毛细管电泳法-re(2),,
毛细管电泳法
Capillary Electrophoresis, CE
毛细管电泳是带电粒子在 电场力的驱动下,在毛细 管中按其淌度或和分配系 数不同进行高效、快速分 离的电泳新技术,也称为 高效毛细管电泳。
20世纪30-40年代 蒂塞利乌斯 (A.W.K.Tiselius) 建立了移动界面电泳,将电泳发 展成分离技术 获得1948年诺贝尔化学奖
实验中,只发生电泳时有效淌度
μef =υef ﹒ (L /V) =( l / tm )﹒(L /V)
毛细管有效长度
迁移时间 毛毛细管细电泳管法 总长度
电压
2 电泳和电渗
电渗
与固液界面的双电层有着密切的关系
在毛细管壁双电层的扩散层中的阳离子,相对于毛 细管壁的负电荷表面,形成一个圆筒形的阳离子鞘, 在电场作用下,溶剂化了的阳离子,沿滑动面与紧 密层作相对运动,携带着溶剂一起向阴极迁移,便 形成了电渗流(electroosmotic flow , EOF)。
1981年 J.W.Jorgenson,K.D.Lukacs实验上和理论 上为毛细管电泳的发展奠定了基础。 上一世纪后二十多年分析化学领域中发展最迅速的分离 分析方法。
主要内容
毛细管电泳的原理 分离模式 进样与检测 毛细管电泳的应用
一 毛细管电泳的原理
1 装置
电极 缓冲液
毛细管
数据处理
毛细管电泳法
2 电泳和电渗
µeo正比于Zeta电势和介质的 介电常数
改变电渗流的方法
反比于介质的黏度
Zeta电势正比于双电层厚度 和界面有效电荷密度
1. 改变外加径向电场
反比于介质的介电常数
2. 改变缓冲液成分和浓度
Zeta电势
3. 改变缓冲液pH 4. 加入添加剂
毛细管电泳法
在毛细管中施加电场,带电粒子在电场的作用下产生迁移,由于迁移速度与粒 子所带电荷、半径、质量等因素有关,因此不同粒子在电场中产生不同的迁移 速度,从而实现分离。
发展历程
01
02
03
1980年代初期
毛细管电泳法由 Jorgenson和Lukacs首次 提出并实验验证。
1980年代中期
该技术逐渐成熟,被广泛 应用于生物、医药、环境 等领域。
饮用水安全
毛细管电泳法能够检测饮用水中 的消毒副产物、有机污染物等, 保障饮用水安全。
在食品检测领域的应用
食品添加剂分析
毛细管电泳法能够分离和检测食品中 的添加剂,如色素、防腐剂等,有助 于食品安全监管。
营养成分分析
毛细管电泳法能够快速分析食品中的 营养成分,如氨基酸、维生素等,有 助于食品质量控制和营养评价。
核酸分析
毛细管电泳法能够分离和检测核酸片段,用于基 因诊断、基因表达研究和法医学鉴定。
3
临床检验
毛细管电泳法可用于检测体液中的小分子代谢物, 如氨基酸、糖类等,辅助临床诊断。
在环境监测领域的应用
污染物分析
毛细管电泳法能够分离和检测水 体、土壤中的有害物质,如重金 属、农药残留等,有助于环境监 测和污染治理。
在化学分析领域的应用
有机物分析
毛细管电泳法能够分离和检测有机化合物,如药物、染料等 ,在药物研发、化工生产等领域有广泛应用。
金属离子分析
毛细管电泳法能够高灵敏度地检测金属离子,如铅、汞、镉 等,可用于地质、冶金和环境等领域的研究。
谢谢
THANKS
加样
将处理好的样品加入毛 细管中,注意控制加样
量。
施加电压
启动电源,施加适当的 电压,使带电粒子在电
毛细管电泳法
此外,还有一类基于芯片的二维分离系统主要应用于蛋白质酶解物的分离分析。
