量检定结果设定。
8.3.3 测量传感器安装和激振操作应符合下列规定:1 传感器安装应与桩顶面垂直;用耦合剂粘结时,应具有足够的粘结强度。
2 实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3 半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90 °,激振点和测量传感器安装位置宜为桩壁厚的1/2 处。
3 激振点与测量传感器安装位置应避开钢筋笼的主筋影响。
4 激振方向应沿桩轴线方向。
5 瞬态激振应通过现场敲击试验,选择合适重量的激振力锤和锤垫,宜用宽脉冲获取桩底或桩身下部缺陷反射信号,宜用窄脉冲获取桩身上部缺陷反射信号。
基桩低应变检测桩头处理要求
.
;. 广州市盛通建设工程质量检测有限公司
基桩低应变检测桩头处理要求
1、 凿去桩顶浮浆、松散或破损部分,露出坚硬的混凝土表面,桩顶表面平整干净且无积水;
2、 桩头埋在水平地面以下时,开挖至桩头出露不少于10cm 的深度,所开挖的坑槽大小应满足一人在坑内弯腰敲锤需要的活动空间;
3、 桩顶的材质、强度、截面尺寸与原桩身基本等同;
对于预应力管桩,当法兰盘与桩身混凝土之间结合紧密时,可不进行处理,否则应采用电动锯将桩头锯平;
4、 妨碍正常测试的桩顶外露主筋、箍筋应割掉,特别是横贴在桩面上的箍筋须割掉;
5、 灌注桩桩面必须用打磨机磨平检测点和锤击点,桩径小于或等于1200mm 时磨4个点,桩径大于1200mm 时磨5个点,打磨点为直径100mm 的圆形。
打磨点在桩面上的分布:桩中心磨1 个点,其余点则磨在与桩中心距离为桩半径的三分之二,且等间距位置上(见下图)。
低应变检测基桩完整性和缺陷桩处理
3.1、折射与反射的损失
低应变检测时,桩顶部分声场复杂,应力波可简化为半球面波,远离桩顶后可近似为平面波。入射波在桩顶附近将产生折射,应力波将由桩身扩散到桩周土层中,也就产生应力波能量的折射损失。一般情况下可以认为,折射损失主要发生在桩头附近。在桩身阻抗发生变化时,会发生应力波的反射和透射。发生反射时,沿桩身向下传播的能量要损失一部分,损失的大小,取决于桩身阻抗的变化大小,主要和缺陷的性质和尺寸大小有关。在关于应力波散射的讨论中,可以知道,散射过程中同样伴随着能量的损失。反射波法低应变检测,主要是对接收到的反射波进行分析,来判断桩身质量情况,当反射波很弱时,将影响判断的结果。可见要同时判断两个或两个以上的桩身缺陷是很困难的,因为位置靠上的第一个缺陷会将一部分能量反射回去。除非当第一个缺陷十分轻微,反射的能量较少时,才有能量足够的波到达位置靠下的缺陷。
参考文献:
[1]林彦英.低应变反射波法三维缺陷桩动测响应分析[D].华南理工大学,2014.
[2]杨建中.低应变反射波法基桩完整性检测应用研究[D].郑州大学,2011.
[3]金宏雷,金笃慎,周琪.低应变检测基桩完整性和7.
