2_ansys结构动力学分析

合集下载

ansys 静力学 显式动力学

ansys 静力学 显式动力学

ANSYS静力学显式动力学1. 引言ANSYS是一款多功能的工程仿真软件,广泛应用于不同行业的产品设计、分析和优化中。

其中,静力学和显式动力学是ANSYS的两个重要模块,本文将对这两个模块进行全面、详细、完整且深入的探讨。

2. 静力学2.1 概述静力学是研究物体在静止状态下受力平衡的学科。

通过静力学分析,可以确定物体的受力情况、结构的稳定性以及构件的强度等信息。

2.2 ANSYS中的静力学分析ANSYS中的静力学分析模块可以通过建立几何模型、定义材料和边界条件来进行分析。

在分析过程中,可以考虑不同的加载情况,如静力加载和重力加载。

2.3 静力学分析的步骤静力学分析通常包括以下步骤: 1. 建立或导入模型:使用ANSYS的建模工具创建几何模型或导入现有模型。

2. 定义材料和属性:为模型定义材料特性和材料属性。

3. 定义边界条件:为模型的边界定义约束和加载条件。

4. 网格划分:将模型划分为离散的网格单元。

5. 求解分析:通过求解静力学方程,得到模型的受力状态。

6. 后处理:分析结果的可视化和数据输出。

3. 显式动力学3.1 概述显式动力学是一种研究物体在动力加载作用下的运动和响应的学科。

与静力学不同,显式动力学考虑了时间因素,可以模拟和预测物体在瞬态加载情况下的动态响应。

3.2 ANSYS中的显式动力学分析ANSYS中的显式动力学分析模块可以模拟各种动力加载条件下的物体运动和响应。

该模块可以用于模拟撞击、爆炸、碰撞、结构破坏等情况,并可以为工程师提供重要的设计参考信息。

3.3 显式动力学分析的步骤显式动力学分析通常包括以下步骤: 1. 建立或导入模型:与静力学分析相同,需要建立或导入模型。

2. 定义材料和属性:为模型定义材料特性和材料属性,以便模拟加载情况下的材料响应。

3. 定义边界条件:为模型的边界定义约束和加载条件,包括初始速度和力。

4. 网格划分:将模型划分为离散的网格单元。

5. 求解分析:通过求解显式动力学方程,得到模型在不同时间步长下的运动和响应。

ansys动力学分析全套讲解

ansys动力学分析全套讲解

第一章模态分析§1.1模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。

ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。

前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。

ANSYS产品家族中的模态分析是一个线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。

阻尼法和QR阻尼法允许在结构中存在阻尼。

后面将详细介绍模态提取方法。

§1.2模态分析中用到的命令模态分析使用所有其它分析类型相同的命令来建模和进行分析。

同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。

后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。

而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。

(要想了解如何使用命令和GUI选项建模,请参阅<<ANSYS建模与网格指南>>)。

<<ANSYS命令参考手册>>中有更详细的按字母顺序列出的ANSYS命令说明。

§1.3模态提取方法典型的无阻尼模态分析求解的基本方程是经典的特征值问题:其中:=刚度矩阵,=第阶模态的振型向量(特征向量),=第阶模态的固有频率(是特征值),=质量矩阵。