除上述分离模式外,芯片自由流电泳也是芯片电泳分离蛋白质的重要方法。芯片自由流电泳是指在芯片中通 过外加电场使样品随缓冲液连续流动的同时沿电场方向进行电迁移,从而按照电泳淌度不同实现分离的电泳分离 模式。Raymond等采用芯片自由流电泳模式分离了人血清蛋白、缓激肽和核糖核酸酶A,其分离长度为3.1 cm,流 出时间为62 S。Kobayashi等采用自由流电泳的分离模式在一个体积为56.5 mm×35 mm×30 mm的微分离室 (60uL)中实现了持续的蛋白质分离,并用羟丙基甲基纤维素涂覆来抑制蛋白质吸附,在25 min内有效分离了细胞 色素C和肌红蛋白。最近,Kohl.heyer等H 3。制作了一种自由流等电聚焦分离蛋白质的玻璃芯片,成功地将人 血清白蛋白(pI=4.4)与等电聚焦标记物(pH 3和9)分离。
仪器要求
所用的仪器为毛细管电泳仪。正文中凡采用毛细管电泳法测定的品种,其所规定的测定参数,除分析模式、 检测方法(如紫外光吸收或荧光检测器的波长、电化学检测器的外加电位等)应按照该品种项下的规定外,其他参 数如毛细管内径、长度、缓冲液的pH值、浓度、改性剂添加量、运行电压或电流的大小、运行的时间长短、毛细 管的温度等,均可参考该品种项下规定的数据,根据所用仪器的条件和预试验的结果,进行必要的调整。
检测方法
毛细管电泳通常用到的检测方法有吸收光谱,荧光光谱,热镜,拉曼光谱,质谱和电化学方法。
毛细管电泳法
毛细管电泳法简介毛细管电泳法是一种常用于分离和检测化学物质的分析技术。
它基于样品在电场作用下在毛细管中的迁移速度的差异,利用电泳现象进行分离。
该方法具有分离效果好、分析速度快、样品消耗少等优点,被广泛应用于生物、环境、食品等领域的分析研究。
原理毛细管电泳法的基本原理是利用电场作用下带电粒子在毛细管中的迁移速度差异分离物质。
当样品通过直径较小的毛细管时,由于电场的作用,带电物质会在毛细管中产生电泳迁移。
迁移速度快的物质会较早到达检测器位置,而迁移速度慢的物质则会滞留在毛细管中,从而实现了物质的分离。
毛细管电泳法主要利用了物质在电场、毛细管中的迁移速度与其电荷、粒径、溶剂性质等因素之间的关系。
其中,电荷是最重要的因素之一。
毛细管电泳法可分为两种类型:正交电泳和非正交电泳。
正交电泳主要用于带电物质的分离,而非正交电泳则用于非带电物质的分离。
操作步骤1. 准备工作在进行毛细管电泳实验之前,需要准备好以下实验器材和试剂:•毛细管电泳仪•毛细管•电解质缓冲液•样品溶液2. 设置电泳条件根据实验需要,设置好合适的电场强度、电解液pH值和缓冲液浓度等参数。
这些参数的选择对于实验结果的准确性和分离效果的好坏至关重要。
3. 毛细管填充将毛细管浸入缓冲液中,通过电力作用使缓冲液进入毛细管,直至毛细管完全填充。
4. 样品进样通过微量注射器将样品溶液缓慢注入毛细管,注意避免气泡的产生。
5. 开始电泳将毛细管两端插入正、负电极中,开启电源,开始电泳过程。
6. 结果分析根据实验需要,可以选择不同的检测方法进行结果分析,如紫外检测、荧光检测等。
应用领域毛细管电泳法广泛应用于生物、环境、食品等领域的分析研究。
具体的应用包括:1.蛋白质分析:毛细管电泳法可用于蛋白质的分离和定量分析,对于药物研发、生物学研究等具有重要意义。
2.DNA分析:毛细管电泳法可以用于DNA序列分析、基因突变检测、DNA测序等领域,对于遗传学研究、法医学等具有重要意义。
毛细管电泳法
毛细管电泳法概述毛细管电泳法是一种分离和测定化合物的方法,主要通过在毛细管中施加电场,利用化合物在电场作用下的电荷性质和分子大小来实现分离。
