描述性统计分析过程

合集下载

几种描述性统计分分析的SAS过程

几种描述性统计分分析的SAS过程

几种描述性统计分分析的SAS过程描述性统计是统计学中的一种方法,用于总结和描述数据集的主要特征。

它有助于了解数据的整体分布、偏差和离散性等。

SAS(统计分析系统)是一种流行的统计软件,具有丰富的分析功能。

以下是几种常用的SAS过程,用于执行描述性统计分析。

1.PROCMEANS:PROCMEANS是一种计算统计指标的SAS过程,包括均值、总和、最小值、最大值、标准差等。

可以使用该过程对数值变量进行描述性统计,并在输出中显示这些统计指标。

可以通过指定多个变量和分组变量来计算针对不同子组的统计指标。

该过程还可以生成频数和百分比。

2.PROCFREQ:PROCFREQ是一种用于计算分类变量频数和百分比的SAS过程。

它可以计算每个类别的频数,并使用该信息生成频数表。

该过程还可以计算两个或更多分类变量之间的交叉频数表,并计算出每个类别的百分比。

3.PROCUNIVARIATE:PROCUNIVARIATE是一种用于执行单变量分析的SAS过程。

它可以计算变量的均值、标准差、峰度、偏度等统计指标。

该过程可以绘制直方图、箱线图、正态检验图和PP图等,以帮助理解数据的分布特征。

还可以执行分位数分析、离散度分析和异常值识别等。

4.PROCCORR:PROCCORR是一种用于计算变量之间相关性的SAS过程。

它可以计算变量间的皮尔逊相关系数,并使用协方差矩阵和相关系数矩阵来描述变量之间的线性关系。

该过程还可以绘制散点图矩阵和相关系数图,以直观地显示变量之间的关系。

5.PROCGLM:PROCGLM是一种用于执行多因素方差分析的SAS过程。

它可以根据自变量的水平和交互作用来分解因变量的方差,并进行显著性检验。

该过程可以计算组间差异的F值和p值,并生成方差分析表。

PROCGLM还支持使用协变量进行调整的方差分析,以控制对方差的影响。

以上是几种常用的SAS过程,用于执行描述性统计分析。

每个过程都有各自的功能和输出,可以根据数据和分析需求选择合适的过程。

描述性统计分析方法

描述性统计分析方法

定义 通过对现象进行调查研究,将大量数据加
以整理,简化,制成图标,并就这些数据的 分布特征进行计算,如集中趋势、离中趋势 等。
主要内容 (1)整理。主要是做统计分组及频数统计。 (2)计算分布特征指标。如平均数、众数、
中位数、标准差,等。
(3)做图表。如条形图、饼图、直方图等。
第二节 统计整理
一般的图形:箱式图、茎叶图 考察数据是否为正态分布 (1)正态QQ概率图、去势QQ正态概率图。 (2)正态性检验 分组情况下对不同组别方差齐性进行检验
第四节 统计图制作

百分位数指标 四分位数、各个百分位数等。
分布指标 偏度系数、峰度系数。
其它 M统计量、极端值等。
二、数据类型及SPSS一般实现操作
基于未分组的原始数据资料 基于某种标志的分组数据资料
三、EXPLORE模块
Explore过程(探索性分析)主要用于对 资料的性质、分布特点等完全不清楚的情况 下。在常用描述性统计指标的基础上,又增 加了有关数据详细分布特征的文字及图形 等。
对考试成绩进行统计分组组距式分组对考试成绩进行可视离散化即将原始数据转化为统计组别的离散数据如123对分组后的离散数据进行频数分析
描述性统计分析方法
第一节 基本问题
意义 一般的数据资料都来源于样本的调查。只
有通过对样本的研究,才能做好对实际问题 的可能的推断。因此,描述性分析是统计数 据分析的第一步。
(三)SPSS相关操作
定义多选题变量集 (分析——多重响应——定义变量集) 频数表 (分析——多重响应——频率) 注意:缺失值的处理问题。 交叉分析
第三节 统计指标计算
一、指标类型 集中趋势指标

