开关电源EMC产生机理及其对策

合集下载

大功率开关电源的EMC测试分析及正确选择EMI滤波器

大功率开关电源的EMC测试分析及正确选择EMI滤波器

大功率开关电源的EMC测试分析及正确选择EMI滤波器开关电源具有体积小、重量轻、效率高等优点,广泛应用于各个领域。

由于开关电源固有的特点,自身产生的各种噪声却形成一个很强的电磁干扰源。

所产生的干扰随着输出功率的增大而明显地增强,使整个电网的谐波污染状况愈加严重。

对电子设备的正常运行构成了潜在的威胁,因此解决开关电源的电磁干扰是减小电网污染的必要手段,本文对一台15kW开关电源的EMC测试,分析其测试结果,并介绍如何合理地正确选择EMI滤波器,以达到理想的抑制效果。

1 开关电源产生电磁干扰的机理图1为所测的15kW开关电源的传导骚扰值,由图中可以看出在0、15~15MHz大范围超差。

这是因为开关电源所产生的干扰噪声所为。

开关电源所产生的干扰噪声分为差模噪声和共模噪声。

图1未加任何抑制措施所测得的传导骚扰1.1共模噪声共模噪声是由共模电流,IcM所产生,其特征是以相同幅度、相同相位往返于任一电源线(L、N)与地线之间的噪声电流所产生。

图2为典型的开关电源共模噪声发射路径的电原理图。

图2 共模噪声电原理图由于开关电源的频率较高,在开关变压器原、副边及开关管外壳及其散热器(如接地)之间存在分布电容。

当开关管由导通切换到关断状态时,开关变压器分布电容(漏感等)存储的能量会与开关管集电极与地之问的分布电容进行能量交换,产生衰减振荡,导致开关管集电极与发射极之间的电压迅速上升。

这个按开关频率工作的脉冲束电流经集电极与地之问的分布电容返回任一电源线,而产牛共模噪声。

1.2差模噪声差模噪声是由差模电流IDM昕产生,其特征是往返于相线和零线之间且相位相反的噪声电流所产生。

1.2.1差模输入传导噪声图3为典型的开关电源差模输入传导噪声的电原理图。

其一是当开关电源的开关管由关断切换到导通时,回路电容C 通过开关管放电形成浪涌电流,它在回路阻抗上产生的电压就是差模噪声。

图3差模输入传导噪声电原理图其二是工频差模脉动噪声,它是由整流滤波电容c 在整流电压上升与下降期问的充放电过程中而产生的脉动电流与放电电流,也含有大量谐波成分构成差模噪声。

开关电源前端EMC概述

开关电源前端EMC概述

05
开关电源前端EMC案例分析
案例一:某企业开关电源前端EMC整改
总结词:成功案例
详细描述:某企业由于开关电源前端EMC问题导致产品在电磁环境下性能不稳定 ,经过EMC整改,包括优化电路设计、添加滤波器、加强屏蔽等措施,产品性能 得到显著提升,顺利通过了相关电磁兼容性测试。
案例二:某品牌手机充电器EMC设计
测试设备与环境
测试设备
包括电磁干扰测试接收机、信号ห้องสมุดไป่ตู้生 器、功率分析仪、阻抗稳定网络等。
测试环境
需要满足电磁兼容性测试的场地,包 括开阔场地、屏蔽室等,以确保测试 结果的准确性和可靠性。
测试方法与流程
测试方法
包括传导发射测试、辐射发射测试、抗扰度测试等,每种测试方法都有相应的测试标准 和规范。
测试流程
制。
以上内容仅供参考,如需获取更 准确的信息,建议查阅相关的国 际、国内标准以及企业内部的
EMC标准和规范。
03
开关电源前端EMC设计技术
滤波技术
滤波器类型
滤波器性能测试
包括无源滤波器和有源滤波器,用于 抑制开关电源产生的谐波电流,减小 对电网的干扰。
需要使用专业的测试设备和方法,对 滤波器的性能进行测试和评估,确保 其满足EMC标准要求。
组成
开关电源前端EMC主要由输入滤波器、共模电感和电容组成,用于抑制电磁干扰 ,提高设备的电磁兼容性。
发展趋势与挑战
发展趋势
随着技术的不断进步和应用需求的不断提高,开关电源前端 EMC技术也在不断发展。未来,开关电源前端EMC将朝着更 高效、更环保、更智能的方向发展。
挑战
尽管开关电源前端EMC技术取得了一定的进展,但仍面临诸 多挑战。如何提高电磁兼容性的同时降低能耗和成本,以及 如何应对复杂多变的电磁环境等,都是亟待解决的问题。

论开关电源EMC产生机理及设计

论开关电源EMC产生机理及设计

论开关电源EMC产生机理及设计将分析开关电源电磁干扰的各种产生机理,并在其基础之上,主要从滤波、屏蔽、PCB的设计、接地等方面提出开关电源EMC的设计原则及注意事项,提出开关电源的电磁兼容设计方法。

标签:开关电源;电磁兼容(EMC)EMC(Electromagnetic Compatibility)是电磁兼容,它包括EMI(电磁骚扰)和EMS(电磁抗骚扰)。

1 开关电源的电磁干扰分析开关电源首先将工频交流整流为直流,再逆变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此自身含有大量的谐波干扰。

同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都形成了潜在的电磁干扰。

1.1 开关电路产生的电磁干扰开关电路是开关电源的主要干扰源之一。

开关电路是开关电源的核心,主要由开关管和高频变压器组成。

它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。

电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变,这种瞬变是一种传导型电磁干扰,既影响变压器初级,还会使传导干扰返回配电系统,造成电网谐波电磁干扰,从而影响其他设备的安全和经济运行。