ANSYS结构静力学与动力学分析教程

ANSYS结构静力学与动力学分析教程

ANSYS结构静力学与动力学分析教程第一章:ANSYS结构静力学分析基础ANSYS是一种常用的工程仿真软件,可以进行结构静力学分析,帮助工程师分析和优化设计。

本章将介绍ANSYS的基本概念、步骤和常用命令。

1.1 ANSYS的基本概念ANSYS是一款基于有限元方法的仿真软件,可以用于解决各种工程问题。

其核心思想是将结构分割成有限数量的离散单元,并通过求解线性或非线性方程组来评估结构的行为。

1.2 结构静力学分析的步骤进行结构静力学分析一般包括以下步骤:1)几何建模:创建结构的几何模型,包括构件的位置、大小和形状等信息。

2)网格划分:将结构离散为有限元网格,常见的有线性和非线性单元。

3)边界条件:定义结构的边界条件,如固定支座、力、力矩等。

4)材料属性:定义结构的材料属性,如弹性模量、泊松比等。

5)加载条件:施加外部加载条件,如力、压力、温度等。

6)求解方程:根据模型的边界条件和加载条件,通过求解线性或非线性方程组得到结构的响应。

7)结果分析:分析模拟结果,如应力、应变、变形等。

1.3 ANSYS常用命令ANSYS提供了丰富的命令,用于设置分析模型和求解方程。

以下是一些常用命令的示例:1)/PREP7:进入前处理模块,用于设置模型的几何、边界条件和材料属性等。

2)/SOLU:进入求解模块,用于设置加载条件和求解方程组。

3)/POST1:进入后处理模块,用于分析和可视化模拟结果。

4)ET:定义单元类型,如BEAM、SOLID等。

5)REAL:定义单元材料属性,如弹性模量、泊松比等。

6)D命令:定义位移边界条件。

7)F命令:定义力或压力加载条件。

第二章:ANSYS结构动力学分析基础ANSYS还可以进行结构动力学分析,用于评估结构在动态载荷下的响应和振动特性。

本章将介绍ANSYS的动力学分析理论和实践应用。

2.1 结构动力学分析的理论基础结构动力学分析是研究结构在动态载荷下的响应和振动特性的学科。

它基于质量、刚度和阻尼三个基本量,通过求解动态方程来描述结构的振动行为。

(完整版)ansys动力学瞬态分析详解

(完整版)ansys动力学瞬态分析详解
关于TIMINT和IC命令的说明参见<<ANSYS命令参考手册>>。
非零速度是通过对结构中需指定速度的部分加上小时间间隔上的小位移来实现的。比如如果 =0.25,可以通过在时间间隔0.004内加上0.001的位移来实现,命令流如下:
...
TIMINT,OFF! Time integration effects off
注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。
完全法的优点是:
·容易使用,不必关心选择主自由度或振型。
·允许各种类型的非线性特性。
·采用完整矩阵,不涉及质量矩阵近似。
·在一次分析就能得到所有的位移和应力。
·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。
·唯一允许的非线性是简单的点—点接触(间隙条件)。
§3.4 完全法瞬态动力学分析
首先,讲述完全法瞬态动力学分析过程,然后分别介绍模态叠加法和缩减法与完全法不相同的计算步骤。完全法瞬态动力分析(在ANSYS/Multiphsics、ANSYS/Mechauioal及ANSYS/Structural中可用)由以下步骤组成:
D,ALL,UY,.001! Small UY displ. (assuming Y-direction velocity)
TIME,.004! Initial velocity = 0.001/0.004 = 0.25
LSWRITE! Write load data to load step file (Jobname.S01)
对于完全法瞬态动力学分析,注意下面两点:

ANSYS常见问题解答2

ANSYS常见问题解答2
标题:熟悉结构分析的朋友看过来!
内容:
有朋友问:弹性地基梁中的弹簧(2维)在ANSYS中应采用那一个单元?又如何操作?
【xmpan2000】于2001年6月30日11:32发表在:ansys论坛
标题:我用过弹簧单元
内容:
很久以前我用过弹簧单元,好象是COMBIN(2D),你试试看,有问题在联系,OK?
一、软件功能简介
软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。目前版本为ANSYS5.7版,其微机版本要求的操作系统为Windows 95/98或Windows NT,也可运行于UNIX系统下。微机版的基本硬件要求为:显示分辨率为1024×768,显示内存为2M以上,硬盘大于350M,推荐使用17英寸显示器。
二、前处理模块PREP7
双击实用菜单中的“Preprocessor”,进入ANSYS的前处理模块。这个模块主要有两部分内容:实体建模和网格划分。
●实体建模
ANSYS程序提供了两种实体建模方法:自顶向下与自底向上。