统计学中的描述性统计分析方法

统计学中的描述性统计分析方法

统计学中的描述性统计分析方法统计学是一门研究数据收集、整理、分析和解读的学科,它可以帮助我们更好地理解和解释数据。

描述性统计是统计学中的一个重要分支,旨在总结和揭示数据的基本特征。

在本文中,我们将介绍统计学中常用的描述性统计分析方法。

一、数据收集与整理描述性统计分析的第一步是数据收集,通过合适的调查问卷、实验或观察,我们可以获取所需的数据。

在数据收集完成后,我们需要对数据进行整理和准备,以便后续的分析。

二、测量指标在描述性统计中,我们常用各种测量指标来描绘数据的中心趋势、离散程度以及数据之间的关联性。

1. 中心趋势测量中心趋势测量用来反映数据集中的一个“典型值”。

(1)平均数(Mean):平均数是数据集中所有观测值的总和除以观测值的数量。

它可以用来衡量数据的总体情况。

(2)中位数(Median):中位数是将数据集按大小顺序排列后的中间值。

它可以忽略异常值的影响,更好地反映数据的中心位置。

(3)众数(Mode):众数是数据集中出现频率最高的值。

它在描述分类数据时特别有用。

2. 离散程度测量离散程度测量用来反映数据集的分散程度。

(1)标准差(Standard Deviation):标准差是数据集各个观测值与平均数之间的偏离度的平均值。

它反映了数据的总体分散程度。

(2)方差(Variance):方差是各个观测值与平均数之间偏离度的平方的平均值。

它是标准差的平方。

(3)极差(Range):极差是数据集中最大值与最小值之间的差值。

它可以用来衡量数据的全局范围。

三、数据可视化数据可视化是描述性统计分析中非常重要的一部分。

通过图表和图形的方式展示数据,可以使数据的特征更加直观地呈现出来。

1. 条形图(Bar Chart):条形图用于对比不同类别或组之间的数据差异。

2. 折线图(Line Chart):折线图可以展示变量随时间的变化趋势。

3. 饼图(Pie Chart):饼图适用于展示分类数据的比例关系。

4. 散点图(Scatterplot):散点图可以直观地显示两个变量之间的关系。

描述性统计分析报告

描述性统计分析报告

描述性统计分析报告引言:统计数据是现代社会中不可或缺的一部分,它为我们提供了了解各种现象和现实情况的重要工具。

在本篇文章中,我们将进行一项关于某地区居民收入的描述性统计分析,通过对数据的分析和解释,将展示出居民收入的整体状况以及在不同人口群体之间的差异。

数据来源和样本:本次统计分析所用的数据来自于某地区政府统计部门的年度统计报告,并且涵盖了该地区所有居民的收入情况。

样本总数为1000,通过随机抽样方式选取了不同年龄、教育水平、职业和家庭收入水平的居民。

总体数据分析:1. 平均收入:通过对数据进行计算,我们得出该地区居民的平均收入为12000元。

2. 中位数:进行中位数的计算后,我们发现该地区居民的中位数收入为10000元。

3. 众数:进行众数的计算后,我们发现该地区居民的众数收入为8000元。

居民收入差异分析:1. 年龄差异:我们将居民按照年龄分组,并计算每个年龄组的平均收入。

结果显示,年龄在25岁到34岁之间的居民平均收入最高,为15000元,而年龄在55岁以上的居民平均收入最低,为8000元。

2. 教育水平差异:根据居民的教育水平进行分组,并计算每个组的平均收入。

结果显示,高中及以下文凭的居民平均收入最低,为8000元,而拥有本科及以上学历的居民平均收入最高,为15000元。

3. 职业差异:我们将居民按照职业进行分组,并计算每个职业的平均收入。

结果显示,专业人士和经理人员的平均收入最高,为20000元,而服务和销售行业的居民平均收入最低,为8000元。

4. 家庭收入差异:我们将居民按照家庭收入水平进行分组,并计算每个组的平均收入。

结果显示,家庭收入水平较高的居民平均收入较高,为16000元,而家庭收入水平较低的居民平均收入较低,为10000元。

结论:通过对该地区居民收入数据的描述性统计分析,我们可以得出以下结论:该地区居民的平均收入为12000元,中位数为10000元,众数为8000元。

同时,在不同人口群体之间存在明显的收入差异,包括年龄、教育水平、职业和家庭收入水平等方面。

第三章描述性统计分析

第三章描述性统计分析

描述性统计分析指标

统计量可分为两类


一类表示数据的中心位置,例如均值、中位数、众 数等 一类表示数据的离散程度,例如方差、标准差、极 差等用来衡量个体偏离中心的程度。
描述单变量分布的三种方式

用数字呈现一个变量的分布 用表格呈现一个变量的分布 用图形呈现一个变量的分布
Frequencies

在交叉列联表中,除了频数外还引进了各种百分 比。例如表中第一行中的33.3%, 33.3%, 33.3 %分别是高级工程师3人中各学历人数所占的比例 ,称为行百分比(Row percentage),一行的百 分比总和为100%;表中第一列的25.0%,25.0% ,50.0%分别是本科学历4人中各职称人数所占的 比例,称为列百分比(Column percentage), 一列的列百分比总和为100%,表中的6.3%,6.3 %,12.5%等分别是总人数16人中各交叉组中人 数所占的百分比,称为总百分比(Total percentage),所有格子中的总百分比之和也为 100%。
例子

假设我们有以下的三组观测值:

观测A:11,12,13,16,16,17,18,21 观测B:14,15,15,15,16,16,16,17 观测C:11,11,11,12,19,20,20,20

这三组观测值的均值都是15.5,那么这三组数 据是否相似呢?
离散趋势
离散趋势的描述
本科 职称 高 级工 程师 Count % within 职 称 % within 文 化 程 度 % of Total Count % within 职 称 % within 文 化 程 度 % of Total Count % within 职 称 % within 文 化 程 度 % of Total Count % within 职 称 % within 文 化 程 度 % of Total Count % within 职 称 % within 文 化 程 度 % of Total 1 33.3% 25.0% 6.3% 1 25.0% 25.0% 6.3% 2 33.3% 50.0% 12.5% 0 .0% .0% .0% 4 25.0% 100.0% 25.0%