1.2 整流电路产生的电磁干扰整流电路中,在输出整流二极管截止时有一个反向电流,它恢复到零点的时间与结电容等因素有关。

高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化。

1.3 高频变压器高频变压器的初级线圈、开关管和滤波电容构成的高频开关电流环路可能会产生较大的空间辐射,形成辐射干扰。

如果电容滤波容量不足或高频特性不好,电容上的高频阻抗会使高频电流以差模方式传导到交流电源中形成传导干扰。

1.4 分布电容引起的干扰开关电源工作在高频状态,因而其分布电容不可忽略。

一方面,散热片与开关管集电极间的绝缘片接触面积较大,且绝缘片较薄,因此两者间的分布电容在高频时不能忽略。

开关电源EMC产生机理及设计分析罗晓兰

开关电源EMC产生机理及设计分析罗晓兰

开关电源EMC产生机理及设计分析罗晓兰发布时间:2023-06-18T07:53:25.268Z 来源:《科技新时代》2023年6期作者:罗晓兰[导读] 随着科学技术不断进步,当前很多电子产品都需要通过开关电源来达成供电目的,通过以此起到节约能源、提高运行效率的目的,因此本文基于开关电源,对开关电源EMC产生机理及设计进行分析,以供参考。

广州广日电气设备有限公司摘要:随着科学技术不断进步,当前很多电子产品都需要通过开关电源来达成供电目的,通过以此起到节约能源、提高运行效率的目的,因此本文基于开关电源,对开关电源EMC产生机理及设计进行分析,以供参考。

关键词:开关电源;EMC;产生机理;设计引言:随着电子设备的研发,被广泛应用于生产生活中,而开关电源作为其中一项重要组成,对电子设备运行具有直接性作用,随着电源开发朝向小型、高频方向快速发展,其内部电磁环境也呈现出复杂性特征,对电子设备正常使用产生一定影响,这就需要加大对开关电源EMC产生机理及设计的重视。

1 开关电源EMC问题分析1.1开关电路在开关电源中,开关电路作为其核心,由开关管、高频变压器组合而成,其在运行中所产生的du/dt脉冲幅度较大、频带宽、谐波丰富,如果电源电压中断,就会形成与初级线圈接通状态下的瞬变磁化冲击电流,这就是传导型电磁干扰,不仅仅会对变压器初级产生影响,还会导致传导干扰返回至配电系统,形成电网谐波电磁干扰,对设备安全运行有一定影响。

1.2整流电路从整流电路的角度来讲,输出整流二极管介质会有反向电流,其恢复至零点时间与结电容等有直接性关联,因高频整流回路整流二极管处于正向导通,有大正向电流通过,因受反偏电压转向介质,PN结载流处于不断积累状态,但在载流子消失前流动处于反向流动状态,因此导致载流子消失反向恢复,电流大幅减少引发一定电流变化。

1.3高频变压器对于高频变压器,主要是由初级线圈、滤波电容、开关管共同组建而成的电流环路,其具有空间辐射大特征,由此产生一定的辐射干扰,若高频特性差、电容滤波容量不足,就会导致电容高频阻抗,通过差模向交流电源进行传导,由此产生传导干扰。

电力电子系统的EMC问题与解决方案

电力电子系统的EMC问题与解决方案

电力电子系统的EMC问题与解决方案电力电子系统的电磁兼容(Electromagnetic Compatibility,简称EMC)问题是指在电磁环境下,电力电子系统正常工作所需的电磁环境条件,以及电力电子系统对外界电磁环境的产生的电磁干扰的抵抗能力。

在电力电子系统的设计和应用过程中,EMC问题是一个不可避免的挑战。

本文将介绍电力电子系统的EMC问题,并探讨一些解决方案。

一、电力电子系统的EMC问题电力电子系统在运行过程中会产生电磁波,这些电磁波会辐射到周围环境中,对其他设备和系统产生干扰。

同时,电力电子系统也会受到来自外部电磁波的干扰,影响其正常工作。

这些问题都属于电力电子系统的EMC问题。

1. 电磁辐射问题电力电子系统在工作时会产生高频电磁波,如开关电源、变频器和整流器等,这些高频电磁波会通过导线、辐射、波导等途径传播到周围环境中,对其他设备和系统造成干扰。

特别是在无线通信系统和医疗设备等对电磁波敏感的环境中,电磁辐射问题尤为重要。

2. 电磁感受问题电力电子系统对外界电磁波的感受性也是一个重要问题。

当电力电子系统暴露在高强度电磁场的环境中时,会受到来自电磁波的干扰,从而影响其正常工作。

例如,在雷电或强磁场环境下,电力电子系统可能会出现故障或损坏。

二、解决电力电子系统的EMC问题的方案为了解决电力电子系统的EMC问题,需要采取一系列的技术手段和措施。

以下是一些常见的解决方案:1. 地线设计地线是电力电子系统中的重要部分,它能够消除电磁干扰并提高系统的EMC性能。

在地线设计中,需要合理布置和连接地线,建立良好的接地系统,使系统的电磁能量得到合理的分配和消耗,从而减少电磁辐射和提高抗干扰能力。

2. 滤波器设计在电力电子系统中安装滤波器可以有效地减少电磁辐射和抑制电磁干扰。

滤波器能够在电源和负载之间形成一个衰减效应,阻止高频电磁波的传播,从而减少对其他设备的干扰。

3. 接地设计良好的接地设计能够有效地降低电磁辐射和提高系统的抗干扰能力。

开关电源EMC产生机理及其对策共18页

开关电源EMC产生机理及其对策共18页
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

开关电源EMC需要掌握的几个概念

开关电源EMC需要掌握的几个概念

开关电源EMC需要掌握的几个概念第一篇:开关电源EMC需要掌握的几个概念开关电源EMC需要掌握的几个概念1.电磁干扰的产生与传输电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。