ANSYS结构动力学分析

ANSYS结构动力学分析

ANSYS结构动力学分析ANSYS(Analysis System)是一款广泛应用于工程领域的有限元分析软件。

它可以用于解决多种工程问题,包括结构动力学分析。

结构动力学分析是研究结构物在外部载荷作用下的响应和行为的过程。

通过使用ANSYS进行结构动力学分析,可以更好地理解结构物的振动特性、响应状况和其对外部激励的耐受能力。

ANSYS结构动力学分析的基本原理是有限元分析。

有限元分析是一种将结构物划分为多个小单元,然后通过数学模型对这些单元进行计算的方法。

在结构动力学分析中,需要考虑结构物的材料特性、物理特性以及外部载荷的作用。

ANSYS提供了丰富的材料模型和边界条件设置,可以满足不同结构物的分析需求。

1.建立模型:首先需要根据实际结构物的几何形状和尺寸,在ANSYS中建立结构物的有限元模型。

可以通过几何建模工具进行模型构建,也可以导入CAD软件中的模型。

2.材料定义:根据结构物的实际材料特性,在ANSYS中定义材料属性。

可以选择已有材料库中的材料,也可以自定义材料特性。

3.网格划分:将结构物分割为小单元,即有限元网格。

网格划分的质量和密度对分析结果影响很大,需要根据结构物的特点进行合理划分。

4.条件加载:设置结构物的边界条件和加载条件。

边界条件包括约束条件和加载条件。

约束条件固定结构物的一些边界或节点,而加载条件是施加在结构物上的外部载荷。

5.求解器设置:选择适当的求解器来求解结构动力学问题。

ANSYS提供了多种求解器,包括静态求解器和动态求解器。

6.分析和评估:运行结构动力学分析,获得结构物在外部载荷下的响应结果。

可以通过动力响应、位移、应力、变形等指标来评估结构物的性能。

7.结果后处理:根据分析结果进行后处理,生成相应的报告和图形。

可以通过ANSYS提供的后处理工具进行结果可视化和数据分析。

ANSYS结构动力学分析在工程领域有着广泛的应用。

例如,可以用于评估建筑物、桥梁、风力发电机组等结构物的自然频率、模态形态和振动特性,从而进行设计优化和结构安全性评估。

ANSYS动力学分析指南——模态分析

ANSYS动力学分析指南——模态分析

ANSYS动力学分析指南——模态分析ANSYS动力学分析是一种用于评估和优化机械结构、系统或装置的动态性能的分析方法。

其中模态分析是其中一种常见的分析类型,通过模态分析可以获取结构的固有频率、振型和模态质量等信息,从而更准确地评估结构的动态响应。

下面是一个ANSYS动力学模态分析的步骤指南:1.导入几何模型:首先,需要将几何模型导入到ANSYS中。

可以使用ANSYS自带的几何建模工具创建模型,也可以从CAD软件中导入现有模型。

在导入几何模型时,需要确保模型的几何尺寸和几何形状正确无误。

2.建立材料属性:为了进行动力学分析,在模型中必须定义材料的属性。

这包括材料的密度、弹性模量、泊松比等。

如果需要考虑材料的各向异性,还需要定义合适的各向异性参数。

3.设置边界条件:为了模拟真实工程环境下的载荷作用,需要为模型设置适当的边界条件。

这包括固支约束、加载条件和约束条件等。

在模型中的各个节点上,需要确保边界条件的正确性和合理性。

4.选择求解器类型:ANSYS提供了多种求解器类型,可以根据实际需求选择合适的求解器。

在动力学模态分析中,通常使用的是频域求解器或模型超级定法(Modal Superposition Method)求解器。

5.网格划分:在进行动力学模态分析之前,需要对模型进行网格划分。

网格划分的目的是将连续的结构离散为有限的单元,从而对模型进行数值求解。

在网格划分时,需要根据模型的复杂程度和准确性要求进行适当的划分。

6.设置求解参数:在进行动力学模态分析之前,需要设置一些求解参数。