实验五描述性统计分析

实验五描述性统计分析

第二篇 数据分析基础实验五 描述性统计分析实验目的:了解相关系数和偏相关系数的计算方法。

实验工具:SPSS 描述性统计分析菜单项。

知识准备:一、统计整理统计整理是根据统计研究的目的,对统计调查所获得的大量原始资料(初级资料),进行科学的分类和汇总,使之条理化、系统化,得出能够反映现象总体特征的综合资料的工作过程。

统计整理的结果为统计表与统计图。

统计表主要表现为频数表,而统计图的表现形式多样,前面已经介绍了各种统计图的制作方法,此处不在专门进行介绍。

二、集中趋势的测量集中趋势是指一组数据向某一中心值靠拢的倾向,测度集中趋势也就是寻找数据一般水平的代表值或中心值。

集中趋势主要依赖各种平均指标进行反映。

1、算术平均数算术平均数又称为均值,其定义为:设1X ,2X ,…,n X 是取自某总体的一个样本,它的算术平均数∑==ni i X n X 11算术平均数有四个重要性质:①各变量值与平均数离差之和等于零;②各个变量值与平均数离差平方和为最小值;③常数的算术平均数是其本身;④对于任何两个变量x 和y ,它们的代数和的算术平均数就等于两个变量的算术平均数的代数和。

2、调和平均数调和平均数是根据标志值的倒数计算的,它是标志值倒数的算术平均数的倒数。

调和平均数的计算公式为:使用调和平均数要注意三个问题:①变量X 的取值不能为零,因为零不能作为分母,此时调和平均数无法计算;②调和平均数与算术平均数一样,易受极端值的影响③调和平均数只适用于特殊的数据情况,所以要注意区分它的适用条件。

在SPSS 中,调和平均数可以在Report 子菜单的4个报表过程中计算输出。

3、几何平均数几何平均数是n 个变量值乘积的n 次方根。

凡是现象的连乘积等于现象的总比率或总速度都可用几何平均数来计算它们的平均比率和平均速度。

其计算公式为:n n n x x x x x G ∏=⋅⋅⋅⋅= (321)式中:标志值个数。

连乘符号;各个标志值;数;几何平均------------∏n x G在SPSS 中,几何平均数可以在Report 子菜单的4个报表过程中计算输出。

eviews描述性统计分析表步骤

eviews描述性统计分析表步骤

eviews描述性统计分析表步骤在我们的日常工作中,对于数据分析的结果,常常要用到描述性统计表来分析。

这是一种图表统计表格,通常情况下,描述性统计表使用最多的是 Java编写和使用。

而 Excel是在 Java 开发环境下编写和使用的。

今天就以它为例说明一下描述性统计表表的制作过程。

首先我们要做的就是将所需要进行分析的数据导入 Excel表格,然后根据表格需求进行处理了。

如果数据在这里不能够清晰反映出来,就需要对各个变量进行属性替换或修改了,以方便后续分析。

然后我们要按照表格顺序生成一张统计图表啦!可以看到这些图表的属性包括:性别、年龄、种族、国家/地区(如果有的话)、来源(来自哪里)及工作年限等(需要详细说明),每个图表都包含了一些参数设置或说明。

当然,这些参数可以自定义配置或在统计图表中添加或者修改啊!1.在项目界面中选择表格并创建,然后单击“添加表头”按钮。

选择“列表”,然后点击“数据项”按钮,将“属性”项复制到表中的任何位置。

复制后单击“确定”按钮即可完成一个表头的创建。

如图所示,在窗口中左部有两个小的文本框可选择:“基本信息”和“属性”。

选择“基本信息”后会弹出两个对话框。

左侧“基本信息”框为已经创建好的表的详细信息,右侧的“属性”栏显示了在 Excel中添加表中的其他参数信息啦!如图所示,选中“数据项”后可以看到其主要包含以下参数(默认情况下会使用公式来计算出来):所有表头都是以此公式为基础进行修改的!当需要将表头合并时,在这里我们就使用公式即可啦!2.然后点击“新建表头”按钮。

在“表头”页面中,我们看到里面有一组关于图表数据配置的文档。

在这里,我们想了解一个新表的配置信息。

我们可以选择这组文档,下面有详细的配置说明:我们可以将所有图表进行配置后设置成表格样式(有需要可自行调整)。

接着,我们点击“创建新表头”按钮。

新建的表头文件就会创建了,下面介绍一下创建新表的方法。

先在表格中新建一个新表头,这个表头文件名叫 DB格式,里面包含了很多数据。

数据分析(SAS描述性统计分析过程)

