第二章信号分析基础

合集下载

第2章 信号分析基础 题库-答案

第2章 信号分析基础 题库-答案

(1)傅里叶级数实数形式的幅值谱、相位谱;
(2)傅里叶级数复数形式的幅值谱、相位谱;
(3)幅值谱密度。
解:(1)实数形式
傅里叶级数三角形式的展开式:
x(t)
a0 2
n1
(an
cos n0t
bn
sin
n0t )
x(t)
2 2
Acos(0t)
2 2
A sin(0t )
得: a0
0 , an
形脉冲。
x(t)
t
x1 (t )
x2 (t )
图2-31
解:矩形脉冲信号
x(t
)
E 0
| t | T1 的频谱密度 | t | T1 t
t
X ()
T1 T1
Ee
jt dt
2ET1
sinc(T1)
所以
X1
(
)
sinc(
1 2
)

X
2
(
)
3
sinc(
3 2
)
x(t)
1 2
x1 (t
2.5)
x2 (t
过程: T 0
A2
T 1 cos 2t dt
T0
2
A2 2
18.求正弦信号 xt Asin( t ) 的概率密度函数 p(x)。
解:
公式: p(x) lim P(x x(t) x x)
x0
x
过程:
在一个周期内Tx0 t1 t2 P[x x(t) x x] lim Tx Tx0
答:充分条件:绝对可积
充要条件:
(D) a X a f
6.判断对错:1、 随机信号的频域描述为功率谱。( V )

(3)第2章 信号分析基础

(3)第2章 信号分析基础

2.3 非周期信号与连续频谱

图2-5 非周期信号
2.3 非周期信号与连续频谱
• 2.3.1傅立叶变换
• 当周期T趋于无穷大时,相邻谱线的间隔 趋 近于无穷小,从而信号的频谱密集成为连续频谱 。同时,各频率分量的幅度也都趋近于无穷小, 不过,这些无穷小量之间仍保持一定的比例关系 。为了描述非周期信号的频谱特性,引入频谱密 度的概念。令
• 对于周期信号,在时域中求得的信号功率与在频域中求得 的信号功率相等。
2.3 非周期信号与连续频谱
• 2.3 非周期信号与连续频谱 • 非周期信号包括准周期信号和瞬态信号两种,其频谱
各有独自的特点:周期信号的频谱具有离散性,各谐波分 量的频率具有一个公约数——基频。但几个简谐具有离散 频谱的信号不一定是周期信号。只有各简谐成分的频率比 是有理数,它们才能在某个时间间隔后周而复始,合成的 信号才是周期信号。若各简谐信号的频率比不是有理数, 合成信号就不是周期信号,而是准周期信号。因此准周期 信号具有离散频谱,例如多个独立激振源激励起某对象的 振动往往是这类信号对于瞬态信号,不能直接用傅立叶级 数展开,而必须应用傅立叶变换的数学方法进行分解。
第2章 信号分析基础
2.1 信号的分类与描述
• 2.1 信号的分类与描述
• 2.1.1 信号的分类
• 信号是反映被测对象状态或特性的某种物理量。以信 号所具有的时间函数特性分类,信号主要分为确定性信号 与随机信号、连续信号与离散信号等。
• 1. 确定性信号与随机信号
• 确定性信号是指可以用精确的数学关系式来表达的信 号。确定性信号根据它的波形是否有规律地重复又可进一 步分为周期信号和非周期信号两种。

(2-21) F( j) lim Fn T 1 / T

第二章信号分析基础(频谱)

第二章信号分析基础(频谱)

(1)
A0 a0
An
an bn
2
2
bn n arctg an
周期信号的频谱分析
西安工业大学机电学院
复指数形式: 将三角函数形式中的正余弦用欧拉公式代换
e j e j cos 2
则:

e j e j sin 2j
带入并合并同类项
a0 an jbn jn0t an jbn jn0t f (t ) [ e e ] 2 n 1 2 2 a0 an jbn jn0t an jbn jn0t e e 2 n 1 2 2 n 1 an jbn jn0t e Cn e jn0t 2 n n
则:c1x1(t)+c2x2(t) ←→ c1X1(f)+c2X2(f)
例子:求下图波形的频谱
用线性叠加定理简化 X1(f)
+
X2(f)
2.4 傅立叶变换的性质 c.对称性
西安工业大学机电学院
若 x(t) ←→ X(f),则 X(t) ←→ x(-f)
证明: 以-t替换t: 以f换t: 所以:
x(t )
∴当T0→∞时,Δω→0 上式变为:
T / 2
0
T0 / 2
f (t )e jn0t dt ]e jn0t
f (t )