传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。

辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。

常见的辐射耦合有三种:1)一个天线发射的电磁波被另一个天线意外地接收,称为天线对天线的耦合;2)空间电磁场经导线感应而耦合,称为场对线的耦合。

3)两根平等导线之间的高频信号相互感应而形成的耦合,称为线对线的感应耦合。

2.电磁干扰的产生机理从被干扰的敏感设备角度来说,干扰耦合又可分为传导耦合和辐射耦合两类。

● 传导耦合模型传导耦合按其原理可分为电阻性耦合、电容性耦合和电感性耦合三种基本耦合方式。

● 辐射耦合模型辐射耦合是干扰耦合的另一种方式,除了从干扰源发出的有意辐射外,还有大量的无意辐射。

同时,PCB板上的走线无论是电源线、信号线、时钟线、数据线或者控制线等,都能起到天线的效果,即可辐射出干扰波,又可起到接收作用。

3.电磁干扰控制技术①传输通道抑制● 滤波:在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。

滤波器的安装正确与否对其插入损耗特性影响很大,只有安装位置恰当,安装方法正确,才能对干扰起到预期的滤波作用。

在安装滤波器时应考虑安装位置,输入输出侧的配线必须屏蔽隔离,以及高频接地和搭接方法。

● 屏蔽:电磁屏蔽按原理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。

电场屏蔽包含静电屏蔽和交变电场屏蔽;磁场屏蔽包含低频磁场屏蔽和高频磁场屏蔽。

不同类型的电磁屏蔽对屏蔽体的要求不同。

在实际的屏蔽中,电磁屏蔽效能更大程度上依赖于屏蔽体的结构,即导电的连续性。

实际的屏蔽体由于制造、装配、维修、散热、观察及接口连接要求,其上面一般都开有形状各异、尺寸不同的孔缝,这些孔缝对于屏蔽体的屏蔽效能起着重要的影响作用,因此必须采取措施来抑制孔缝的电磁泄漏。

电源设计中的EMC问题与解决方法

电源设计中的EMC问题与解决方法

电源设计中的EMC问题与解决方法在电源设计过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)问题是一个需要被高度关注的重要方面。