毛细管电泳法具有快速、高效、高分辨率、高灵敏度和易于自动化等特点,广泛应用于生命科学、化学分析和药物研发等领域。
原理毛细管电泳法的原理基于化合物在溶液中的电荷性质和分子大小。
在毛细管中施加电场后,带正电荷的化合物(称为阳离子)会向负极移动,带负电荷的化合物(称为阴离子)会向正极移动。
此外,较小的分子会比较大的分子更快地移动。
毛细管电泳法通常涉及两种类型:区域电泳和溶剂前移电泳。
区域电泳区域电泳是毛细管电泳法中常用的方法。
在区域电泳中,毛细管中的电场强度不均匀,其中一个区域的电场强度较弱,另一个区域的电场强度较强。
样品被注入到电场强度较弱的区域,然后通过施加电场使样品向较强的电场区域移动。
不同化合物的迁移速度取决于它们的电荷和分子大小,因此可以实现化合物的分离。
溶剂前移电泳溶剂前移电泳是另一种常用的毛细管电泳法。
在溶剂前移电泳中,毛细管中的电场强度是均匀的。
样品被注入到毛细管中,然后施加电场使样品移动。
不同化合物的迁移速度取决于它们在溶剂中的溶解度和电荷性质,因此可以实现化合物的分离。
仪器和操作步骤进行毛细管电泳法需要一些特定的仪器和材料,如毛细管电泳仪、毛细管、高电压电源、样品注射器、电解质缓冲液等。
下面是一般的操作步骤:1.准备工作:检查仪器是否正常工作,准备所需的电解质缓冲液和样品。
2.毛细管准备:将毛细管切割为适当长度,并连接到毛细管电泳仪。
3.缓冲液填充:将电解质缓冲液注入毛细管的两端,确保整个毛细管都充满缓冲液。
4.样品注射:使用样品注射器将待分离的样品缓慢而均匀地注入到毛细管中。
注射点距离电极一定距离。
5.施加电场:从高电压电源上施加适当的电场,在实验过程中保持稳定电场。
6.记录结果:观察样品的迁移情况,根据需要调整电场强度和时间,记录分离结果。
色谱分析法第九章 毛细管电泳法简介-精品文档
5)CGE中使用改性剂
9.5.4毛细管等电聚焦(CIEF) 1)毛细管等电聚焦原理
毛细管等电聚焦属于毛细管电泳中的一种聚焦技术类型,其溶
质通常是蛋白质,分离基于蛋白质等电点(PI)的差异。毛细管内充 满两性电解质和蛋白质溶液,加上一个电场,在毛细管中产生一个
pH梯度。各种蛋白质因为它们的等电点不同,而在毛细管内聚焦为
图9.6 溶质通过毛细管的顺序
图9.7阳离子、中性分子、阴离子 的电泳谱图
8页
退出
色谱分析法
出版社 社文分社
1)电渗流的作用 2)电渗流的产生
图9.8 电渗流的产生
9页
退出
色谱分析法
出版社 社文分社
图9.9 不同驱动力的流型和相应的谱带峰形 3)电渗流的速度和迁移率 (1)电场强度
(2)缓冲液的pH值
子的尺寸和离子所带电荷的大小和符号。
2页
退出
色谱分析法
出版社 社文分社
图9.1 毛细管电泳示意图 9.1.2区带电泳 9.1.3引起区带扩散的因素 9.1.4管的直径对对流扩散的影响
9.1.5介质中的电泳
9.1.6毛细管电泳
3页
退出
色谱分析法
出版社 社文分社
9.2毛细管电泳体系 9.2.1概述 从概念上来讲,毛细管电泳体系比较简单。如图9.2所示,其 主要组成有样品池、入口池、出口池、毛细管、检测器、高压电 源、数字结果处理设备,如一台分析仪或一台计算机。
许多狭小的区带。毛细管内的溶液在动力作用下通过检测器而产生 电泳图。
15 页
退出
色谱分析法
出版社 社文分社
2)毛细管内形成pH梯度 3)等电聚焦
图9.13 CIEF分离机理示意图