1 + [ f (t )e jt dt ]e jt d 2
1 + jt F e d 2
西安工业大学机电学院


X ( f )e j 2ft df X ( f )e j 2ft df
x(t )


x( f ) X (t )e j 2ft dt

3信号分析基础2(时域相关分析)

3信号分析基础2(时域相关分析)
因此,有

T
0
x (t )dt S x ( f )df
2
1 2 S x lim X f T T
信号的频域分析
自功率谱密度函数是偶函数,它的频率范围 (,) , 又称双边自功率谱密度函数。它在频率范围 (,0) 的函数值是其在 (0, ) 频率范围函数值的对称映射, 因此 Gx ( f ) 2Sx ( f ) 。
x(t - τ)
自相关函数的性质 自相关函数为实偶函数
Rx ( ) Rx ( )
1 T 证明: Rx ( ) lim x(t ) x(t )dt T T 0 1 T lim x(t ) x(t )d (t ) T T 0 Rx ( )
波形变量相关的概念(相关函数 )
如果所研究的变量x, y是与时间有关的函数, 即x(t)与y(t):
x(t)
y(t)
2.4信号的时差域相关分析 这时可以引入一个与时间τ有关的量,称为 函数的相关系数,简称相关函数,并有:
x ( t ) y ( t ) dt xy ( ) 2 [ x ( t ) dt y 2 ( t ) dt ]1/ 2
2 2 x x

自相关函数的性质
周期函数的自相关函数仍为同频率的周期函数
1 Rx ( nT ) lim T T 1 lim T T

T 0 T 0
x(t nT ) x(t nT )d (t nT ) x(t ) x(t )d (t ) Rx ( )
相关函数反映了二个信号在时移中的相关性。
x(t) y(t) y(t) y(t) y(t)

2.2.2 自相关(self-correlation)分析

工程测试技术 第2章 信号分析基础-3

工程测试技术 第2章 信号分析基础-3

第二章、信号分析基础
Page 2 华中科技大学机械学院
2.5 信号的频域分析
信号频域分析是采用傅立叶变换将时域信号x(t)变换为 频域信号X(f),从而帮助人们从另一个角度来了解信号的特 征。
傅里叶 变换
8563A
SPECTRUM ANALYZER 9 kHz - 26.5 GHz
第二章、信号分析基础
2.5 信号的频域分析
频域分析
Page 25 华中科技大学机械学院
吉布斯现象(Gibbs)
• 吉布斯现象是由于展开式在间断点邻域不能均匀收敛 引起的。
• 例:方波信号
x(t)
T
T
t
2.5 信号的频域分析
频域分析
Page 26 华中科技大学机械学院
N=1
2.5 信号的频域分析
Page 27 华中科技大学机械学院
用线性叠加定理简化
X1(f)
+Page 38 华中科技大学机械学院
5、频谱分析的应用
频谱分析主要用于识别信号中的周期分量,是信号分析 中最常用的一种手段。
在齿轮箱故障诊断中,可
以通过齿轮箱振动信号频谱分 析,确定最大频率分量,然后 根据机床转速和传动链,找出 故障齿轮。
2 T
T /2
T /2 x(t) sin n0tdt;
ω0―基波圆频率; f0 ―基频:f0= ω0/2π
An an2 bn2 ;
n
arctan bn an
;
2.5 信号的频域分析
傅里叶级数的复数表达形式:
x(t) Cne jn0t , (n 0,1,2,...) n
Page 9 华中科技大学机械学院
2.5 信号的频域分析

【复习笔记】信号分析基础

【复习笔记】信号分析基础

第二章 信号分析基础1、信号分析中常用函数包括:δ函数、sinc(t)函数、复指数函数e st① δ函数具有“抽样(乘积)、筛选(积分)、卷积”特性,其拉氏变换和傅氏变换的值均为1。