EMC问题的存在可能导致电子设备之间的相互干扰,从而影响系统的正常工作。

因此,深入了解电源设计中的EMC问题并寻求解决方法,对于保证产品稳定性和可靠性具有重要意义。

首先,我们来了解一些常见的EMC问题。

电源设计中的EMC问题主要包括以下几个方面:1. 电源线干扰:电源线作为电源输入和输出的连接途径,可能成为传导干扰的通道。

当电源线上的高频噪声传导到其他部分时,会引起其他电子设备的干扰,影响其正常使用。

2. EMI辐射:电源设备在工作过程中会产生电磁辐射,如果辐射幅度过高,可能会对周围的其他设备和信号线路产生干扰,使其无法正常工作。

3. 地线干扰:地线是电路中的参考电位点,负责回流电流。

但如果地线的阻抗较大或者回流电流过大,可能会导致地线产生较大的共模干扰,进而影响整个系统的正常工作。

接下来,我们将介绍一些解决电源设计中EMC问题的方法:1. 合理的布局设计:在电源设计过程中,应注意合理的布局设计。

通过将不同电路板的布局位置安排合理,减小信号之间的干扰。

将高频和低频电路分开布局,采用屏蔽罩等措施对敏感电路进行隔离,以减少电磁辐射和传导干扰。

2. 使用滤波器:在电源设计中,适当选择并使用滤波器可以有效减小电源线上的高频噪声。

滤波器能够过滤掉不需要的高频干扰信号,提高电源线的电磁兼容性。

3. 优化接地设计:合理的地线设计对于解决地线干扰问题至关重要。

通过降低地线的阻抗并增加回流电流的路径,减小共模干扰的产生。

同时,合理选择接地点,如使用星型接地方式,可以减少单点接地带来的电磁干扰。

4. 选择合适的电源元件:在电源设计中,选择合适的电源元件也能够有效降低EMC问题。

例如,采用能够提供更好电源抗干扰能力的开关电源,选择低电磁辐射的磁性元件等。

开关电源EMC产生机理及其对策

开关电源EMC产生机理及其对策

湖南老乡电源群 --- 技术交流,知识与资源共享 技术交流,
X电容的作用:抑制差模杂讯,电容量越大,抑制低频杂讯效果越好。 电容的作用: 电容的作用 Y电容的作用:抑制共模杂讯,电容量越大,抑制低频杂讯效果越好。 电容的作用: 电容的作用 Y电容使次级到初级地线提供一个低阻抗回路,使流向地再通过 LISN回来的电流直接短路掉,由于Y电容非完全理想,次级各部 分间也存在阻抗,所以不可能全部回来。还是有一部分流到地。Y 电容必须直接用尽量短的直线连接到初级和次级的冷地, 如果开通 时MOS的dv/dt大于关断时的dv/dt, 则Y电容连接到初级的地; 反之 连接到V+。 共模电感的作用: 共模电感的作用:抑制共模杂讯,电感量越大,抑制低频杂讯效果 越好。增加共模电流部分的阻抗,减小共模电流。 差模电感的作用: 差模电感的作用:抑制差模杂讯,电感量越大,抑制低频杂讯效果 越好。
湖南老乡电源群 --- 技术交流,知识与资源共享 技术交流,
开关电源EMI的特点及对策--传导部分 开关电源EMI的特点及对策--传导部分 EMI的特点及对策-1MHZ 以内以差模干扰为主 1、150KHZ-1MHz,以差模为主,1-5MHz,差模和共模共同起作用,5MHz 以后基本上是共 模。差模干扰的分容性藕合和感性藕合。一般1MHZ以上的干扰是共模,低频段是差摸 干扰。用一个电阻串个电容后再并到Y电容的引脚上,用示波器测电阻两引脚的电压 可以估测共模干扰; 2、保险过后加差模电感或电阻; 3、小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。 4、前端的π型EMI零件中差模电感只负责低频EMI,体积別选太大(DR8太大,能用电阻型 式或DR6更好)否則幅射不好过,必要时可串磁珠,因为高频会直接飞到前端不会跟着 线走。 5、传导冷机时在0.15-1MHZ超标,热机时就有7DB余量。主要原因是初级BULK电容DF值过 大造成的,冷机时ESR比较大,热机时ESR比较小,开关电流在ESR上形成开关电压, 它会压在一个电流LN线间流动,这就是差模干扰。解决办法是用ESR低的电解电容或 者在两个电解电容之间加一个差模电感。 6、测试150KHZ总超标的解决方案:加大X电容看一下能不能下来,如果下来了说明是差模 干扰。如果没有太大作用那么是共模干扰,或者把电源线在一个大磁环上绕几圈, 下 来了说明是共模干扰。如果干扰曲线后面很好,就减小Y电容,看一下布板是否有问 题,或者就在前面加磁环。 7、可以加大PFC输入部分的单绕组电感的电感量。 8、PWM线路中的元件将主频调到60KHZ左右。

开关电源的EMC设计

开关电源的EMC设计

开关电源的EMC设计
因体积小、功率因数较大等优点,在通信、控制、计算机等领域应用广泛。

但因为会产生电磁干扰,其进一步的应用受到一定程度上的限制。

本文将分析开关电源电磁干扰的各种产生机理,并在其基础之上,提出开关电源的电磁兼容设计办法。

开关电源的电磁干扰分析
开关电源的结构1所示。

首先将工频沟通整流为直流,再逆变为高频,最后再经整流滤波输出,得到稳定的直流。

电路设计及布局不合理、机械振动、接地不良等都会形成内部电磁干扰。

同时,的漏感和输出的反向复原造成的尖峰,也是潜在的强干扰源。

图1 AC/DC开关电源基本框图
1 内部干扰源●开关电路
开关电路主要由开关管和高频变压器组成。

开关管及其散热片与外壳和电源内部的引线间存在分布,它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰盛。

开关管负载为高频变压器初级线圈,是感性负载。

当本来导通的开关管关断时,高频变压器的漏感产生了反电势E =-Ldi/dt,其值与集电极的电流变幻率成正比,与漏感成正比,迭加在关断电压上,形成关断电压尖峰,从而形成传导干扰。

●整流电路的整流二极管
输出整流二极管截止时有一个反向电流,其复原到零点的时光与结电容等因素有关。

它会在变压器漏感和其他分布参数的影响下产生很大的电流变幻di/dt,产生较强的高频干扰,频率可达几十兆赫兹。

●杂散参数
因为工作在较高频率,开关电源中的低频元器件特性会发生变幻,由此产生噪声。

在高频时,杂散参数对耦合通道的特性影响很大,而分
第1页共4页。

开关电源EMC的三个规律及三个要素

开关电源EMC的三个规律及三个要素

开关电源EMC的三个规律及三个要素深圳市森树强电子科技有限公司1、EMC三个重要规律1.1、环路电流频率f越高,引起的EMI辐射越严重,电磁辐射场强随电流频率f的平方成正比增大。

减少辐射骚扰或提高射频辐射抗干扰能力的最重要途径之二,就是想方设法减小骚扰源高频电流频率f,即减小骚扰电磁波的频率f。

1.2、EMC费效比关系规律: EMC问题越早考虑、越早解决,费用越小、效果越好。

在新产品研发阶段就进行EMC设计,比等到产品EMC测试不合格才进行改进,费用可以大大节省,效率可以大大提高;反之,效率就会大大降低,费用就会大大增加。

经验告诉我们,在功能设计的同时进行EMC设计,到样板、样机完成则通过EMC测试,是最省时间和最有经济效益的。

相反,产品研发阶段不考虑EMC,投产以后发现EMC不合格才进行改进,非但技术上带来很大难度、而且返工必然带来费用和时间的大大浪费,甚至由于涉及到结构设计、PCB设计的缺陷,无法实施改进措施,导致产品不能上市。

1.3、高频电流环路面积S越大, EMI辐射越严重。

高频信号电流流经电感最小路径。

当频率较高时,一般走线电抗大于电阻,连线对高频信号就是电感,串联电感引起辐射。

电磁辐射大多是EUT被测设备上的高频电流环路产生的,最恶劣的情况就是开路之天线形式。

对应处理方法就是减少、减短连线,减小高频电流回路面积,尽量消除任何非正常工作需要的天线,如不连续的布线或有天线效应之元器件过长的插脚。

减少辐射骚扰或提高射频辐射抗干扰能力的最重要任务之一,就是想方设法减小高频电流环路面积S。

2、EMC问题三要素开关电源及数字设备由于脉冲电流和电压具有很丰富的高频谐波,因此会产生很强的辐射。

电磁干扰包括辐射型(高频) EMI、传导型(低频)EMI,即产生 EMC问题主要通过两个途径:一个是空间电磁波干扰的形式;另一个是通过传导的形式,换句话说,产生EMC问题的三个要素是:电磁干扰源、耦合途径、敏感设备。