毛细管电泳
上一世纪后二十年分析化学领域中发展最迅速的分离分析方法
4
高效毛细管电泳(High-Performance CE)
高效毛细管电泳在技术上采取了两项重要改进: 高效毛细管电泳在技术上采取了两项重要改进: 一是采用了细内径的毛细管( 一是采用了细内径的毛细管( 2-75 µm ); 二是采用了高达数千伏至数万伏的电压
毛细管电泳
Capillary Electrophoresis, CE
1
1937年,Tiselius(瑞典)将蛋白 质混合液放在两段缓冲溶液之间, 两端施以电压进行自由溶液电泳, 第一次将人血清提取的蛋白质混合 液分离出白蛋白和α、β、γ球蛋 白; 发现样品的迁移速度和方向由 其电荷和淌度决定; 其电荷和淌度决定; 第一次的自由溶液电泳; 第一次的自由溶液电泳;第一 的自由溶液电泳 电泳仪; 台电泳仪; 1948年,获诺贝尔化学奖; 年 获诺贝尔化学奖;
14
5 HPCE中电渗流的流型 HPCE中电渗流的流型
电荷均匀分布,整体移动,电渗流的流动为平流,塞式 流动(谱带展宽很小); 液相色谱中的溶液流动为层流,抛物线流型,管壁处流 速为零,管中心处的速度为平均速度的2倍(引起谱带展宽 较大)。
15
6 HPCE中电渗流的作用 HPCE中电渗流的作用
电渗流的速度约等于一般离子电泳速度的5~7倍; 电渗流的速度约等于一般离子电泳速度的5 各种电性离子在毛细管柱中的迁移速度为: 各种电性离子在毛细管柱中的迁移速度为:
10
(3)电泳淌度 电泳淌度(Electric Field Mobility,简称µep ) 电泳淌度 带电粒子在毛细管中,作定向运动的电泳速度与所在电场强度之比。电泳淌 度的单位用cm2/V.sec表示。 Ld/tm µep = Vep /E = ─── V/Lt Vep:电泳速度 E:电场强度 Ld: 毛细管入口端至检测器长度 (4) ξ电势(Zeta Potential) 电势(Zeta 参与形成双电层被毛细管表面吸附的一层离子与溶液中的游离阳离子之间会 产生一个电势,称为毛细管壁Zeta电势。毛细管壁为高电位区,中心点为低 电位区,毛细管的半径越大电位差越大,形成的ξ电势越大。
毛细管电泳法的使用方法
毛细管电泳法的使用方法毛细管电泳法是一种分离和分析化学物质的常用方法,它基于物质在电场中的运动速度差异而实现分离。
适用于各种复杂样品的分析,包括生物样品、环境样品和食品样品等。
本文将介绍毛细管电泳法的使用方法。
一、实验准备1. 仪器准备:毛细管电泳仪和电泳装置是进行毛细管电泳分析的关键设备。
确保仪器完好无损,并根据仪器的使用说明进行正确操作和维护。
2. 毛细管准备:选择适当的毛细管,一般为无机硅玻璃或石英毛细管。
根据分析需求,选择不同内径和长度的毛细管。
3. 缓冲溶液准备:根据分析的目标物质的性质,选择合适的缓冲溶液。
常用的缓冲溶液包括磷酸盐缓冲液、乙酸缓冲液等。
根据需要,可以添加其他辅助剂来改善分离效果。
二、样品制备1. 样品处理:根据分析目标,选择合适的处理方法。
常见的样品处理方法包括离心、过滤、稀释、萃取等。
2. 样品溶解:将处理后的样品溶解于适当的溶剂中,并进行必要的稀释。
保证样品的浓度范围适合毛细管电泳的检测方法。
3. 样品准备:将样品注入样品瓶中,并保持封闭状态,以防止污染和样品损失。
三、实验操作1. 建立分析方法:根据样品性质和目标物质的不同,确定最适合的毛细管电泳分析方法。
包括电泳条件的选择、运行缓冲溶液的优化以及检测参数的设置等。