② 卷积特性的表达式为)()()()()(t f d t f t t f =-=*⎰+∞∞-ττδτδ,τ为两信号之间的时差。

③ sinc(t)函数又称为闸门函数、滤波函数或内插函数,分别对应其用处:闸门(或抽样)、低通滤波、采样信号复原时sinc(t)函数叠加构成非采样点波形。

④ 复指数函数e st 中出现的“负频率”是与负指数相关联的,是数学运算的结果,并无确切的物理含义。

2、一个信号不能够在时域或频域都是有限的。

3、信号的时域统计分析:均值x μ、均方值ψ2x 、方差σ2x 。

三者具有如下关系:2x2x 2x μσψ+= 式中,ψ2x (又称平均功率,平均能量的一种表达)表达了信号的强度; σ2x 描述了信号的波动量; μ2x 描述了信号的静态量。

4、各态历经过程:此过程中的任一个样本函数x(t)都经历了过程的各种状态,从它的一个样本函数x(t)中可以提取到整个过程统计特征的信息。

5、相关函数的性质:① 自相关函数R x (τ)是τ的偶函数,满足:)()(ττ-=x x R R 。

② 互相关函数R xy (τ)是τ的非奇非偶函数,满足:)()(ττ-=yx xy R R 。

③ 当τ=0时,自相关函数具有最大值。

对于功率信号,若均值μx =0,则在τ=0点处,有ψ2x =σ2x =R x (τ)。

④ 周期信号的R x (τ)仍然是与原信号同频率的周期信号,但不具有原信号的相位信息。

⑤ 两周期信号(同频)的R xy (τ)仍然是与原信号同频率的周期信号,但保留了原信号的相位信息。

⑥ 两个不同频的周期信号互不相关,其互相关函数R xy (τ)=0。

⑦ 随机信号的R x (τ)将随|τ|值增大而很快趋于0。

有限带宽白噪声信号的R x (τ)是一个sinc(τ)型函数,即可说明。

现代通信原理(乔延华)课件 (2)

现代通信原理(乔延华)课件 (2)

第2章 信号分析基础和信道
(2)短波电离层反射信道。 所谓短波,是指波长为 10~100 m(相 应 的 频 率 为 3~ 30MHz)的电磁波。它既可以沿地表面传播(称为地波传播), 也可以由电离层反射传播(称 为天波传播)。地波传播一般是 近距离的,限于几十千米范围;而天波传播借助于电离层的 一 次反射和多次反射可传输几千千米,乃至上万千米。当
第2章 信号分析基础和信道
1.有线介质 有线介质通常包括明线、对称电缆、同轴电缆和光纤等。 (1)明线:是指平行而相互绝缘的架空裸线线路。与电缆 相比,其传输损耗低,但易受 气候和天气的影响,并且对外界噪 声干扰较敏感,频带窄。 (2)对称电缆:也称双绞线电缆。双绞线电缆是由两根铜 线或铝线各自封装在彩色塑 料皮内相互扭绞而成的传输媒 质,传输损耗比明线大得多,但其传输特性比较稳定。
第2章 信号分析基础和信道
(3)对流层散射信道。对流层散射信道是一种超视距的 传播信道,其传播距离为100~ 500km,可工作在超短波和微波 波段。设计良好的对流层散射信道可提供12~240个频分 复 用(FDM)的话路,可靠性可达99.9%。
对流层是大气层的最底层,通常是指从地面算起 10~12km 的大气层。在对流层中, 由于大气湍流运动等原因 引起大气层的不均匀性,当电磁波射入对流层时,这种不均匀 性 就会引起电磁波的散射,一部分电磁波向接收端方向散射, 起到中继作用。
则称该信号为周期信号。若T 值不存在,则称该信号为非周 期信号。通信系统中常用于测 试的正(余)弦信号、雷达中的 矩形脉冲系列都是周期信号,而语音信号、开关的启或闭所 造成的瞬态则是非周期信号。
第2章 信号分析基础和信道
3.基带信号与频带信号 从信源发出的信号是原始的电波形,主要能量集中在低 频段,甚至含有丰富的直流分 量,没有经过任何调制(频谱搬 移),因此称为基带信号,如语音、视频信号等。它们均可由 低通滤波器取出或限定,故又称为低通型信号。

