海洋遥感复习知识点
海洋遥感复习知识点
名词解释、填空1.海面亮温:低于实际物体的温度指物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度。
2.发射率:观测物体的辐射能量与同观测物体具有一样热力学温度的黑体的辐射能量之比根据发射率,=1黑体,0~1灰体3.大气气溶胶:悬浮在空气中的来自地球外表的小的液体或固体颗粒。
气溶胶类型:海洋型、陆地型、火山爆发自然〔陆地海洋火山〕;人为〔汽车尾气、污染物〕4.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。
散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。
对可见光的影响较大。
米散射:当微粒的直径与辐射波长差不多时的大气散射。
气溶胶引起的,对波长依赖性很小无选择散射:云,所有光都被散射回来5.大气层构造简答,根据温度分布,垂向划分:对流层、平流层、中间层、热成层、外大气层1)对流层:有各种天气现象,强烈对流/温湿分布不均匀/航空活动区,对遥感最重要2)平流层/同温层:天气现象少/空气稳定/水汽、沙尘少,温度随高度增加而增加3)中间层:温度随高度增加而减少,对遥感的辐射传递几乎没影响4)热成层:温度随高度增加而增加,高度电离状态,短波电磁波被电离层折返回地面6.一类水体:浮游植物及其共变的碎屑主导海水光谱特性;二类水体:除浮游植物外的其他物质在海水光谱特性中起主导作用海洋初级生产力:把无机碳变成有机碳的单位时间的速率,和叶绿素浓度、光照、光照时间、光穿透距离有关7.遥感反射比〔可见光、海色遥感〕:公式、向上辐亮度和向下辐照度之比,Rw和Ed之比归一化离水辐亮度:假设太阳在正上,把大气分子散射衰减消除的离水辐亮度8.黄色物质:有色可溶有机物,陆源〔植被,棕黄酸〕,海洋〔动物死亡分解〕9.生物光学算法:通过离水辐亮度去推导海水中的各主分浓度的算法。
由海水上面的离水辐亮度推导叶绿素浓度、泥沙浓度、k490衰减系数、透明度等。
10.大气校正:由传感器接收到的辐亮度计算出离水辐亮度的过程Lt是卫星接收的总辐射;第一项为哪一项离水辐亮度,接下来三项是大气路径辐射,分别是气溶胶的,分子的,两者都有的,Lwc是白冒,Lsr是太阳耀斑。
(完整版)海洋遥感总结
1. 狭义广义遥感狭义遥感:主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。
(利用电磁波进行遥感)广义遥感:利用仪器设备从远处获得被测物体的电磁波辐射特征(光,热),力场特征(重力、磁力)和机械波特征(声,地震),据此识别物体。
(除电磁波外,还包括对电磁场、力场、机械波等的探测)两者探测手段不一样2. 遥感技术系统信息源-信息获取-信息纪录和传输-信息处理信息应用3. 遥感的分类(1)按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等(2)按照传感器工作方式分类:主动遥感、被动遥感4. 遥感的应用内容上可概括:资源调查与应用、环境监测评价、区域分析规划、全球宏观研究5. 海洋遥感的意义(1)海洋气候环境监测的需要海洋占全球面积约71%,海洋是全球气候环境变化系统中不可分割的重要部分厄尔尼诺、拉尼娜、热带气旋、大洋涡流、上升流、海冰等现象都与海洋密切相关。
厄尔尼诺是热带大气和海洋相互作用的产物,它原是指赤道海面的一种异常增温,现在其定义为在全球范围内,海气相互作用下造成的气候异常。
(2)海洋资源调查的需要海洋是人类最大的资源宝库,是全球生命支持系统的基本组成部分,海洋资源的重要性促使人们采用各种手段对其进行调查研究海岸带是人类赖以生存和进行生产活动的重要场所,海岸带资源的相关调查对于沿海资源的合理开发与利用非常重要(3)海洋遥感在海洋研究中的重要性海洋遥感具有大范围、实时同步、全天时、全天候多波段成像技术的优势可以快速地探测海洋表面各物理量的时空变化规律。
它是20 世纪后期海洋科学取得重大进展的关键学科之一。