电路设计中的EMC问题与解决方法

电路设计中的EMC问题与解决方法

电路设计中的EMC问题与解决方法导言在电路设计与开发的过程中,电磁兼容性(Electromagnetic Compatibility,简称EMC)问题是一个必须重视的方面。

EMC问题的存在可能导致电子设备间的互相干扰,甚至造成设备的损坏。

因此,了解EMC问题的原因和解决方法对于电路设计师来说至关重要。

EMC问题的原因1. 电磁辐射(Electromagnetic Radiation):当电流在电路中流动时,会产生磁场,这个磁场会在空间中扩散并形成电磁波。

如果电磁波强度较高,就会造成电磁干扰,影响其他电子设备的正常工作。

2. 电磁感应(Electromagnetic Induction):当设备接收到外部电磁波时,其内部的电子元器件可能产生感应电流,从而引起设备的故障或异常。

3. 外部电压(External Voltages):在电路设计过程中,如果没有正确处理设备外部电源供电、地线引入等问题,外部电压可能会导致电磁兼容性问题。

EMC问题的解决方法1. 接地设计(Grounding Design):合理的接地设计能够有效降低电路的电磁辐射以及电磁感应。

在接地设计中,需要注意将设备的接地点与电源的接地点相连,以保证信号的返回路径更加稳定。

2. 滤波设计(Filtering Design):通过在电路中加入滤波电路,可以降低电磁干扰的频率范围,使设备对外界干扰的影响减小。

滤波器的选择和设计需要根据实际情况进行,合理选择滤波器的参数和频率范围。

3. 屏蔽设计(Shielding Design):通过在电路设计中添加屏蔽罩或屏蔽材料,可以阻挡或吸收外界的电磁波,减少电磁干扰。

在屏蔽设计中,需要注意材料的选择和屏蔽罩的结构设计,以提高屏蔽效果。

4. 引线布局(Routing Layout):电路引线的布局和走线方式也会对电磁兼容性产生影响。

合理布局电路引线,减小引线之间的交叉和谐振现象,可以有效减少电磁辐射和电磁感应。

开关电源前端EMC概述

开关电源前端EMC概述
谐波电流测试
测量开关电源前端设备产生的谐波电流分量,以评估其对公共电网的 干扰和污染。
静电放电测试
模拟人体或其他物体与开关电源前端设备接触时产生的静电放电现象, 以评估其对设备的电磁干扰和损坏风险。
评估指标与注意事项
01
02
03
电磁辐射强度
评估开关电源前端设备对 周围环境的电磁干扰程度, 通常以dB(分贝)为单位表 示。
线路保护
使用适当的线径和线材,以减小 线路的电感和电阻。
屏蔽技术
屏蔽材料
选择导电性能良好的材料,如铜、铝等。
屏蔽设计
根据电磁干扰的频率和强度,设计合适的屏蔽结 构和方式。
接地与连接
确保屏蔽层正确接地,以提高屏蔽效果。
04 开关电源前端EMC的案例 分析
案例一:某品牌手机充电器EMC问题分析
问题描述
将设备的外壳或机架连接 到大地,以减少电击风险。
信号接地
为电路提供参考电平,确 保信号的稳定传输。
混合接地
根据实际情况,采用不同 的接地方式以满足电磁兼 容性要求。
线路布局与布线技术
线路布局
合理安排电源线、信号线和接地 线的位置,以减小电磁干扰。
布线技巧
遵循最短、最直接的原则,尽量 减少线路长度和弯曲度。
集成化设计
集成化设计是开关电源前端EMC的重要发展方向,通过将 多个功能模块集成在一个芯片或模块中,实现小型化、轻 量化和高效化的设计。
智能化控制
智能化控制技术使得开关电源前端EMC能够实现自适应调 节、故障诊断和预测等功能,提高了系统的稳定性和可靠 性。
市场趋势与竞争格局
市场需求持续增长
随着电子设备的普及和智能化的发展,开关电源前端EMC的市场需求持续增长, 尤其在通信、数据中心、电动汽车等领域具有广阔的应用前景。

开关电源的EMC设计

开关电源的EMC设计

开关电源的EMC设计目前,大多数电子产品都选用开关电源供电,以节省能源和提高工作效率;同时越来越多的产品也都含有数字电路,以提供更多的应用功能。

开关电源电路和数字电路中的时钟电路是目前电子产品中最主要的电磁干扰源,它们是电磁兼容设计的主要内容。

下面以一个开关电源的电磁兼容设计过程进行分析。

图1是一个普遍应用的反激式或称为回扫式的开关电源工作原理图,50 Hz或60 Hz交流电网电压首先经整流堆整流,并向储能滤波电容器C5充电,然后向变压器T1与开关管V1组成的负载回路供电。

1)脉冲尖峰电流及其抑制措施。

一般电容器C5的容量很大,其两端电压纹波很小,大约只有输入电压的10%左右,而仅当输入电压Uin大于电容器C5两端电压的时候,整流二极管才导通。

因此在输入电压的一个周期内,整流二极管的导通时间很短,即导通角很小。

这样整流电路中将出现脉冲尖峰电流,如图2所示。

这种脉冲尖峰电流如用傅里叶级数展开,看成由非常多的高次谐波电流组成,这些谐波电流将会降低电源设备的使用效率,即功率因数很低,并会倒灌到电网,对电网产生污染。

当严重时还会引起电网频率的波动,即交流电源闪烁。

解决整流电路中出现脉冲尖峰电流过大的方法是在整流电路中串联一个功率因数校正(PFC)电路,或差模滤波电感器。

图3是进行过电磁兼容设计后的电气原理图。

PFC电路一般为一个并联式升压开关电源,其输出电压一般为直流400 V,没有经功率因数校正之前的电源设备,其功率因数一般只有0.4~0.6,经校正后最高可达到0.98。