2. 毛细管填充:在进行毛细管电泳之前,需要将毛细管填充成电泳缓冲液中的一种或多种成分。
常用的填充方法包括静态填充法、动态填充法和电泳填充法。
3. 毛细管电泳条件的设定:根据样品的性质和分析目标的要求,设定合适的毛细管电泳条件,包括电压、电流、温度、电泳缓冲液的浓度和pH值等。
4. 样品注入和分析:将样品通过母液喷射装置或静态注射装置注入到填充好的毛细管中,然后开启电源,进行电泳分析。
5. 检测和数据分析:通过检测器对分离后的化合物进行检测,并记录峰的峰高和峰面积等参数。
利用这些数据进行数据分析和结果解释。
四、实验注意事项1. 仪器操作:严格按照仪器的使用说明进行操作,保证实验安全和设备的长期稳定性。
毛细管电泳法
毛细管电泳法分离水杨酸、苯甲酸及阿司匹林中的含量测定毛细管电泳法分离水杨酸、苯甲酸及阿司匹林中的含量测定毛细管电泳又称高效毛细管电泳( High Performance Capillary Electrophoresis, HPCE) 是一种仪器分析方法。
通过施加10-40kV 的高电压于充有缓冲液的极细毛细管,对液体中离子或荷电粒子进行高效、快速的分离。
现在,HPCE 已广泛应用于氨基酸、蛋白质、多肽、低聚核苷酸、DNA 等生物分子分离分析,药物分析,临床分析,无机离子分析,有机分子分析,糖和低聚糖分析及高聚物和粒子的分离分析。
人类基因组工程中DNA 的分离是用毛细管电泳仪进行的。
毛细管电泳较高效液相色谱有较多的优点。
其中之一是仪器结构 简单(见图1)。
它包括一个高电压源,一根毛细管,紫外检测器及计算机处理数据装置。
另有两个供毛细管两端插入而又可和电源相连的缓冲液池。
high-v oltagepower supply BufferV ialBuffer V ial Detector Recording dev icecapillaryElectrode Electrode图1 CE 仪器组成示意图毛细管中的带电粒子在电场的作用下,一方面发生定向移动的电泳迁移,另一方面,由于电泳过程伴随电渗现象,粒子的运动速度还明显受到溶液电渗流速度的影响。
粒子的实际流速 V 是电泳流速度 Vep 和渗流速度 Veo 的矢量和。
即:V = Vep + Veo (1)电渗流是一种液体相对于带电的管壁移动的现象。
溶液的这一运动是由硅/水表面的Zeta 势引起的。
CE 通常采用的石英毛细管柱表面一般情况下(pH>3)带负电。
当它和溶液接触时,双电层中产生了过剩的阳离子。
高电压下这些水合阳离子向阴极迁移形成一个扁平的塞子流,如图2。
毛细管管壁的带电状态可以进行修饰,管壁吸附阴离子表面活性剂增加电渗流, 管壁吸附阳离子表面活性剂减少电渗流甚至改变电渗流的方向。
毛细管电泳法
第一节
(一)原理
毛细管电泳法
毛细管电泳(CE)亦称为高效毛细管电泳法(HPCE),是20 世纪80年代发展起来的一类高效快速的分离分析方法。该法系以弹性
毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分的
淌度(单位电场强度下的迁移 速度)和分配行为的差异而实
现分离,因此可将其视为经典
电泳技术和现代微柱分离相结 合的产物。
每次进样之前毛细管要用不同的溶液冲洗,选用自动冲洗进样仪器较为
方便。进样方法有压力进样、负压进样、虹吸进样和电动进样等。进样
时通过控制压力、电压或时间来控制进样量。
5.检测器