工程测试技术 信号分析基础 掌握信号时域波形分析方法

工程测试技术 信号分析基础 掌握信号时域波形分析方法

2.2 信号的时域波形分析
实验:
12
2.2 信号的时域波形分析
5、波形分析的应用
信号类型识别
信号基本参数识别
Pp-p
超门限报警
2.2 信号的时域波形分析
案例:汽车速度测量:
T
14
2.2 信号的时域波形分析
案例:旅游索道钢缆检测
超门限报警
15
2.2 信号的时域波形分析 实验:声音信号有效值报警:
应用: (1)信号中的直流分量消除 (2)仪器的智能调零
2.3 信号的时域统计分析
2、均方值
信号的均方值E[x2(t)],表达了信号的强度;其正平 方根值,又称为有效值(RMS),也是信号平均能量的一种 表达。
2 x
E[x2 (t)]
lim
1 T
T x 2 (t)dt
0
T
工程测量中仪器的表头示值就是信号的有效值。 应用:局部异常信号识别(钢丝绳断丝检测)
2.4 信号的时差域相关分析
发火周期
1
0.5
Healthy #1 Misfire #1&2 Misfire
Correlation
0
-0.5
自相关分析的主要应用:
用来检测混肴在干扰信号中的确定 性周期信号成分。
-1
0
120
240
360
480
600
720
Crank Angle (degCA)
作一个循环内转速信号的的自相关函数,其周期为发火周期。
16
第二章、信号分析基础 2.3 信号的时域统计分析
1. 均值 2. 均方值 3. 方差 4. 概率密度函数 5. 概率分布函数 6. 直方图

2 信号分析基础(频谱分析)

2  信号分析基础(频谱分析)

(2.69)
傅 里 叶 变 换 与 非 周 期 信 号 的 分 解
式2.68称为 x t 的傅立叶变换,称式2.69为 X 的 傅立叶逆变换,两者称为傅立叶变换对,可记为
x t X
IFT
FT
2 f 代入傅立叶积分式中,则式2.68, 2.69变为
X f x t e j 2 ft dt
Im[X ( f )] ( f ) arctgRe[ X ( f )]
x (t ) 1 X ( )e jt d 2 X ( ) x (t )e jt dt
X f 连续幅值谱
f

连续相位谱
X 频谱密度函数
2.2 周期信号的频谱分析 第 二 章
信号频域分析是采用傅立叶变换将时域信号x(t)变 换为频域信号X(f),从另一个角度来了解信号的特征。
信 X(t)= sin(2πnft) 号 分 0 析 基 础
傅里叶 变换
t
8563A
SPECTRUM ANALYZER 9 kHz - 26.5 GHz
0
f
频域分析的概念 周 期 信 号 的 频 谱 分 析
傅 里 叶 变 换 与 非 周 期 信 号 的 分 解
T0 T0 , 设有一个周期信号x(t)在区间 2 2
以傅立叶级数表示为
x t
n
ce
n