PFC电路虽然可以解决整流电路中出现脉冲尖峰电流过大的问题,但又会带来新的高频干扰问题,这同样也要进行严格的EMC设计。

用差模滤波电感器可以有效地抑制脉冲电流的高频成份,从而降低电流谐波干扰。

但是在开关电源电路里,差模电感的体积和重量受到限制,因而提高功率因数的作用有限。

图3中的L1为差模滤波电感器,差模滤波电感器一般用硅钢片材料制作,以提高电感量,为了防止大电流流过差模滤波电感器时产生磁饱和。

VIP开关电源EMC产生机理及其对策

VIP开关电源EMC产生机理及其对策

开关电源EMC产生机理及其对策EMC(Electromagnetic Compatibility)是电磁兼容,它包括EMI(电磁骚扰)和EMS (电磁抗骚扰)。

EMC定义为:设备或系统在其电磁环境中能正常工作且不对该环境中的任何设备的任何事物构成不能承受的电磁骚扰的能力。

EMC整的称呼为电磁兼容。

EMP是指电磁脉冲。

EMC = EMI + EMS EMI : 電磁干擾 EMS : 電磁相容性 (免疫力)EMI可分为传导Conduction及辐射Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B;CISPR 22(EN55022, EN61000-3-2, EN61000-3-3) Class B;国标IT类(GB9254,GB17625)和AV类(GB13837,GB17625)。

FCC 测试频率在450K-30MHz,CISPR 22测试频率在150K--30MHz,Conduction可以用频谱分析仪测试,Radiation则必须到专门的实验室测试。

EN55022为Radiation Test & Conduction Test (传导 & 辐射测试);EN61000-3-2为Harmonic Test (电源谐波测试) ;EN61000-3-3为Flicker Test (电压变动测试)。

CISPR22(Comite Special des Purturbations Radioelectrique)应用于信息技术类装置, 适用于欧洲和亚洲地区;EN55022为欧洲标准,FCC Part 15 (Federal Communications Commission) 适用于美国,EN30220欧洲EMI测试标准,功率辐射测试标准是EN55013频率在30MHZ-300MHz。

EN55011辐射测试标准是:有的频率段要求较高,有的频率段要求较低。

开关电源EMC传导整改总结

开关电源EMC传导整改总结

开关电源EMC传导整改总结第一篇:开关电源EMC 传导整改总结三合一主板的传导整改记录要理解传导干扰测试,首先要清楚一个概念:差模干扰与共模干扰差模干扰:存在于L-N线之间,电流从L进入,流过整流二极管正极,再流经负载,通过热地,到整流二极管,再回到N,在这条通路上,有高速开关的大功率器件,有反向恢复时间极短的二极管,这些器件产生的高频干扰,都会从整条回路流过,从而被接收机检测到,导致传导超标。

共模干扰:共模干扰是因为大地与设备电缆之间存在寄生电容,高频干扰噪声会通过该寄生电容,在大地与电缆之间产生共模电流,从而导致共模干扰。

下图为差模干扰引起的传导FALL数据,该测试数据前端超标,为差模干扰引起:下图为开关电源EMI原理部分:图中CX2001为安规薄膜电容(当电容被击穿或损坏时,表现为开路)其跨在L线与N线之间,当L-N之间的电流,流经负载时,会将高频杂波带到回路当中。

此时X电容的作用就是在负载与X电容之间形成一条回路,使的高频分流,在该回路中消耗掉,而不会进入市电,即通过电容的短路交流电让干扰有回路不串到外部。

对差模干扰的整改对策: 1.增大X电容容值2.增大共模电感感量,利用其漏感,抑制差模噪声(因为共模电感几种绕线方式,双线并绕或双线分开绕制,不管哪种绕法,由于绕制不紧密,线长等的差异,肯定会出现漏磁现象,即一边线圈产生的磁力线不能完全通过另一线圈,这使得L-N线之间有感应电动势,相当于在L-N之间串联了一个电感)下图为共模干扰测试FALL数据:电源线缆与大地之间的寄生电容,使得共模干扰有了回路,干扰噪声通过该电容,流向大地,在LISN-线缆-寄生电容-地之间形成共模干扰电流,从而被接收机检测到,导致传导超标(这也可以解释为什么有的主板传导测试时,不接地通过,一夹地线就超标。

USB模式下不接地时,电流回路只能通过L-二极管-负载-热地-二极管-N,共模电流不能回到LISN,LISN检测到的噪声较小,而当主板的冷地与大地直接相连时,线缆与大地之间有了回路,此时若共模噪声未被前端LC滤波电路吸收的话,就会导致传导超标)对共模干扰的整改对策: 1.加大共模电感感量2.调整L-GND,N-GND上的LC滤波器,滤掉共模噪声3.主板尽可能接地,减小对地阻抗,从而减小线缆与大地的寄生电容。

开关电源emc设计要领

开关电源emc设计要领

开关电源emc设计要领(最新版)目录1.开关电源 EMC 设计的重要性2.开关电源 EMC 设计的主要要点3.解决电磁干扰的方法4.开关电源 EMC 设计的实际应用正文开关电源 EMC 设计要领随着电子技术的快速发展,开关电源在通信、控制、计算机等领域的应用越来越广泛。