这包括求解器的收敛准则、求解的频率范围和预期的模态数量等。

这些参数的设置可以影响到求解结果的准确性和计算效率。

7.进行模态分析:设置好求解参数后,可以进行动力学模态分析。

在分析过程中,ANSYS会通过计算结构的固有频率和振型来评估结构的动态响应。

如果需要获取更多的信息,可以通过后处理功能查看模态质量、模态阻尼和模态形状等结果。

基于ANSYS的机械结构动力学仿真分析

基于ANSYS的机械结构动力学仿真分析

基于ANSYS的机械结构动力学仿真分析随着科技的发展和计算机技术的进步,基于数值仿真的工程分析已经成为工程师们不可或缺的工具。

机械结构动力学仿真分析是其中的重要一环,它可以帮助我们在设计过程中预测和优化结构的动态响应。

本文将介绍基于ANSYS的机械结构动力学仿真分析的基本原理和应用,并探讨其在实际工程中的意义和局限性。

1. 简介机械结构动力学仿真分析是通过计算机模拟机械结构在不同工况下的动态行为。

它基于有限元方法和数值分析理论,将结构划分为许多小的有限元单元,通过求解其力学方程和模态方程,得到结构在不同载荷下的位移、应力和模态等关键参数。

2. 有限元建模在进行机械结构的动力学仿真分析前,首先需要进行有限元建模。

有限元建模是将实际结构的几何形状、材料特性和边界条件转化为有限元模型的过程。

我们可以使用ANSYS的建模工具,如Preprocessing模块,快速而准确地构建出机械结构的有限元模型。

3. 动力学分析在有限元建模完成后,我们可以通过ANSYS的求解器对机械结构的动力学行为进行分析。

动力学分析主要包括静态分析、模态分析和频率响应分析。

静态分析用于计算结构在受到静态载荷作用下的变形和应力分布。

模态分析则可以得到结构的固有频率和模态形态,帮助我们了解结构的共振情况。

频率响应分析可以用于预测结构在不同频率下的响应,其结果可以用于设计抗震、降噪等结构。

4. 结果分析与优化在动力学分析完成后,我们可以通过ANSYS的后处理工具,如Postprocessing模块,对分析结果进行可视化和分析。

我们可以得到结构的位移、应力、应变、模态等信息,并进行进一步的研究和分析。

我们还可以通过参数优化技术,在设计阶段对结构进行优化,以满足特定的性能需求。

5. 案例分析下面以一个简单的案例来介绍基于ANSYS的机械结构动力学仿真分析的应用。

假设我们要设计一种工业机器人的机械臂,我们需要对其进行动力学分析,以确保其在工作时具有良好的稳定性和运动性能。

Ansys Workbench动力学分析 ppt课件

Ansys Workbench动力学分析  ppt课件

4.1: 动力学绪论
第一节 动力学分析目的及定义 为什么要对结构进行动力学分析?
土木建筑、地质工程领域
1940年11月7日倒塌—风载
1940年7月1日通车 美国塔科曼悬索大桥
交通运输、航空航天领域
机械、机电领域
什么是结构动力学?
定义:研究结构在动力荷载作用下的动力反应。
目的:动力荷载作用下结构的内力和变形;
m1x1 (k1 k2 )x1 k2 x2 0 m2x2 k2 x1 (k2 k3 )x2 0
方程组用矩阵表达为:
m1

0
0 m2

xx12

k1 k2

k2
k
k 2
2
k3

x1 x2

结构体系
输入
input
质量、刚度 阻尼、约束 频率、振型
动力响应
输出 Output
位移 内力 数值
应力
动位移 加速度 速度 动应力 动力系数
时间函数
第二节 结构动力学研究的内容
第一类问题:反应分析(结构动力计算)
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
输入 (动力荷载)
上述方程可求得两个根 01 、02
对于 01 可求得