jn0t
1 式中 cn T0

T0 2 T 0 2
x t e
jn0t
dt
将其代入上式则得
n n
幅频谱 相频谱
频谱图的概念 周 期 信 号 的 频 谱 分 析

工程测试与信号处理第二章信号分析基础1

工程测试与信号处理第二章信号分析基础1

(a) 拉氏变换:
(s) (t)est dt 1
(b) 傅氏变换:
( f ) (t )e j2ft dt 1
第二章 信号分析的基础
中原工学院 机电学院
2.sinc函数
sinc(t)函数又称为抽样函数、滤波函数或内插函数,在许多场合
下频繁出现.其定义为
sin c(t) sin t , or, sin t , ( t )
离散时间信号:在若干时间点上有定义
采样信号
第二章 信号分析的基础
中原工学院 机电学院
离散时间信号可以从试验中直接得到,也可能从连续时间信 号中经采样而得到。
典型离散时间信号有单位采样序列、阶跃序列、指数序列等.
单位采样序列用δ(n)表示,定义为:
(n)
0, n 0 1, n 0
此序列在n=0处取单位值1,其余点上都为零(图2-3 (a ) ).单位采样序
物理信号具有如下性质: (1)必然是能量信号.即时域内有限或满足可积收敛条件; (2)叠加、乘积、卷积运算以后仍为物理信号.
第二章 信号分析的基础
中原工学院 机电学院
六、信号分析中常用的函数
1. 脉冲函数—函数
函数表示一瞬间的脉冲. 狄拉克(Dirac)于1930年在量子力学中
引入了脉冲函数.从数学意义上讲,脉冲函数完全不同于普通函数,
第二章 信号分析的基础
二、能量信号与功率信号 1.能量信号
中原工学院 机电学院
在所分析的区间(-∞,∞),能量为有限值的信号称为 能量信号,满足条件:
x 2 (t )dt
一般持续时间有限的瞬态信号是能量信号。
第二章 信号分析的基础
中原工学院 机电学院
2. 功率信号

信号分析基础

信号分析基础

确定性信号又可分为周期信号和非周期信号 随机信号又可分平稳和非平稳的信号两种
周期信号是经过一定时间可以重复出现的信号, 满足条件:
x(t)=x(t+Nt) 式中:T——周期,T=2π/ω0;
ω0——基频 N=0,十1…
确定信号与随机信号
• 当信号是一确定的时间函数时,给定某一时 间值,就可以确定一相应的函数值。这样的 信号称为确定信号。
x(t)x(t) x(t )x(t ) 2x(t)x(t )
两边取时间T的平均值并取极限
lim 1
T
x(t)x(t)dt lim
1
T
x(t )x(t )dt
lim
1
T
2x(t)x(x )dt
T T 0
T T 0
T T 0
R(0) R( )
这个性质极为重要,它是相关技术 确定同名点的依据
3、数字相关
数字相关是利用计算机对数字影像进 行数值计算的方式完成影像的相关 二维相关
搜 索 区
目标区
测相 度似

c,r
maxij
i j
i0 j0
l
2 k
2
n 2
, , i0
l 2
n 2
m 2
, , i0
k 2
m 2
4.工程应用
2.4 信号的频域分析
确定信号的时间特性
• 表示信号的时间函数,包含了信号的全部 信息量,信号的特性首先表现为它的时间 特性。
R( ) lim 1
T
x(t)x(t )dt
T 2T T
lim 1
T
x(t )x(t)dt
T 2T T
lim
T

第二章 信号分析基础(随机信号和相关分析)090310

第二章 信号分析基础(随机信号和相关分析)090310

西安工业大学机电学院
2)互相关函数:
R xy ( ) lim
1 T 1 T
T

T
x ( t ) y ( t ) dt y ( t ) x ( t ) dt
0 T

R yx ( ) lim
T

0
x(t)
y(t)
西安工业大学机电学院
算法:令x(t)、y(t)二个信号之间产生时差τ,再相 乘和积分,就可以得到τ时刻二个信号的相关性。
0
正弦函数是一个零均值 一个周期内的平均值表 1 T0 T 0

T0
A sin( t ) sin[ ( t ) ] dt
2
0
2

, 令 t = ,则 dt A
2
d

A
2
R xx ( )
2

2
sin sin( ) d
•集合平均:不是沿单个样本的时间轴进行,而是将集 合中所有样本函数对同一时刻ti的观测值取平均;(纵 向)
•时间平均:单个样本的时间历程进行平均;(横向)
西安工业大学机电学院
工程中很多随机信号具有各态历经性,由 于不可能观测足够多的样本函数来描述一 个随机过程,故工程中常以一个或几个有 限长度的样本记录来推断整个随机过程, 以时间平均来估计集合平均。这就使得信 号的分析处理简化了
围的面积为信号的平均
所以 S x ( ) 就是信号的功率谱密度
沿频率轴的分布,简称
西安工业大学机电学院
西安工业大学机电学院
西安工业大学机电学院
功率谱与传递函数、频率响应函数的关系
H ( ) S xy ( ) S x ( ) , S xy 输入输出互谱, S x 输入自谱