1、低应变检测的优越性
在动力检测方法大量使用以前,工程中一般采用静载试验的方法对基桩进行检测。与静载试验相比低应变检具备有比较明显的优势,主要表现在以下几个方面:低应变检测仪器设备简便,速度快和费用也相对较低。静载试验,设备笨重主要为千斤顶、钢梁和一定数量的配重,检测时间长进度约为天根,需要投入大量的人力物力,费用较高。动测仪器如今已相当集成化,主要为一台主机外加传感器和数据传输线便于携带,低应变检测速度可达每天数十根甚至上百根。低应变检测具有静载试验不具备的一些功能。静载试验主要是检测桩的承载力,低应变的检测结果能对静载试验的分析起到补充和验证作用。特别是当桩出现破坏时,主要有两方面的原因,桩周土破坏和桩身结构破坏,但是仅通过静载试桩的一曲线往往不容易确定到底是那一种原因造成的。而低应变却能检测桩身缺陷及其位置,这样再结合静载检测结果,可以对工程桩的质量进行全面的掌握。低应变检测可对工程桩进行普查〔静载试验周期长费用高,所以检测数量很有限,一般只为总桩数的。而低应变设备轻便速度快适于大面积检测。另一方面静载检测数量有限,检测点的选取很关键。虽然规范提出了一些抽样的原则,实际检测时人为因素的影响仍然很大。例如,场地狭小、施工进度快、交叉施工、现场管理不规范等,都使试验桩的选取带有很大的随意性。试验桩的代表性往往无法确定,由于检测数量有限,这种情况就显得更加突出。低应变法虽也是抽检但比例较大,而且发现问题后可以及时扩大检测范围,甚至对全部工程桩进行质量检查,这种检测的灵活性是静载试验所不具备。
低应变检测桩桩头处理方法
低应变检测桩桩头处理方法
低应变检测桩桩头处理方法及准备工作
受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本等同,凝期混凝土浇筑后5~7天。
受检桩应凿去桩顶浮浆或松散、破损部分,并露出坚硬的混凝土表面桩顶表面应平整干净且无积水;
应将敲击点和响应测量传感器安装点部位磨平;具体打磨位置:桩中部打磨一个点,桩边缘到桩心1/3处打磨一至二个点。
妨碍正常测试的桩顶外露主筋应割掉。
如对测试有影响,桩头应与混凝土承台或垫层断开
基础桩桩头不能冒出地面,否则应预埋声测管或者打掉露出地面桩头
检测前备好黄油或者牙膏等耦合剂,备好施工桩号图、棉纱。
另外需至少2名施工管理人员配合,需要工人数量视现场情况确定
声波透射法检测桩桩头处理方法及准备工作
声波透射法检测前,预埋的声测管应预先灌满水,为便于操作声测管高度应露出地面20cm~50cm,如果声测管有变形或者堵塞,应事先处理,以便能放入检测探头。
检测前备好卷尺、桩号图相应管理人员和工人配合。
预埋的声测管应选用50~60mm内径的钢质管和直头螺纹连接方式。
声测管应在钢筋笼内侧、定位牢固并保证垂直。
埋管数量:D≤800(mm) 两根管 800<D≤2000(mm) 三根管 D>2000(mm) 四根管。
抗拔桩静载和低应变检测方案
抗拔桩静载和低应变检测方案(总12页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March桩基检测方案编制:审核:审批:桩基检测方案1工程概况1.1工程名称:南京至高淳城际轨道禄口机场至溧水段试验段土建工程(DS7-TA05标)建设单位:南京地铁建设有限责任公司建设地点:金龙路站~无想山站工程概况:本标段二站一区间,金龙路站、无想山站和金龙路站~无想山站区间。
金龙路站采用Φ1000钻孔灌注桩,混凝土等级为C35P8水下,有效桩长5m。
设计抗拔承载力特征值为:1000KN(KBZ1~9a、15~22a)、2400KN(KBZ10~14)。
金龙路站桩数总计127根。
无想山站采用Φ1000钻孔灌注桩,混凝土等级为C35P8水下,有效桩长5m。
设计抗拔承载力特征值为:1000KN(KBZ1~KBZ5)、2400KN(KBZ6~KBZ25)。
无想山站桩数总计90根。
无想山站抗拔桩平面布置见图2-2。
检测项目及数量:《建筑基桩检测技术规范》JGJ106-2014《建筑地基基础处理技术规范》JGJ79-2012《建筑基桩技术规范》JGJ94-2008《建筑地基基础检测规程》DGJ32/TJ 142-2012《建筑地基基础设计规范》GB50007-2011《钻孔灌注桩成孔、地下连续墙成槽质量检测技术规程》DGJ32/TJ117-2011《南京轨道交通工程建设质量检测项目和频率规定》2014年版本工程设计图纸检测任务:低应变检测:通过低应变动测对试桩完整性进行检测,以确定试桩的完整性和可靠性。
抗拔检测:测试试验桩单桩竖向抗拔最大值,提供单桩竖向抗拔承载力极限值和特征值;测定单桩竖向荷载作用下的荷载和变形;判定单桩竖向抗拔承载力是否满足设计要求。
2检测方法2.1静载抗拔检测2.1.1检测装置及安装示意图试验装置主要包括千斤顶加载部分和桩顶位移观测两部分。