重要性体现在:是海洋科学的一个新的分支学科;为海洋观测和研究提供了一个崭新的数据集,并开辟了新的考虑问题的视角;多传感器资料可推动海洋科学交叉学科研究的发展1. 海洋遥感的概念(重点)、研究内容海洋遥感:指以海洋及海岸带作为监测、研究对象,利用电磁波与大气和海洋的相互作用原理来观测和研究海洋的遥感技术。
海洋遥感知识点总结
海洋遥感知识点总结本文将从海洋遥感技术的基本原理、常用遥感技术和海洋遥感的应用领域等方面进行详细的介绍,并结合一些实际案例,希望可以为读者对海洋遥感技术有一个更全面的了解。
一、海洋遥感技术的基本原理海洋遥感技术是通过传感器对海洋进行观测和测量,然后将获取到的数据传输到地面处理系统进行分析,从而得到关于海洋的信息。
传感器可以是搭载在卫星上的遥感仪器,也可以是在飞机、船只等平台上安装的探测设备。
遥感技术主要依靠电磁波在大气和海洋中的传播和反射特性来获取海洋信息。
具体而言,通过用不同波段的电磁波对目标进行监测和探测,再利用电磁波与目标反射或散射作用时的特性来获取目标物体的信息。
遥感技术主要包括被动遥感和主动遥感两种方式。
被动遥感是指通过接收目标物体所发出的自然辐射或反射的电磁波,比较常用的是太阳辐射。
而主动遥感是指通过发送特定频率的电磁波到目标物体上,然后将目标物体发射的辐射或反射返回的信号进行分析。
被动遥感和主动遥感一般配合使用,可以获取更加全面的目标物体信息。
二、常用的海洋遥感技术1. 被动微波遥感被动微波遥感是通过接收海洋表面微波辐射来获取海洋信息的一种遥感技术。
微波辐射可以在大气中穿透,因此即使在云层遮挡的情况下,也可以对海洋进行探测。
被动微波遥感技术可以用来测量海洋表面温度、海洋表面风速、盐度等信息,对海洋动力学和大气海洋相互作用研究有着重要的意义。
2. 被动光学遥感被动光学遥感是通过接收海洋表面反射的太阳光来获取海洋信息的一种遥感技术。
光学遥感可以测量海洋表面的叶绿素浓度、海水透明度、沉积物含量等信息,可以用于海洋生态系统监测和海洋污染监测等方面。
3. 合成孔径雷达遥感合成孔径雷达(SAR)是一种主动遥感技术,通过发送微波信号到海洋表面,然后接收被海洋表面物体反射的信号,来获取海洋表面的信息。
SAR可以用来监测海洋表面风场、海洋表面粗糙度、海洋污染等信息,对海上风暴预警、海洋污染监测等具有重要的应用价值。
海洋科学中的海洋环境遥感
海洋科学中的海洋环境遥感随着时代的不断发展,科技不断进步,海洋遥感技术也得到了广泛的应用。
海洋遥感技术是指利用遥感技术对海洋环境进行实时监测、分析、预测等处理,可以有效探测海洋气候、海洋生态环境、海洋地理信息等方面的信息。
本文主要论述海洋科学中的海洋环境遥感技术及其应用。
一、海洋环境遥感技术的基础海洋环境遥感技术是基于遥感技术和地球物理技术的,它主要是利用卫星遥感和水下探测技术,通过捕捉、分析海洋表面和水下空间的图像、声波等多种信息,以获得海洋环境的多尺度、多维度、多参数的数据。
海洋环境遥感技术主要包括以下几个方面:1.卫星遥感技术卫星遥感技术是利用卫星上安装的遥感传感器监测地球表面的状况,其优点是可以迅速获取大面积的海洋环境信息,可以实现对全球海洋生态的大范围、精确的观测和监测。
2.水下探测技术水下探测技术是利用声波等物理技术探测水下环境,主要通过对船舶、海底地貌、海底岩石结构、地下水资源、地壳构造等进行探测,可以获得大量的水下信息,为研究海洋环境提供了强有力的数据支持。
3.综合应用综合应用是指整合不同的遥感技术和地球物理技术,对海洋环境进行综合分析。
综合应用海洋遥感技术不仅扩大了海洋环境遥感的覆盖范围,而且能够获得更加全面、准确的海洋环境信息。
二、海洋环境遥感技术的应用领域1.海洋生态环境研究海洋生态环境研究主要是对海洋生态系统的监测和预测,利用卫星遥感技术可以监测海洋浮游植物、浮游动物、海洋气候等环境信息,而水下探测技术则可以提供水下环境的地貌特征、流场结构以及水下物种分布等相关数据。
这些数据对于研究海洋生态系统的组成、结构和演化规律具有重要意义。
2.海洋气候预测海洋气候预测是指通过卫星遥感技术对海面温度、盐度、潮汐、流体运动等要素进行监测,以便预测海洋环境中存在的气象现象,例如风暴、海浪、海雾和海冰等。
卫星遥感的数据能够为气象预测、海上通信、沿海生产等提供实时提示和预警。