A11 A21

,
对于 02
可求得

A12 A22

3.多自由度无阻尼线性系统
系统运动方程: M x K x 0 x Rn
动荷载: 大小、方向或作用点随时间变化很快的荷载。
快慢标准: 是否会使结构产生显著的加速度。

ANSYS常用功能

ANSYS常用功能

ANSYS常用功能总结1 ANSYS软件的功能简介ANSYS是一个大型通用的商业有限元软件,具有功能完备的前后处理器,强大的图形处理能力,奇特的多平台解决方案,平台支持NT、LINUX、UNIX和异种异构网络浮动,各种硬件平台数据库兼容,功能一致,界面统一。

1.1 前处理功能ANSYS具有强大的实体建模技术。

与现在流行的大多数CAD软件类似。

通过自顶向下或自底向上两种方式,以及布尔运算、坐标变换、曲线构造、蒙皮技术、拖拉、旋转、拷贝、镜射、倒角等多种手段,可以建立真实地反映工程结构的复杂几何模型。

ANSYS提供两种基本网格划分技术:智能网格和映射网格,分别适合于ANSYS 初学者和高级使用者。

智能网格、自适应、局部细分、层网格、网格随移、金字塔单元(六面体与四面体单元的过渡单元)等多种网格划分工具,帮助用户完成精确的有限元模型。

另外,ANSYS还提供了与CAD软件专用的数据接口,能实现与CAD软件的无缝几何模型传递。

这些CAD软件有Pro/E、UG、CATIA、lDEAS,Solidwork、Solid edge、lnventor、MDT等。

ANSYS还可以读取SAT、STEP、ParaSolid、lGES 格式的图形标准文件。

此外,ANSYS还具有近200种单元类型,这些丰富的单元特性能使用户方便而准确地构建出反映实际结构的仿真计算模型。

1.2 强大的求解器ANSYS提供了对各种物理场的分析,是目前唯一能融结构、热、电磁、流场、声学等为一体的有限元软件。

除了常规的线性、非线性结构静力、动力分析之外,还可以解决高度非线性结构的动力分析、结构非线性及非线性屈曲分析。

提供的多种求解器分别适用于不同的问题及不同的硬件配置。

1.3 后处理功能ANSYS的后处理用来观察ANSYS的分析结果。

ANSYS的后处理分为通用后处理模块和时间后处理模块两部分。

后处理结果可能包括位移温度应力应变速度以及热流等,输出形式可以是图形显示和数据列表两种。

ANSYS workbench 多体动力学分析功能说明

ANSYS workbench 多体动力学分析功能说明
ANSYS Workbench 刚柔混合--多体 动力学分析
刚体动力学分析模块(ANSYS Rigid Dynamics)
ANSYS Rigid Dynamics是ANSYS 产品的一个附加模块,它集成于ANSYS Workbench环境下(继承了 Workbench与各种CAD软件之间的良好接口能力,如双向参数链接和互动等),在ANSYS 所具有的柔性 体动力学(瞬态动力学)分析功能的基础上,基于全新的模型处理方法和求解算法(显式积分技术),专 用于模拟由运动副和弹簧连接起来的刚性组件的动力学响应。其功能简述如下:
自动探测运动副 利用自动探测运动副功能来建立零件之间的连接关系。 根据自动探测的结果,可以快速修改运动副的连接关系。 完整的运动副类型和弹簧
利用完整的运动副类型(固定、转动、柱面滑动和转动、平动、滑槽、万向连接、球铰、平 面运动、自定义等) 和弹簧来建立零件之间的连接,提供精确的定位方法保证零件间的定位。 提供体对体(BTB)和体对地(BTG)等连接方法。 与Flexible Dynamics直接耦合 可以和ANSYS 模块的Flexible Dynamics功能在Workbench中实现无缝集成,一次求解同时 得到结构运动结果和强度/变形结果等,并支持柔性体的各种非线性特性(如接触、大变形、 材料非线性等)。 用户可自由定义零件为刚体或柔体,设置相关求解属性,直接计算刚体的位移、速度、加速 度和反作用力以及柔体的变形和应力。真正意义上实现了刚柔动力学分析的直接耦合。 Rigid Dynamics独特的前后处理 Windows操作风格 目录树管理模型数据库 支持两个零件连接面(运动关系)的清晰显示 快速高质量的动画显示效果 支持多窗口画面分割显示 自动生成计算报告
© 2008 PERA Global