数据分析(SAS描述性统计分析过程)

var
变量列表 ;
by
变量列表 ;
freq
变量 ;
weight 变量 ;
id
变量列表 ;
output <out=输出数据集名> <统计量关键字=变量名列表> <pctlpts= 百分位数 pctlpre=变量前缀名 pctlname=变量后缀名>;
run;
proc uiate过程旳主要控制语句如下:
proc means(5)
SAS程序 data examp1; input x @@; cards; 70.4 72.0 76.5 74.3 76.5 77.6 67.3 72.0 75.0 74.3 73.5 79.5 73.5 74.7 65.0 76.5 81.6 75.4 72.7 72.7 67.2 76.5 72.7 70.4 77.2 68.8 67.3 67.3 67.3 72.7 75.8 73.5 75.0 72.7 73.5 73.5 72.7 81.6 70.3 74.3 73.5 79.5 70.4 76.5 72.7 77.2 84.3 75.0 76.5 70.4 ; proc means data=examp1 n mean cv skewness kurtosis range median ; var x; run;
mode sumwgt max min range median t prt clm lclm uclm
众数,出现频数最高旳数 权数和 最大值 最小值 极差,max—min 中间值 总体均值等于0旳t统计量 t分布旳双尾p值 置信度上限和下限
置信度下限
置信度上限
kurtosis
对尾部陡平旳度量——峰度
------Quantile-----Percent Observed Estimated

实验一、变量的描述性统计分析

实验一、变量的描述性统计分析

【实验名称】实验一、变量的描述性统计分析【实验目的】1、掌握在Eviews中建立工作文件的方法;2、掌握单变量序列的描述统计分析;3、利用有关命令,进行多变量的相关分布,会绘制多变量的散点图。

【实验内容】P42-练习题2:查找近二十年来我国财政收入和国内生产总值的数据,利用EViews软件分别以菜单方式和命令方式建立EViews文件,并进行初步的描述性分析。

【实验步骤及结果】一、查找原始数据:在网上查找到1978年-2008年我国财政收入和国内生产总值的数据,将其复制粘贴制作成EXCEL。

EXCEL如下所示:二、导入数据:打开Eviews,点击菜单中的下拉依次选择,,如下图所示。

输出如下图对话框,选择相应的文件,点击打开,再点击finish按钮即可。

得到如下的财政收入y和国内生产总值gdp的数据表:三、单个序列的分析:(1)、折线图:在对话框内输入line语句:依次得到如下财政收入y和国内生产总值gdp单个和合起来的折线图如下所示:从上图中我们可以看出财政收入y和国内生产总值gdp都随着时间不断增长,且存在一定的趋势性。

(2)、直方图:在对话框内输入bar语句:得到如下财政收入y和国内生产总值gdp的直方图如下所示:从上图中我们同样可以看出财政收入y和国内生产总值gdp都随着时间不断增长,且存在一定的趋势性。

(3)、P值:在对话框内输入hist语句:得到如下财政收入y和国内生产总值gdp的描述性统计图:从上图中可知财政收入y的均值是11703.27,中位数是4348.95,最大值是61330.35,最小值是1132.26,标准差是15425.52,偏度是1.86,峰度是5.74,P值接近于0。

从P值可知,序列在99%的置信水平下拒绝原假设,即财政收入y不服从正态分布。

从上图中可知国内生产总值gdp的均值是72289.11,中位数是35333.9,最大值是314045.4,最小值是3645.2,标准差是82654.74,偏度是1.40,峰度是4.22,P值接近于0。

描述性统计分析怎么写

描述性统计分析怎么写

描述性统计分析怎么写描述性统计分析是指通过定量和定性的方式对数据进行整理、总结和展示,以揭示数据的特征和规律。

它是统计学中最基础的分析方法之一,可以帮助我们了解数据的分布、趋势和变异情况。

本文将介绍描述性统计分析的基本步骤和具体方法。

1. 数据的整理和准备在进行描述性统计分析前,我们需要对数据进行整理和准备。

首先,将数据导入到统计软件或编程环境中,确保数据的格式正确并且没有缺失值。

其次,对数据的变量进行归类、命名和编码,以方便后续分析。

另外,还可以进行数据的筛选和清洗,去除异常值和不合理的数据。

2. 描述性统计指标的计算描述性统计分析的核心是计算各种统计指标,用以描述和概括数据的特征。

常见的描述性统计指标包括:•中心性指标:用于反映数据的集中趋势,包括均值、中位数和众数。

均值是所有观测值的平均数,中位数是将数据排序后位于中间位置的值,众数是出现频率最高的值。

•离散程度指标:用于描述数据的离散程度,包括方差、标准差和极差。

方差是观测值与均值之间的偏离程度的平方的平均值,标准差是方差的平方根,极差是最大观测值与最小观测值之间的差。

•偏度和峰度指标:用于描述数据的分布形态。

偏度度量了数据分布的不对称性,正偏表示分布右偏,负偏表示分布左偏;峰度度量了数据分布的尖锐程度,正峰表示分布尖锐,负峰表示分布平缓。

3. 描述性统计图的绘制除了计算各种统计指标外,描绘描述性统计图也是一种直观展示数据特征的方法。

常见的描述性统计图包括直方图、箱线图和散点图。

•直方图:用于展示数据的分布情况。

将数据按照一定的区间划分,统计每个区间内的观测值个数或占比,并绘制在纵轴上,从而呈现数据的分布情况。

•箱线图:用于展示数据的中位数、四分位数以及异常值等信息。

图中的箱体表示了数据的四分位数范围,箱体内部的线表示中位数,箱体外部的点表示异常值。

•散点图:用于展示两个变量之间的关系。

将两个变量的取值作为坐标轴,绘制出所有观测值的散点,可以通过观察散点的分布来了解两个变量之间的相关性。

实验一描述性统计分析过程(1)