然而,由于开关电源会产生电磁干扰,其进一步的应用受到了一定程度上的限制。

因此,开关电源的 EMC 设计变得尤为重要。

本文将分析开关电源电磁干扰的各种产生机理,并在此基础上,提出开关电源的电磁兼容设计方法。

一、开关电源 EMC 设计的重要性开关电源因体积小、功率因数较大等优点,在通信、控制、计算机等领域应用广泛。

但由于会产生电磁干扰,其进一步的应用受到一定程度上的限制。

因此,开关电源的 EMC 设计变得尤为重要。

二、开关电源 EMC 设计的主要要点开关电源的 EMC 设计主要包括以下几个方面:1.电路设计及布局:合理的电路设计及布局可以减小电磁干扰。

2.接地处理:良好的接地处理可以有效地减小电磁干扰。

3.滤波器设计:滤波器的设计可以有效地抑制电磁干扰。

4.屏蔽处理:对敏感元件和线路进行屏蔽处理,可以减小电磁干扰。

三、解决电磁干扰的方法针对电磁干扰问题,可以采用以下方法进行解决:1.采用高频电流探头确认噪声、耦合和路径。

2.使用 1pf 探头和近场探头定位噪声源。

3.根据噪声源的性质,确定组合屏蔽、接地和/或过滤的方案。

四、开关电源 EMC 设计的实际应用开关电源的 EMC 设计在实际应用中需要考虑多方面的因素,如工频交流整流为直流、逆变为高频、整流滤波电路输出等。

通过合理的设计,可以有效地减小电磁干扰,提高开关电源的电磁兼容性。

总之,开关电源的 EMC 设计是保障其在通信、控制、计算机等领域应用的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EMI可分为传导Conduction及辐射Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B;CISPR 22(EN55022, EN61000-3-2, EN61000-3-3) Class B;国标IT类(GB9254,GB17625)和A V类(GB13837,GB17625)。

FCC测试频率在450K-30MHz,CISPR 22测试频率在150K--30MHz,Conduction可以用频谱分析仪测试,Radiation则必须到专门的实验室测试。

EN55022为Radiation Test & Conduction Test (传导& 辐射测试);EN61000-3-2为Harmonic Test (电源谐波测试) ;EN61000-3-3为Flicker Test (电压变动测试)。

CISPR22(Comite Special des Purturbations Radioelectrique)应用于信息技术类装置, 适用于欧洲和亚洲地区;EN55022为欧洲标准,FCC Part 15 (Federal Communications Commission) 适用于美国,EN30220欧洲EMI测试标准,功率辐射测试标准是EN55013频率在30MHZ-300MHz。

EN55011辐射测试标准是:有的频率段要求较高,有的频率段要求较低。

传导(150KHZ-30MHZ) LISN主要是差模电流, 其共模阻抗为100欧姆(50 + 50); LISN主要是共模电流, 其总的电路阻抗为25欧姆(50 // 50)。

4线AV 60dB/uV 150KHZ-2MHZ start 9KHZ5线PEAK 100dB/uV 150KHZ-3MHZ6线PEAK 100dB/uV 2MHZ-30MHZ7线QP 70dB/uV 150KHZ-500KHZRadiated (30MHZ-1GHZ): ADD 4N7/250V Y CAP 90dB/uV 30MHZ-300MHZEMI为电磁干扰,EMI是EMC其中的一部分,EMI(Electronic Magnetic Interference) 电磁干扰,EMI包括传导、辐射、电流谐波、电压闪烁等等。

电磁干扰是由干扰源、藕合通道和接收器三部分构成的,通常称作干扰的三要素。

EMI线性正比于电流,电流回路面积以及频率的平方即:EMI = K*I*S*F2。

I是电流,S是回路面积,F是频率,K是与电路板材料和其他因素有关的一个常数。

EMI是指产品的对外电磁干扰。

一般情况下分为Class A & Class B 两个等级。

Class A为工业等级,Class B 为民用等级。

民用的要比工业的严格,因为工业用的允许辐射稍微大一点。

同样产品在测试EMI中的辐射测试来讲,在30-230MHz下,B类要求产品的辐射限值不能超过40dBm 而A类要求不能超过50dBm(以三米法电波暗室测量为例)相对要宽松的多,一般来说CLASS A是指在EMI测试条件下,无需操作人员介入,设备能按预期持续正常工作,不允许出现低于规定的性能等级的性能降低或功能损失。

EMI是设备正常工作时测它的辐射和传导。

在测试的时候,EMI的辐射和传导在接收机上有两个上限,分别代表Class A和Class B,如果观察的波形超过B的线但是低于A的线,那么产品就是A类的。

EMS是用测试设备对产品干扰,观察产品在干扰下能否正常工作,如果正常工作或不出现超过标准规定的性能下降,为A级。

能自动重启且重启后不出现超过标准规定的性能下降,为B级。

不能自动重启需人为重启为C级,挂掉为D级。

国标有D级的规定,EN只有A,B,C。

EMI在工作频率的奇数倍是最不好过的。

EMS(Electmmagnetic Suseeptibilkr) 电磁敏感度一般俗称为“电磁免疫力”, 是设备抗外界骚扰干扰之能力,EMI是设备对外的骚扰。

EMS中的等级是指:Class A,测试完成后设备仍在正常工作;Class B,测试完成或测试中需要重启后可以正常工作;Class C,需要人为调整后可以正常重启并正常工作;Class D,设备已损坏,无论怎样调整也无法启动。