ANSYS结构动力学分析解析

ANSYS结构动力学分析解析

ANSYS结构动力学分析解析结构动力学分析是研究结构在受到外力作用下的振动和响应情况。

在ANSYS中,结构动力学分析可以用于预测结构在振动或冲击载荷下的响应情况,进一步了解结构的强度和稳定性。

在这种分析中,结构通常被建模为弹性体,可以考虑材料的非线性性能和几何形状的复杂性。

要进行结构动力学分析,首先需要建立结构的有限元模型。

在ANSYS 中,可以使用多种方法进行建模,包括直接建模、利用CAD软件导入几何模型、导入现有的有限元模型等。

建模的关键是准确描述结构的几何形状、材料属性、约束条件等。

在建立了结构的有限元模型之后,就可以定义载荷和边界条件。

在结构动力学分析中,载荷通常包括外力和初始条件。

外力可以是静力或动力加载,可以通过施加比例和非比例的负载,来模拟不同的工况。

初始条件包括结构的初始位移、速度和加速度等。

通过定义这些载荷和边界条件,可以模拟出结构在不同工况下的运动和响应。

完成载荷和边界条件的定义后,就可以进行结构动力学分析了。

在ANSYS中,可以选择多种求解方法,包括模态分析、频率响应分析和时程分析等。

模态分析是结构动力学分析的基础,可以得到结构的固有频率、振型和模态质量等信息。

频率响应分析是针对特定的激励频率进行的分析,可以得到结构的频率响应函数和响应谱等信息。

时程分析是根据实际的载荷时间历程进行的分析,可以得到结构在时间上的响应情况。

在进行结构动力学分析时,需要对结果进行后处理和分析。

ANSYS提供了丰富的后处理工具,可以对结构的位移、应力、应变、振动模态等进行可视化和统计分析。

可以通过这些分析结果,进一步评估结构的强度、稳定性和可靠性等。

总之,ANSYS提供了强大的结构动力学分析解析方案,可用于预测结构在振动和冲击载荷下的响应情况。

通过建立有限元模型、定义载荷和边界条件、进行求解和后处理,可以对结构的运动和响应进行深入分析和评估。

这些分析结果对于设计优化、故障诊断和结构安全评估等方面具有重要意义。

ANSYS动力学分析

ANSYS动力学分析

结构动力分析研究结构在动荷载作用的响应(如位移、应力、加速度等的时间历程),以确定结构的承载能力和动力特性等。

ANSYS动力分析方法有以下几种,现分别做简要介绍.1.模态分析用模态分析可以确定设计中的结构或机器部件的振动特性(固有频率和振型).它也可以作为其他更详细的动力学分析的起点,例如瞬态动力学分析、谐响应分析、谱分析。

用模态分析可以确定一个结构的固有频率和振型。

固有频率和振型是承受动态荷载结构设计中的重要参数.如果要进行谱分析或模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。

ANSYS的模态分析是一线性分析,任何非线性特性(如塑性和接触单元)即使定义了也将忽略。

可进行有预应力模态分析、大变形静力分析后有预应力模态分析、循环对称结构的模态分析、有预应力的循环对称结构的模态分析、无阻尼和有阻尼结构的模态分析。

模态分析中模态的提取方法有七种,即分块兰索斯法、子空间迭代法、缩减法或凝聚法、PowerDynamics 法、非对称法、阻尼法、QR阻尼法,缺省时采用分块兰索斯法。