紫外检测器,荧光检测器,电化学检测器,质谱仪等均可作为CE 的检测器。其中紫外检测器应用最广,它是将毛细管接近出口端的外 层聚合物剥去约2mm一段,使石英管壁裸露,毛细管两侧各放置一 个石英聚光球,使光源聚焦在毛细管上,透过毛细管到达光电池对溶 质进行检测。
2.胶束电动毛细管色谱(MEKC或MECC)
该法系以胶束为假固定相的一种电动色谱。 当操作缓冲液加入大于其临界胶束浓度的离子型表面活性剂如十 二烷基硫酸钠(SDS)或十六烷基三甲基溴化胺(CTAB)、胆酸等, 这时表面活性剂就聚集形成胶束(假固定相),其亲水端朝外,
憎水非极性核朝内,溶质则在水和胶束两相间分配,各溶质因分
其中以色谱为主,但对荷电溶质兼有电泳作用。 该法克服了CE选择性差和分离中性物质困难的缺点,同 时提高了液相色谱的分离效率,形成其独特的高效、微量、 快捷的特点,开辟了高效微柱分离技术的新途径。
二、仪器设备
(一)毛细管电泳仪的基本结构(见下图)
1.电极槽和进样系统 2.清洗系统 3.毛细管 4.检测器 5.铂电极 6.电极槽 7.恒温系统 8.记录和数据处理
毛细管电泳法-re(2),,
水提取醇沉淀法提取 三七中的活性物质
三七的提取—水提取醇沉淀法
三七超细粉
加水
溶液
醇沉淀 70%-80%乙醇 乙醇
过滤
小分子水溶性 成分
旋转蒸发仪
所需三七提取液
除去乙醇
冷冻干燥
三七提取物ຫໍສະໝຸດ 本次实验筛选方法— 毛细管电泳法
• 高效毛细管电泳亦即毛细管电泳(CE),是一 种发展迅猛的新型的分离分析技术,与常用的高 效液相色谱法相比,具有分析时间短,分离效率 高,适应性广,检测限低,进样量小,溶剂消耗 少,自动化程度高等优点,广泛应用于蛋白质、 氨基酸、无机离子、有机化合物、药物的分离分 析
项目名称
—特异性相互作用毛细管电泳法筛 选三七中抗血小板聚集活性成分
申请人: 申请人:罗曼 刘晶 刘柯利 班级: 级制药工程 级制药工程01班 班级:08级制药工程 班 指导教师:杨丰庆 指导教师 杨丰庆 实验室: 实验室:学院分配教师个人实验室
立项意义
• 传统的中药活性成分筛选模式主要是以动物为模型的药理 学方法。这种方法虽然能够筛选得到一些活性成分,但有 学方法 实验成本高、工作量大、周期长、目标不明确、活性成分 易丢失等缺点。 • 鉴于传统筛选方法耗时低效的弊端,人们开始探索新的快 速简便的筛选模式。由受体学说 受体学说得到启示,基于配受体相 受体学说 互作用的药物筛选模式受到了人们的关注。受体学说的核 心是,机体存在着接受某一特定药物的特定部位,药物具 有高度选择地作用于靶细胞某一特定部位的亲和内在活性, 只有既有亲和力,又有内在活性的药物,作用于适应这一 药物的特定部位并是结合,才能被激活产生强大生理效应, 这一科学论述,透彻地阐明了药物的作用机理 透彻地阐明了药物的作用机理。 透彻地阐明了药物的作用机理 • 本课题拟在毛细管电泳 毛细管电泳中实现复杂中药体系的特异性亲和 毛细管电泳 在线、 筛选研究,以期建立一种在线、简单、高效的活性成分筛 在线 简单、 选方法,为中药活性成分筛选提供新途径。 选方法
色谱分析法第九章 毛细管电泳法简介26页PPT
出版社 社文分社
图9.13 CIEF分离机理示意图 4)聚焦区带的活动化 5)CIEF的应用 9.5.5毛细管等速电泳(CITP) 1)CITP的原理
CITP是一种置换色谱的电泳配对物。
16 页 退出
色谱分析法
出版社 社文分社
图9.14 CITP分离机理示意图 2)等速电泳图的外观