实验一描述性统计分析过程(1)

实验一 描述性统计分析过程(1)实验目的:学习利用统计分析的means 、univarite 、capability 等过程进行数据分析实验要求:编写程序,结果分析.实验内容:1.简答题:(1)写出一维样本均值、p 分位数、样本方差、四分位极差的计算公式,说明其作用.(2)本章介绍了哪几种检验的方法?1. 一维样本均值: 作用:描述取值的平均位置。

pn x x ni i /)(1∑==分位数: 作用:大体上整批数据⎪⎩⎪⎨⎧+=++是整数不是整数,),np x x np x M np np np p )(21)1()(1]([100p%的观测值不超过p 分位数。

样本方差: 作1)(122--=∑=n x x s n i i 用:描述数据取值分散性的一种度量。

四分位极差: 作用:描述数据分散性的数字特征。

25.075.0131M M Q Q R -=-=2.上机实验题:61名11岁学生的身高(习题1.1)数据1.4要求:(1)计算均值、方差、标准差、变异系数、偏度、峰度;均值:139 方差:49.8983051 标准差:7.06387324 变异系数:5.08192319 偏度:-0.5100771 峰度:-0.1261294(2)计算中位数、上、下四分位数 、四分位极差 、三均值;中位数:130.0000 上四分位数:144.5 下四分位数:135.0四分位极差:9.50000 三均值:0.25*135.0+0.5*139.0000+0.25*144.5=139.375(3)作出直方图,拟合正态分布曲线;学号:班级:姓名:(4)作出茎叶图;(5)作出正态QQ图,并判断数据是否来自正态分布总体;从图中看出,散点近似地在一条直线上,可认为数据来自正态总体。

(6)作正态性W检验.对应程序:data examp1_1;input x @@;cards;126 149 143 141 127 123 137 132 135 134 146 142135 141 150 137 144 137 134 139 148 144 142 137147 138 140 132 149 131 139 142 138 145 147 137135 142 151 146 129 120 143 145 142 136 147 128142 132 138 139 147 128 139 146 139 131 138 149;proc univariate data=examp1_1;proc capability data=examp1_1 graphics noprint;histogram x/normal(mu=est sigma=est) vscale=proportion;cdfplot/normal(mu=est sigma=est);学号:班级:姓名:qqplot x/normal(mu=est sigma=est);proc univariate data=examp1_1 plot;run;实验结果:结果分析:实验二描述性统计分析过程(2)实验目的:学习利用统计分析的corr等过程进行数据分析实验要求:编写程序,结果分析.实验内容:1.简答题(1)写出p总体数字特征的性质,正态分布的密度函数;(2)写出p维总体的样本均值向量、样本协方差矩阵、Pearsen相关系数矩阵.2.上机实验题:习题1.7数据(见文件exersice1_7.txt)要求:(1)计算观测数据的均值向量和中位数向量;(2)计算观测数据的Pearson相关矩阵R,Spearman相关矩阵Q及各元素对应的检验p值,并做相关性的显著性检验.。