2。

谐响应分析任何持续的周期荷载将在结构中产生持续的周期响应(谐响应)。

谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳及其他受迫振动引起的有害效果。

谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的荷载时的稳态响应的一种技术。

分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。

从这些曲线上可以找到“峰值”响应,并进一步观察频率对应的应力。

这种分析技术只计算结构的稳态受迫振动.发生在激励开始时的瞬态振动不在谐响应分析中考虑。

谐响应分析是一种线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使被定义了也将被忽略,但在分析中可以包含非对称系统矩阵,如分析流体-结构相互作用问题。

谐响应分析同样也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。

ANSYS动力分析

ANSYS动力分析

ANSYS动力分析动力分析是指利用ANSYS软件进行物体的动力学分析。

动力学分析是一种通过分析物体所受的力以及物体内部的应力和位移等参数,来研究物体在运动过程中的行为的方法。

在进行动力学分析之前,需要先对物体进行建模和网格划分。

在ANSYS软件中,可以使用不同的建模工具来绘制模型,如实体建模工具、面片建模工具等,然后使用网格划分工具将模型划分为有限元网格。

有限元网格是动力学分析的基础,通过在网格单元上建立方程组,并对其进行离散化,可以得到物体在动力学分析过程中对应的位移、速度和加速度等信息。

在进行动力学分析时,需要先定义物体所受的外力。

外力可以分为静力和动力两种。

静力是指不随时间变化的力,如重力、约束力等。

动力是指随时间变化的力,如冲击力、振荡力等。

外力可以通过加载和施加相应的约束来定义。

在动力学分析过程中,可以通过求解物体上的运动方程来获得物体的位移、速度和加速度等信息。

根据牛顿第二定律,可以得到物体的运动方程:F=m*a,其中F为物体所受的力,m为物体的质量,a为物体的加速度。

通过求解运动方程,可以得到物体在动力学分析过程中的运动情况。

动力学分析可以用于多种应用场景,如汽车碰撞分析、风力发电机械分析、飞机结构分析等。

在汽车碰撞分析中,可以通过动力学分析来模拟汽车在碰撞过程中的行为,如车辆的变形情况、车辆上乘员的受力情况等。

在风力发电机械分析中,可以通过动力学分析来模拟风力发电机械在风力作用下的运动情况,如叶轮的转速、齿轮的受力情况等。

在飞机结构分析中,可以通过动力学分析来模拟飞机在起飞、着陆等过程中的变形和受力情况,从而评估飞机结构的稳定性和安全性。

动力学分析在工程设计和科学研究中有着广泛的应用。

通过动力学分析,可以预测物体在运动过程中的变形和破坏情况,从而指导工程设计和制造过程。

此外,动力学分析还可以用来验证理论模型和进行参数敏感性分析,从而改进和优化设计方案。

总之,ANSYS动力学分析是一种通过分析物体所受的力以及物体内部的应力和位移等参数,来研究物体在运动过程中的行为的方法。

ANSYS转子动力学分析

ANSYS转子动力学分析

ANSYS转子动力学分析ANSYS转子动力学分析是一种通过ANSYS软件进行转子系统的动力学仿真分析方法。

转子动力学分析是用于研究和评估机械设备中转子系统动力学性能的一种方法。

它可以帮助工程师了解转子系统的受力、振动、疲劳寿命等关键参数,并优化设计以提高系统的稳定性和可靠性。

在进行ANSYS转子动力学分析时,首先需要建立转子系统的几何模型。

这可以通过CAD软件绘制转子的三维模型,然后将模型导入到ANSYS中进行后续分析。

在建立几何模型时,需要考虑转子的形状、尺寸、支撑结构等因素,并确定转子系统的边界条件。

建立几何模型后,需要定义转子的材料性质。

转子的材料性质对其受力和振动特性有着重要影响。