第二章-信号分析与信息论基础

第二章-信号分析与信息论基础
设ξ(t)表示一个随机过程,则在任意一个时刻t1 上,ξ(t1)是一个随机变量。显然,这个随机变量的统 计特性,可以用概率分布函数或概率密度函数去描述。
4、随机过程的数字特征 随机过程的数字特性,比如,随机过程的数学期望、
方差及相关函数等。 1)数学期望
随机过程ξ(t)的数学期望被定义为
可把t1直接写成t。随机过程的 数学期望被认为是时间t的函数。
2.1 确知信号分析
信号是通过电的某一物理量(如电压或电流)表 示出的与时间t之间的函数关系。 确知信号:能用函数表达式准确表示出来的信号。它 与时间的关系是确知的。 随机信号:与上述相反。
通信中传输的信号及噪声都是随机信号。
2.1.1 周期信号与非周期信号 周期信号:满足条件 s(t)=s(t+T0) -∞<t<∞,T0>0 非周期信号:不满足上述条件。 功率信号:信号在(0,T)内的平均功率S(式2-2)值为 一定值。 能量信号:当T→ ∞时,式(2-3)是绝对可积的。
解: Γ[COS ω0 t]= π[δ(ω- ω0)+ δ(ω+ω0)] 冲激 强度为π,根据卷积定理:
Γ[f(t)COS ω0 t] =(1/2 π)F(ω)* {π[δ(ω- ω0)+ δ(ω+ω0)] }
=(1/2) [F(ω- ω0)+ F(ω+ω0)]
2.1.3 信号通过线性系统
线性系统:输出信号与输入信号满足线性关系(允许
说,如果对于任意的n和τ,随机过程ξ(t)的n维概率
密度函数满足:
则称ξ(t)是平稳随机过程。
6、广义平稳过程 广义平稳概念:若一个随机过程的数学期望及方差 与时间无关,而其相关函数仅与τ有关,则称这个随

工程测试技术 信号分析基础

工程测试技术 信号分析基础

t1 2
24
yzs (t)
⑤ 3≤t 时
2 1 d 1 t2 1 t 3
t1 2
4 24
29 f ( t -τ) h(τ) = 0,故 yzs(t) = 0
0
t-1 t t-1 t t-1 t 2
τt
h(τ )f (t -τ )
0 t t-1 1t t-1 2 3 τ yf (t )
-T0
T0
h(T0/2- )
-T0
T0
A2
-T0
T0
2.6 卷积分
y(t) x( )h(t )d x(t) h(t) y(t)
2A2T0
-2T0
t= T0时:
0
2T0
y(T0)=A2 T0
10
x()
-T0
T0
h(T0- )
-T0
T0
A2
-T0
T0
2.6 卷积分
y(t) x( )h(t )d x(t) h(t) y(t)
x(t)
(1)换元
h(t)
反折;
0
t (2)平移;
0
t
x(t)
(4)积分
(3)相乘; h(-)
(1)反折
(4)积分。
0
x(t)
h(t1 -)
t (3)相乘
0
h(t1 -)
(2)平移
00
t
23
0
2.6 卷积分
图解法一般比较繁琐,确定积分的上下限是关键。
e(t)或e( )
h(t)或h( )
• 举例 1
t (6 e2te3 e ) d
e2t t (6 e3 ) d t e d
e2t 2 e3

数字通信原理_2:信号分析基础

数字通信原理_2:信号分析基础

1 2



P e
j
d
R 0
2010 Copyright
1 2



P d P
SCUT DT&P Labs
10
第二章 信号分析基础

M 进制通信系统信号序列:
f t ,
k
k 1, 2 ,..., M

信号设计时,一般尽量使得个信号间相关性最小



P f df
2010 Copyright
SCUT DT&P Labs
7
第二章 信号分析基础
相关函数:相关运算在通信系统中起着至关重要的作用, 可以非常有效地实现特定的信号提取。

能量信号的互相关运算定义为
R12



f 1 t f 2 t dt

功率信号的互相关运算定义为

2

N i 1
a mi
2
m 1, 2 ,..., M
2010 Copyright
SCUT DT&P Labs
17
第二章 信号分析基础
正交基示例:二维信号空间中的一组基函数
sin 2 f C t ,
cos 2 f C t ,
0 t TS
0 t TS
其中 T S kT k
标准正交基:特别地,满足下列条件的一种基 k t 称之
i t , j t
T