严格程度EMI是B>A,EMS是A>B>C>D。

电磁兼容三要素:任何电磁兼容性问题都包含三个要素,即干扰源、敏感源和耦合路径,这三个要素中缺少一个,电磁兼容问题就不会存在。

产生电磁干扰的条件: 突然变化的电压或电流,即dV/dt或dI/dt很大;辐射天线或传导导体。

电磁兼容标准对设备的要求有两个方面:一个是工作时不会对外界产生不良的电磁干扰影响,另一个是不能对外界的电磁干扰过度敏感。

前一个方面的要求称为干扰发射要求,后一个方面的要求称为敏感度要求。

电磁能量从设备内传出或从外界传入设备的途径只有两个,一个是以电磁波的形式从空间传播,另一个是以电流的形式沿导线传播。

因此,电磁干扰发射可以分为:传导发射和辐射发射;敏感度也可以分为传导敏感度和辐射敏感度。

电磁兼容标准分为基础标准、通用标准、产品类标准和专用产品标准。

基础标准:描述了EMC现象、规定了EMC测试方法、设备,定义了等级和性能判据。

基础标准不涉及具体产品。

产品类标准:针对某种产品系列的EMC测试标准。

往往引用基础标准,但根据产品的特殊性提出更详细的规定。

通用标准:按照设备使用环境划分的,当产品没有特定的产品类标准可以遵循时,使用通用标准来进行EMC测试。

对使设备的功能完全正常,也要满足这些标准的要求。

关于制订电磁兼容标准的组织和标准的介绍:IEC(国际电工委员会):有两个平行的组织制订EMC标准,CISPR和TC77。

CISPR(国际无线电EMI可分为传导Conduction及辐射Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B;CISPR 22(EN55022, EN61000-3-2, EN61000-3-3) Class B;国标IT类(GB9254,GB17625)和A V类(GB13837,GB17625)。

FCC测试频率在450K-30MHz,CISPR 22测试频率在150K--30MHz,Conduction可以用频谱分析仪测试,Radiation则必须到专门的实验室测试。

EN55022为Radiation Test & Conduction Test (传导& 辐射测试);EN61000-3-2为Harmonic Test (电源谐波测试) ;EN61000-3-3为Flicker Test (电压变动测试)。

CISPR22(Comite Special des Purturbations Radioelectrique)应用于信息技术类装置, 适用于欧洲和亚洲地区;EN55022为欧洲标准,FCC Part 15 (Federal Communications Commission) 适用于美国,EN30220欧洲EMI测试标准,功率辐射测试标准是EN55013频率在30MHZ-300MHz。

EN55011辐射测试标准是:有的频率段要求较高,有的频率段要求较低。

传导(150KHZ-30MHZ) LISN主要是差模电流, 其共模阻抗为100欧姆(50 + 50); LISN主要是共模电流, 其总的电路阻抗为25欧姆(50 // 50)。

4线AV 60dB/uV 150KHZ-2MHZ start 9KHZ5线PEAK 100dB/uV 150KHZ-3MHZ6线PEAK 100dB/uV 2MHZ-30MHZ7线QP 70dB/uV 150KHZ-500KHZRadiated (30MHZ-1GHZ): ADD 4N7/250V Y CAP 90dB/uV 30MHZ-300MHZEMI为电磁干扰,EMI是EMC其中的一部分,EMI(Electronic Magnetic Interference) 电磁干扰,EMI包括传导、辐射、电流谐波、电压闪烁等等。

电磁干扰是由干扰源、藕合通道和接收器三部分构成的,通常称作干扰的三要素。

EMI线性正比于电流,电流回路面积以及频率的平方即:EMI = K*I*S*F2。

I是电流,S是回路面积,F是频率,K是与电路板材料和其他因素有关的一个常数。

EMI是指产品的对外电磁干扰。

一般情况下分为Class A & Class B 两个等级。

Class A为工业等级,Class B 为民用等级。

民用的要比工业的严格,因为工业用的允许辐射稍微大一点。

同样产品在测试EMI中的辐射测试来讲,在30-230MHz下,B类要求产品的辐射限值不能超过40dBm 而A类要求不能超过50dBm(以三米法电波暗室测量为例)相对要宽松的多,一般来说CLASS A是指在EMI测试条件下,无需操作人员介入,设备能按预期持续正常工作,不允许出现低于规定的性能等级的性能降低或功能损失。

EMI是设备正常工作时测它的辐射和传导。

在测试的时候,EMI的辐射和传导在接收机上有两个上限,分别代表Class A和Class B,如果观察的波形超过B的线但是低于A的线,那么产品就是A类的。

EMS是用测试设备对产品干扰,观察产品在干扰下能否正常工作,如果正常工作或不出现超过标准规定的性能下降,为A级。

能自动重启且重启后不出现超过标准规定的性能下降,为B级。

不能自动重启需人为重启为C级,挂掉为D级。

国标有D级的规定,EN只有A,B,C。

EMI在工作频率的奇数倍是最不好过的。

EMS(Electmmagnetic Suseeptibilkr) 电磁敏感度一般俗称为“电磁免疫力”, 是设备抗外界骚扰干扰之能力,EMI是设备对外的骚扰。

EMS中的等级是指:Class A,测试完成后设备仍在正常工作;Class B,测试完成或测试中需要重启后可以正常工作;Class C,需要人为调整后可以正常重启并正常工作;Class D,设备已损坏,无论怎样调整也无法启动。

严格程度EMI是B>A,EMS是A>B>C>D。

电磁兼容三要素:任何电磁兼容性问题都包含三个要素,即干扰源、敏感源和耦合路径,这三个要素中缺少一个,电磁兼容问题就不会存在。

产生电磁干扰的条件: 突然变化的电压或电流,即dV/dt或dI/dt很大;辐射天线或传导导体。

电磁兼容标准对设备的要求有两个方面:一个是工作时不会对外界产生不良的电磁干扰影响,另一个是不能对外界的电磁干扰过度敏感。

前一个方面的要求称为干扰发射要求,后一个方面的要求称为敏感度要求。

相关文档
最新文档