常见的转子材料包括金属、复合材料等。

在ANSYS中,可以通过指定材料的弹性模量、泊松比、密度等参数来定义转子的材料性质。

在进行ANSYS转子动力学分析时,需要考虑转子的受力和激振源。

转子受力包括离心力、惯性力、外部载荷等,可以通过动力学方程来描述。

而激振源可以是旋转不平衡、激励力等,可以通过在特定位置施加外部载荷来模拟。

转子动力学分析的关键步骤是求解转子系统的运动方程。

在ANSYS中,可以通过有限元方法来离散化转子系统,将其分解为有限数量的节点和单元,然后使用动力学方程对节点进行求解。

需要注意的是,转子系统通常是一个大型非线性动力学系统,需要进行迭代求解才能获得准确的结果。

在求解转子系统的运动方程后,可以通过后处理分析来获取有关转子动力学性能的参数。

常见的参数包括转子的振动幅值、振动速度、应力、疲劳寿命等。

这些参数可以用于评估转子系统的稳定性和可靠性,帮助工程师优化设计并提高系统的性能。

总之,ANSYS转子动力学分析是一种通过ANSYS软件进行转子系统的动力学仿真分析方法。

通过建立几何模型、定义材料性质、求解运动方程和后处理分析,可以评估转子系统的动力学性能,并优化设计以提高系统的稳定性和可靠性。

基于ANSYSWorkbench对凸轮结构动力学分析

基于ANSYSWorkbench对凸轮结构动力学分析

的过程中将
图1凸轮机构三维示意图
凸轮内部的网格划分的较为粗略一点,而在
接触表面的网格划分的需要密集一些,这样研究方向为机器人领域。

动结构。

具体设置如图2、3所示。

图2杆的刚性设置
图3凸轮的柔性设置
此外,为了更好的探索到在固定转矩下的凸轮机
构的杆末端所输出的力的变化规律,在原来的模型中
又加入了弹簧,弹簧的一端连接杆的末端,另一端则
. All Rights Reserved.
与大地相连。

这样就可以在传动过程中,通过观察弹
簧的伸长量变化来获得杆末端的输出力的大小。

2结果分析。

图4凸轮应力分布图
图5凸轮传动过程曲线图(下转第68页)
图6杆末端力变化曲线图
3结论
本文首先通过对凸轮结构进行有限元模型的建立,对其在有限元软件中的边界条件进行了合理的设。

ANSYS Workbench有限元分析实例详解(动力学)

ANSYS Workbench有限元分析实例详解(动力学)
03
5.6瞬态分 析之复合材 料
04
5.7转子动 力学之瞬态 分析
06
5.9总结
05
5.Байду номын сангаас声场之 瞬态分析
5.3.1准静态法之移动载荷瞬态分析 5.3.2瞬态法之移动载荷分析
5.4.1全刚性体(柔性体)零件全Joint连接的多体动力学 5.4.2刚柔性体零件全Joint连接的多体动力学 5.4.3刚柔性体零件Joint和Contact连接的多体动力学
5.5.1跌落冲击分析 5.5.2三辊弯曲成型分析 5.5.3接触磨损分析
作者介绍
这是《ANSYS Workbench有限元分析实例详解(动力学)》的读书笔记模板,暂无该书作者的介绍。
精彩摘录
这是《ANSYS Workbench有限元分析实例详解(动力学)》的读书笔记模板,可以替换为自己的精彩内容摘 录。
1.1动力学基本解 析
1.3低版本程序打 开高版本文件的过

2.1模态分析之计算 原理
2.2普通模态及自由 模态分析
2.3线性摄动模态分 析
2.4模态分析之拓扑 优化
1
2.5含阻尼的 模态分析
2
2.6模态之子 结构分析
3
2.7转子动力 学之模态分析
4
2.8声场模态 分析
5
2.9总结
2.2.1模态分析之固有频率研究 2.2.2模态分析之振型研究 2.2.3模态分析之线性叠加
2.3.1线性摄动模态分析之应力刚化和旋转软化 2.3.2非线性模态分析
2.4.1模态分析之拓扑优化基本实例 2.4.2齿轮减重拓扑优化设计基本实例
2.5.1复模态分析基本实例 2.5.2非对称复模态分析基本实例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档