0
1, i j i t j t dt 0, i j
2010 Copyright
SCUT DT&P Labs

第2章 随机信号分析基础

第2章 随机信号分析基础
若机变n 量= 。n0 为固定值, ζ为变量,则x(ζ, n0)}为一个随 若ζ = ζ0为固定值, n为变量,则x(ζ0, n)}为一个样
本序列。 若ζ = ζ0 , n = n0 均为固定值,则x(ζ0, n0)}为一个
数。 若ζ和你n都是变量,则x(ζ, n)}是一个随机过程。
px (x1, x2, , xM ; n1 k, n2 k, , nM k)
8
第2章 随机信号分析基础
2.2.1 随机过程的基本统计量
宽平稳(WSS)随机过程
x (n) x
rx (n1, n2 ) rx (n1 n2 ) rx (k),
k n1 n2
互功率谱
k
Sxy () DTFT{rxy (k )}
复互功率谱
Sxy (z) Z{rxy (k)}
16
第2章 随机信号分析基础
2.4 随机信号通过线性系统
复功率谱
Sxy
(
z
)

H
*
(
1 z*
)
S
x
(
z)
Syx (z) H (z)Sx (z)
功率谱
S
y
(
z
)

H
N(z) D(z)


2 w
B(z) A( z )
B(1/ A(1/
z) z)
w2Q(z)Q(1/
z)
差分方程:
p
q
x(n) ak x(n k) bk w(n k)
k 1
k 0
20
第2章 随机信号分析基础
2.5 谱分解定理
例2.5.1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 信号分析基础
本章学习要求
完成本章内容的学习后应能作到: 1.了解信号分类方法 2.掌握信号波形分析方法 3.掌握信号相关分析方法 4.掌握信号频谱分析方法 5.了解其它信号分析方法
2.1 信号的分类与描述
为了深入了解信号的物理实质,将其进行分类研究是非常必 要的。以不同的角度来看待信号,我们可以将信号分为
信号的分类描述
周期信号是经过一定时间可以重复出现的信号,满足条件: x ( t ) = x ( t + nT )
式中,T——周期,T=2π/ω0;ω0——基频;n=0,±1, …。 例如,下面是一个50Hz正弦波信号10sin(2*3.14*50*t)的波形,信号
周期为:1/50=0.02秒:
50Hz正弦波信号波形
离散时间信号:离散时间信号在时间上是离散的.只是在某些不连 续的规定瞬时给出函数值,而在其他时间没有定义的信号。
离散时间信号
2.1.5 物理可实现信号
物理可实现信号又称为单边信号,满足条件:t<0时,x(t) = 0, 即在时刻小于零的一侧全为零,信号完全由时刻大于零的一侧确定。
在实际中出现的信号,大量的是物理可实现信号,因为这种信号反 映了物理上的因果律.实际中所能测得的信号,许多都是由一个激发脉 冲作用于一个物理系统之后所输出的信号.例如,切削过程,可以把机 床、刀具、工件构成的工艺系统作为一个物理系统,把工件上的硬质点 或切削刀具上积屑瘤的突变等,作为振源脉冲,仅仅在该脉冲作用于系 统之后,振动传感器才有描述刀具振动的输出。
2.1.2 能量信号与功率信号 a)能量信号
在所分析的区间(-∞,∞),能量为有限值的信号称为能量信号, 满足条件:
关于信号的能量,可作如下解释:对于电信号,通常是电压或电流, 电压在已知区间(t1;,t2 )内消耗在电阻上的能量
对于电流,能量
在上面每一种情况下,能量都是正比于信号平方的积分.讨论消耗 在IQ电阻上的能量往往是很方便的,因为当R—IQ时,上述两式具有相 同形式,采用这种规定时,就称方程
为任信号x(t)的“能量”。
b)功率信号
有许多信号,如周期信号、随机信号等,它们在区间(-∞,∞) 内能量不是有限值.在这种情况下,研究信号的平均功率更为合适.