图9.15 等速电泳谱图
一恒定电场、恒定电流或恒定功率,并且有电场反向功能的模块。
9.2.7数据处理
9.3 毛细管电泳与其他分离技术的比较
高效液相色谱(HPLC)和气相色谱(GC)与毛细管电泳相似,在于
这三种方法中数据表示、数据处理和自动化基本相同。Jorgenson
曾经将毛细管电泳描述为“电泳的高效分离机理与色谱的设备和自
EOF)。在正常模式中,电渗流的方向是由正极向着负极,缓冲液从
入口池通过毛细管和检测器到达出口池。
图9.6 溶质通过毛细管的顺序
图9.7阳离子、中性分子、阴离子 的电泳谱图
8 页 退出
色谱分析法
1)电渗流的作用 2)电渗流的产生
出版社 社文分社
图9.8 电渗流的产生
9 页 退出
色谱分析法
出版社 社文分社
色谱分析法
出版社 社文分社
第九章 毛细管电泳法简介
1 页 退出
色谱分析法
出版社 社文分社
9.1.1简介 电泳(Electrophoresis)是指带电粒子或分子在电场的作用下
在导电液体通常是水介质中的运动。毛细管电泳(Capillary Electrophoresis,CE)是在毛细管中实现电泳分离的技术。如图 9.1所示,充满了电解质或缓冲液的水性介质的玻璃管的两端与装 有相同缓冲液的容器连接在一起,并在这两个容器中插入连有高压 电源的两个铂电极。假设有一个样品含有分子大小不同的中性分子 和带电离子,而且带电的离子带有不同的电荷。将样品放置在玻璃 管的正极端,在整个体系中加上电场,则样品中的离子就趋向于以 不同的速度沿不同的方向在管内迁移。迁移的速度和方向取决于离 子的尺寸和离子所带电荷的大小和符号。
毛细管电泳法
数据处理 检测器 电极 缓冲液
进样方法
1、电动进样 也称电迁移进样.
方法:将毛细管的进样端插入装有试样溶液的 试样管中,试样管中插入电极,与检测端 的缓冲液间施加进样电压,并维持一定时 间,试样溶液在电泳和电渗流作用下进入 毛细管,然后再将试样溶液换成载体缓冲 液,电泳即可进行。
电渗流的意义
电泳过程中,伴随着电渗现象 2. 电渗流的速度比电泳速度快5-7倍 3. 利用电渗流可将正、负离子或中性分子一起向 同一方向,产生差速迁移,在一次电泳操作中 同时完成正、负离子的分离分析 电渗流是毛细管电泳分离的重要参数 控制电渗流的大小和方向,可提高毛细管电泳分 离的效率、重现性、分离度。
毛细管凝胶电泳综合了电泳技术和平板 凝胶电泳的优点 : 1. 电泳峰尖锐,柱效极高 2. 短柱上实现极好的分离 3. 试样容量为10-12g 主要缺点:制备柱较困难,寿命较短 已成为分离分析生物大分子如蛋白质、 多肽、核 酸、DNA等强有力的工具。 例应用CGE分离与激光诱导荧光检测相 结合,用于DNA序列快速分析。
电泳溶液硼砂30 mmol.L-1 (pH 9.43),检测波长295 nm,34 kPa.s压力进样,17 kV恒压电泳,电泳时间10 min,电泳温度 20℃,进样分析溶液中均含硼砂3.0 mmol.L-1 (pH=9.43)。 为消除进样等因素所引起的误差,采用内标定量法。实验 发现p-NBA出峰时间在LIG与FA之间,在优化条件下样品中杂 质对其无干扰,峰形好,用它作内标可明显改善分析精密度, 故选定p-NBA为内标,在进样分析溶液中浓度为60 μg.mL-1。
若某一区带的离子进入前一区带, 由于 电场强度变小而减速,由若进入到下区 带,由于电场强度变大而加速, 都退回 到原区带, 结果导致各区带形成鲜明的 界面.