描述性统计分析

描述性统计分析

描述性统计分析统计学是一门关注收集、整理、分析和解释数据的学科。

在进行数据分析时,描述性统计是一个重要的环节。

描述性统计分析旨在通过对数据的整理和总结,揭示数据的基本特征和规律,帮助我们更好地理解和解释数据。

一、数据收集与整理描述性统计分析的第一步是数据的收集与整理。

数据可以从多种渠道获得,比如调查问卷、观测记录、实验数据等。

对于收集到的数据,需要进行数据清洗和整理,确保数据的准确性和可靠性。

清洗和整理数据的过程包括剔除异常值、处理缺失值、标准化数据等。

二、数据集中趋势的测量数据集中趋势是指描述数据集中心位置的统计量,常用的统计量有均值、中位数和众数。

1. 均值(mean)是数据集中所有数值的平均值,用于描述数据的总体水平。

2. 中位数(median)是将数据集按大小排序后处于中间位置的数值,用于描述数据的中间位置。

3. 众数(mode)是数据集中出现频次最高的数值,用于描述数据的集中趋势。

通过计算均值、中位数和众数,我们可以得到数据的集中趋势,进一步了解数据的整体分布情况。

三、数据的变异程度测量数据的变异程度是指数据分布的离散程度。

常用的统计量有范围、方差和标准差。

1. 范围(range)是描述数据集最大值和最小值之间差异的统计量,用于度量数据的极值情况。

2. 方差(variance)是描述数据与均值之间差异的统计量,用于度量数据的分散程度。

3. 标准差(standard deviation)是方差的算术平方根,用于度量数据的离散程度。

通过计算范围、方差和标准差,我们可以了解数据的变异程度,从而判断数据的稳定性和可靠性。

四、数据的分布特征描述数据的分布特征描述主要包括对称性、峰度和偏度等。

1. 对称性是指数据分布在均值两侧是否对称,常用的描述指标是偏离标准差。

2. 峰度是描述数据分布的峰态的指标,代表数据分布的尖锐程度。

3. 偏度是描述数据分布的不对称性的指标,代表数据分布的偏斜程度。

通过分析数据的对称性、峰度和偏度,我们可以了解数据分布的形态特征,进一步推断数据的性质和规律。

描述性统计分析

描述性统计分析

描述性统计分析统计学是研究现象的数量关系及其变异程度,以便加以利用,这种方法广泛应用于社会学、心理学、医学、环境科学等诸多领域。

其中,描述性统计分析是一个重要的分析工具,它是指对数据进行整理、概括和分析以便更好地理解数据的分布、形态和特征的方法。

下面,我们将对描述性统计分析做一介绍。

一、描述性统计分析的概念描述性统计分析是指通过图表和数字,对数据进行总结、描述、概括和分析的方法。

在描述性统计分析中,我们对数据进行可视化处理,将数据用图表的形式呈现,可以更直观地理解数据的分布、形态和特征。

同时,在描述性统计分析中,我们还可以计算出各种统计指标,如平均数、中位数、众数、方差、标准差等,以便更深入地分析数据的特征和分布情况。

二、描述性统计分析的过程在进行描述性统计分析时,一般分为以下几个步骤:1、整理数据首先,我们需要整理数据,将数据分类、排序、分组等,以便更好地进行统计和分析。

2、计算频数和频率计算频数和频率可以帮助我们了解数据的分布情况,对数据进行表格或图表化处理也可以更加直观地看出数据的分布情况。

3、计算中心趋势计算中心趋势是指通过数据的平均数、中位数、众数等指标来衡量数据中心的集中程度,这可以帮助我们了解数据的集中趋势和整体情况。

4、计算离散程度计算离散程度是指通过数据的范围、方差、标准差等指标来测量数据的分散程度,这可以帮助我们了解数据的分散程度和变异情况。

5、绘制图表数据可视化处理是描述性统计分析的重要组成部分,通过绘制直方图、折线图、散点图等图表,可以更加直观地了解数据的分布情况。

三、描述性统计分析的应用描述性统计分析在各行各业中都有着广泛的应用。

在企业中,描述性统计分析可以帮助企业了解市场的需求和客户的反馈,从而更好地制定营销策略和产品决策。

在金融领域,描述性统计分析可以帮助银行和保险公司进行风险评估,更好地控制风险。

在医学领域,描述性统计分析可以帮助医生了解疾病的发病情况和流行病学特征,从而更好地制定治疗方案和预防措施。

SPSS统计描述过程

SPSS统计描述过程

SPSS 描述性统计分析SPSS描述性统计分析,集中在Descriptive Statistics菜单中,最常用的是列在最前面的四个过程:Frequencies过程:产生频数表和百分位数;Descriptives过程:进行一般性的统计描述,用于服从正态分布的资料,计算产生均数、标准差等;Explore过程:用于对数据概况不清时的探索性分析;Crosstabs过程:完成计数资料和等级资料的统计描述和一般的统计检验,我们常用的X2检验也在其中完成。

1 频数分布分析(Frequencies过程)频数分布表是描述性统计中最常用的方法之一,Frequencies过程就是专门为产生频数表而设计的。

它不仅可以产生详细的频数表,还可以按要求给出某百分位点的数值,以及常用的条图,圆图等统计图.注:SPSS给出详细频数表,即并不按某种要求确定组段数和组距,而是按照数值精确列表。

Frequencies界面说明Frequencies对话框的界面如下所示:以下介绍各部分的功能:1、【Display frequency tables复选框】确定是否在结果中输出频数表.2、【Statistics钮】单击后弹出Statistics对话框如下,用于定义需要计算的其他描述统计量.现将各部分解释如下:1、Percentile Values复选框组: 定义需要输出的百分位数,可计算四分位数(Quartiles)、每隔指定百分位输出当前百分位数(Cut points for equal groups)、或直接指定某个百分位数(Percentiles),如直接指定输出P2.5和P97.5。

2、Central tendency复选框组用于定义描述集中趋势的一组指标:均数(Mean)、中位数(Median)、众数(Mode)、总和(Sum).3、Dispersion复选框组用于定义描述离散趋势的一组指标:标准差(Std.deviation)、方差(Variance)、全距(Range)、最小值(Minimum)、最大值(Maximum)、标准误(S。

SPSS描述性分析统计操作步骤

SPSS描述性分析统计操作步骤

SPSS描述性分析统计操作步骤SPSS是一个非常强大的数据处理和统计分析软件,它广泛应用于社会科学、医学、生物、商业等领域。

描述性分析是SPSS中常用的数据分析方法之一,具体涉及的操作步骤可以分为如下几个部分:一、数据录入和数据检查在运行SPSS前,需要先进行数据录入,将现场采集的数据输入到计算机中。