在区间(t1,t2)内,信号的平均功率
若区间变为无穷大时,上式仍然大于零,那么信号具有有限的平均 功率,称之为功率信号.具体讲,功率信号满足条件:
对比上式,显而易见,一个能量信号具有零平均功率,而一个功率 信号具有无限大能量.
2.1.3.时限与频限信号
时域有限信号是在有限区间(t1,t2 )内定义,而其外恒等于 零.例如,矩形脉冲、三角脉冲、余弦脉冲等。而周期信号、指数衰 减信号、随机过程等,则称为时城无限信号 。
时域有限信号
频域有限信号是指信号经过傅里叶变换,在频域内占据一定带宽 (f1 ,f2),其外恒等于零.例如,正弦信号、sinc(t)函数、限带 白噪声等,为时城无限频域有限信号。白噪声、理想采样信号等,则 为频域无限信号.
b)非确定性信号 非确定性信号不能用数学关系式描述,其幅值、相位变化是不可
预知的,所描述的物理现象是一种随机过程。例如,汽车奔驰时所产 生的振动;飞机在大气流中的浮动;树叶随风飘荡;环境噪声等。
加工过程中螺纹车床主轴受环境影响的振动信号波形
然而,须要指出的是,实际物理过程往往是很复杂的,既无 理想的确定性,也无理想的非确定性,而是相互参杂的。
1. 确定性信号与非确定性信号 2. 能量信号与功率信号 3. 时限信号与频限信号 4. 连续时间信号与离散时间信号 5. 物理可实现信号
2.1.1 确定性信号与非确定性信号
a)确定性信号 可以用明确的数学关系式描述的信号称为确定性信号。它可以进
一步分为周期信号、非周期信号与准周期信号等,如下图所示。
2.2 信号的时域分析
信号时域分析又称之为波形分析或时域统计分析,它是通过信号 的时域波形计算信号的均值、均方值、方差等统计参数。信号的时域 分析很简单,用示波器、万用表等普通仪器就可以进行分析。
1.信号类型确定
信号时域分析(波形分析)的一个重要功能是根据信号的分类和各 类信号的特点 确定信号的类型。然后再根据信号类型选用合适的信 号分析方法。
物理可实现信号
所谓物理系统,具有这样一种性质,当激发脉冲作用于系统之前, 系统是不会有响应的,换句话说,在零时刻之前,没有输入脉冲,则输 出为零,这种性质反映了物理上的因果关系.因此,一个信号要通过一 个物理系统来实现,就必须满足x(t)= 0(t<O=,这就是把满足这一 条件的信号称之为物理可实现信号的原因.同理,对于离散信号而言, 满足x(n)= 0(n<0=条件的序列,即称为因果序列。
单自由度振动模型脉冲响应信号波形
准周期信号是周期与非周期的边缘情况,是由有限个周期信号合成 的,但各周期信号的频率相互间不是公倍关系,其合成信号不满足周期 条件,例如 是两个正弦信号的合成,其频率比不是有理数,不成谐波关 系。下面是其信号波形:
准周期信号sin(t)+sin(1.41t)波形
这种信号往往出现于通信、振动系统,应用于机械转子振动分析, 齿轮噪声分析,语音分析等场合。
频域有限信号
时间有限信号的频谱,在频率轴上可以延伸至无限远。由时、频域 对称性可推论,一个具有有限带宽的信号,必然在时间轴上延伸至无限 远处。显然,一个信号不能够在时域和频域都是有限的。
2.1.4.连续时间信号与离散时间信号
连续时间信号:在所讨论的时间间隔内,对于任意时间值(除若干个 第一类间断点外)都可给出确定的函数值,此类信号称为连续时间信号或 模拟信号。连续信号的幅值可以是连续的也可以是不连续的。
机械系统中,回转体不平衡引起的振动,往往也是一种周期性运动。 例如,下图是某钢厂减速机上测得的振动信号波形(测点3),可以近似的 看作为周期信号:
某钢厂减速机振动测点布置图
测点3振动信号波形
非周期信号是不会重复出现的信号。例如,锤子的敲击力;承载缆 绳断裂时应力变化;热电偶插入加热炉中温度的变化过程等,这些信号 都属于瞬变非周期信号,并且可用数学关系式描述。例如,下图是单自 由度振动模型在脉冲力作用下的响应。
相关文档
最新文档