在录入数据之后,需要对数据进行检查,确认数据的完整性、正确性和一致性。

具体包括以下几个方面:1.检查数据是否按照规定的格式录入,比如数值型数据是否为数字,字符型数据是否为字符等;2.检查数据是否有重复、缺失、异常等情况,并针对这些情况进行相应处理;3.检查变量的名称、标签是否与实际意义一致,需要根据实际情况进行修改。

二、数据分布分析1.单变量分析单变量分析是指针对单个变量进行分析,主要关注该变量的基本统计信息和分布情况。

常用的描述性统计指标包括均值、中位数、众数、标准差、方差、最大值、最小值等。

如需对单个变量作更加细致的分析,可以生成直方图、箱线图、概率密度图等图形。

在SPSS 中,可以通过点和菜单或者语法来进行单变量分析。

三、数据检验1.正态性检验正态性检验是指检验变量是否符合正态分布,通常采用Kolmogorov-Smirnov检验、Shapiro-Wilk检验、Anderson-Darling检验等方法。

在SPSS中,可以通过点和菜单或者语法来进行正态性检验。

2.均值比较均值比较是指比较两个或多个组的均值是否存在显著差异,通常采用t检验和方差分析等方法。

在SPSS中,可以通过点和菜单或者语法来进行均值比较。

四、分组分析分组分析是指将数据按照某一变量进行分组,比较不同组之间的差异。

常用的分组变量包括性别、年龄、学历、职业等。

在SPSS中,可以通过点和菜单或者语法来进行分组分析。

以上就是SPSS描述性分析统计操作步骤的一些基本内容,因为需要考虑数据的来源、数据类型、研究目的等多方面的因素,所以具体操作步骤可能会有所不同。

实验结果数据统计分析

实验结果数据统计分析

实验结果数据统计分析为了对实验结果进行全面和准确的分析,本文将按照以下步骤进行实验结果数据的统计分析。

1. 数据收集和整理在实验过程中,首先需要收集和整理实验所产生的数据。

确保所有实验数据都被准确记录,并按照实验设计的要求进行整理和存储。

此外,还需要检查数据的完整性和准确性,确保没有遗漏或错误的数据。

2. 描述性统计分析描述性统计分析是对数据的基本特征进行描述和总结的过程。

通过计算数据的平均值、中位数、众数、标准差等指标,可以获得数据分布的大致情况。

此外,还可以使用直方图、箱线图等图形工具来展示数据的分布情况。

这些统计指标和图形可以帮助我们了解数据的中心趋势、离散程度和异常值情况。

3. 探索性数据分析探索性数据分析是一种基于图形和统计方法的数据分析方法,旨在揭示数据中的模式、趋势和关系。

在这一步骤中,可以使用散点图、折线图、饼图等来观察变量之间的关系。

此外,还可以通过计算相关系数、回归分析等方法来评估变量之间的相关性和影响程度。

4. 推论统计分析推论统计分析是基于样本数据对总体进行推断的过程。

首先需要确定研究的目标和假设,并选择适当的统计方法。

然后,根据样本数据计算统计量,进而对总体参数进行估计。

最后,通过假设检验、置信区间等方法来验证假设并得出结论。

5. 结果解释与讨论在数据统计分析的最后一步,需要对结果进行解释和讨论。

根据实验目的和假设,对实验结果进行解读,并与相关研究进行比较和讨论。

必要时,还可以提出进一步研究的建议和改进方案。

总结:通过以上的实验结果数据统计分析步骤,我们可以全面、准确地了解实验结果的特征和规律。

从而为实验结论的提出提供可靠的依据,并帮助我们进一步理解和解释研究问题。

实验结果数据统计分析是一项重要且不可忽视的工作,它能够提供科学研究的依据和支持,对研究的可信度和科学性起到关键作用。

因此,在进行实验结果数据统计分析时,需要严格按照科学的方法和步骤进行,保证数据的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正态概率图(Normal Q-Q Plot)的SPSS过程
离散正态概率图(Detrended Normal Q-Q Plot)的SPSS过程
第二章 描述性统计分析过程
所谓描述性统计分析,就是对一组数据的各种特征进行 分析,以便于描述测量样本的各种特征及其所代表的总体的 特征。描述性统计分析的项目很多,常用的如平均数、标准 差、中位数、频数分布、正态或偏态程度等等。这些分析是 复杂统计分析的基础。
平均数、标准误
中位数、众数、全距
标准差、方差
可编辑ppt
4
返回本章首页
四分位、十分位、百分位数
可编辑ppt
5
返回本章首页
频数分布、峰度、偏度
频数 (Frequency) 就是一个变量的各个观测值出现的次 数。比如某班语文考试的成绩,可以统计出各分数值的人数。
峰度(Kurtosis) : 是描述某变量所有取值的分布形态陡缓 程度的统计量,而峰度对陡缓程度的度量是与正态分布进行比 较的结果。如果峰度等于 0 ,其数据分布的陡缓程度与正态分 布相同 ;峰度大于 0,其数据分布比正态分布更陡峭;峰度小 于0,其数据分布比正态分布更平坦。
N=
27
20 55
36 49
73
30
30
30
30
1
2
3
4
不同颜色的灯光刺激
可编辑ppt
批注 : 箱图可以直观地反映 一组观测值的集中趋势、离 散趋势、不正常观测值(奇 异值和极值,均可被排除后 重新分析)。左图中箱图的 高度代表了25% 位数到 75 % 位数的距离;箱图中的 粗线代表中位数;箱图上下 中央的垂直线叫触须线,触 须线的上下截止线分别对应 于观测值的最大值和最小值; 用 O标记的是奇异值(与框 边距离超出框高1.5倍)、用
*标记的为极大值或极小 值(与框边距离超出框高3 倍) 。
11
返回本章首页
3. 用Levene检验方差是否齐性
方差齐性检验是统计分析中的一种常见过程,它是从样本方 差以至样本各自所代表的总体方差是否相同而判断两个样本同质 性(homogeneity) 的方法。简单地说,方差齐性检验就是检验各 个方差是否存在显著性差异。一般采用Levene方法:先将各组观 测值均转换为离差绝对值,然后对各组离差绝对值进行方差分析, 如果方差分析的结果中p> 0.05,则认为方差齐性(即方差具有相 同性);方差分析的结果中p<0.05,则认为方差不齐性(即方差 具有不同质性)。
30
调 用 数
反映处在某一观测值范围内的 个案数。图中每个直方条下部 的中点坐标是该观测值范围的

20
中点、直方条的宽度代表该观
文 件 并
10

测值范围、直方条的高度代表 该观测值范围内的个案数或人 数比例。

Std. Dev = 48.43

Mean = 435.8

0
N = 120.00

300.0
350.0
400.0
450.0500.0源自550.0600.0
325.0
375.0
425.0
475.0
525.0
575.0
选择反应时间
可编辑ppt
10 返回本章首页
Frequency
2. 用箱图 (或叫框图)反映数据的集中趋势和特异值
调 用 数 据 文 件 并 得 到 箱 图
选择反应时间
700 600 500 400 300 200 100
方差齐性检验举例与spss过程演示
可编辑ppt
12 返回本章首页
4. 用Q-Q概率图检验数据是否正态分布
可以用正态概率Q-Q图和离散正态概率Q-Q 图检验观测值的 分布是否是或接近于正态分布。正态概率图是由观测值与按正态 分布的预期值作出来的散点图 ,如果实际值为正态分布 ,则其 与预期值具有线性对应关系,散点图回归一条斜线,该斜线是正 态分布的标准线,散点图组成的回归线越接近于标准线,表示实 际观测数据越接近正态分布;如果以观测值、其与正态分布期望 值的离差值做散点图,则当散点近似随机地落在过原点的中间横 线周围时,数据分布接近于正态分布。
四分位、十分位、百分位数
频数分布、峰度、偏度
标准分数及其线性转换
探索分析
交叉列联表分析
可编辑ppt
1
1. 平均数、标准误
可编辑ppt
2
基本的描述性统计量 返回本章首页
中位数、众数、全距
可编辑ppt
3
返回本章首页
标准差、方差
严格地讲,在方差和标准差的计算中,分母应取n-1,因为 数据变异的自由度是n-1。但在大样本情况下,使用n和n-1差别 不大。
可实编例辑演pp示t
6 返回本章首页
偏度( Skewness ) 是描述数据分布对称性的统计量 ,而 且也是与正态分布的对称性相比较而得到的。如果分布的偏度 等于0 ,则其数据分布的对称性与正态分布相同 ;如果偏度大 于0,则其分布为正偏或右偏,即在峰的右边有大的偏差值,使 右边出现一个拖得较远的尾巴;如果偏度小于 0,则为负偏或 左偏,即在峰的左边有大的偏差值,使左边出现一个拖得较远 的尾巴。
1. 用直方图反映数据的分布直观形式;
2. 用箱图 (或叫框图)反映数据的集中趋势和奇异值;
3. 用Levene检验考察多组间方差是否齐性;
4. 用Q-Q概率图检验数据是否正态分布或接近正态分布。
可编辑ppt
9 返回本章首页
1. 用直方图直观地反映数据的总体分布
Histogram
直方图:是一种频数分布图, 它
可实编例辑演pp示t
7 返回本章首页
标准分数及其线性转换
Z分数:从平均数为,标准差为的总体中抽取一观测值,该 观测值的Z分数是其距离总体平均值的标准差数。标准分数反映的 是一观测值与其他分数相比的相对位置。比如Z 分数为 1.5 ,则其 比平均数大 1.5 个标准差。在实际应用中 ,为了避免小数的不便, 可以对标准分数进行线性转换:
T=10Z+50
比如某人在艾森克人格问卷的测量中 ,其精神质得分比同年 龄人的平均成绩高2.0个标准差,则其换算后的标准分数为 70 分 ; 如果另一人的测试分数正好等于平均数,则其标准分数为50。
可编辑ppt
8 返回本章首页
探索分析
探索分析是对一组或多组数据的总体分布特征进行分析,以 考察其中有无奇异值、极大或极小值等;考察各组数据或全部 数据是不是正态或接近于正态分布;探索多组数据之间的方差 是否齐性,以确定是否可以采用某种统计分析技术对数据进行 检验等等。我们这里介绍:
相关文档
最新文档