3.水下资源勘探水下资源勘探是指利用水下探测技术对海洋中的石油、天然气、金属矿物等资源进行探测、勘探和运输。
海洋遥感监测技术
冰观测、海洋气象预报、海洋渔场分析、大尺度
海洋现象研究和基础理论工作中进行了遥感技术 的试验。 其中台风跟踪、海冰遥感和海洋环境污染航 空遥感监测已进入实用阶段。
通过卫星遥感获得数据 , 再结合海洋水温
水深、海流、海底地形、盐度、溶解氧等海洋
要素的电磁波特性,可以对海底地形、海洋水
海洋卫星遥感与常规海洋调查手段相比的优点: 1)不受地理位置、天气和人为条件的限制,可以覆盖地理 位置偏远、环境条件恶劣的海区及由于政治原因不能直接去 进行常规调查的海区。卫星遥感是全天时的,其中微波遥感 是全天候的。 2)卫星遥感能提供大面积的海面图像,每个像幅的覆盖面 积达上千平方公里,对海洋资源普查、大面积测绘制图及污
光和近红外的光谱信息来提取海洋的
叶绿素、悬浮泥沙和黄色物质以及其 它污染物质等水色因子,为海洋环境 监测与海洋资源开发服务。
2. 遥感技术分类
遥感按常用的电磁谱段不同分为可见光遥感、 红外遥感、多谱段遥感、紫外遥感和微波遥感。
根据使用的遥感平台不同,遥感通常分为航天 遥感、航空遥感和卫星遥感。
航空遥感:泛指从飞机、气球、飞艇等空中平台对地面 感测的遥感技术系统。 航天遥感:利用各种空间飞行器为平台的遥感技术系统。 它以地球人造卫星为主体,包括载人飞船、航天飞机和空 间站等。 卫星遥感:用卫星作为平台的遥感技术称为卫星遥感。
术。
海洋不断地向周围辐射电磁波能量,同时,
海面还会反射(或散射)太阳和人造辐射源(如
雷达)照射其上的电磁波能量,利用专门设计的
传感器,把这些能量接收、记录下来,再经过传 输、加工和处理,就可以得到海洋的图象或数据 资料。
常规的海洋观测手段时空尺度有局
第四章 海洋表面温度遥感 - 海洋遥感.概要
2019/1/27
4.3 热红外辐射计海表温度反演
1.反演原理
-TIR波段水气辐射传输模型
传感器探测到的辐射为:
L eLst (1 e)L t tLsun t L
a a
L
太阳 传感器
L a
t
Lsun
大气
e=1 简化
Ls B (Ts )
L a
e,
海表
L Lst L a
3.反演过程
(2)云检测方法 c. 直方图统计法 利用热红外波段直方图统计的结果判断:若一高 温峰和一低温峰同时出现,则说明部分有云;若只有 高温峰,则无云;若只有低温峰,则全为云覆盖。
2019/1/27
4.3 热红外辐射计海表温度反演
3.反演过程
(2)云检测方法 d. 常年平均海平面温度截断法 利用常年的海面温度平均值与每个像元点的温度 值进行比较,当探测值大于常年平均值时,就认为是 晴空,否则认为有云影响。 具体应用时,应对常年平均值进行调整。
针对我国海区的特点,可以利用浮标、海上台站和船舶常规 监测数据对上述公式系数进行回归,得到适合我国海区的 MODIS 海温反演算法。
2019/1/27
4.3 热红外辐射计海表温度反演
2.反演方法
e.多角度反演方法 基本思想:不同角度观测目标,所经过的大气吸收 路径不同,因而受大气的影响不同,即利用目标吸收热 红外辐射的差异来消除大气的影响。
4.1 概述
※.微波和热红外波段海温测量的优缺点比较 方法 微波辐射计测量 热红外辐射计测量
可全天时、全天 分辨率较高,技术 候进行,受云影响 发展成熟(已达业务 较小,大气校正相 化运行程度); 对容易; 测量精度与分辨 在无云区进行,需 率较低,对表面粗 进行精确的大气校正。 糙度和降雨敏感;
海洋遥感
可见光传感器
• 借助于可见光(电磁波的一部分,波长范围是0.38~0.78 微米)实现遥感的仪器 • 特点是空间分辨能力高,对所获取的信息记录在相片上, 比较直观、分析解译较容易、如在测量沿岸水深和水团混 合带,海面石油污染时.可以获得比较精确的图像。 • 缺点是不具有全天时(只能在白天)、全天候(不能透过云雾) 的工作能力。 • 适宜于拍摄云图、观测海冰、海岸形态、沿岸流流向、波 浪折射、浅海测深、海岛和浅滩定位、测定海洋水色透明 度及叶绿素含量等。
•
•
红外传感器的特点是:空间分辨率高,大体上接近于可 见光传感器的水平;照片较直观、解译不很难;热红外传 感器具有全天时(即夜间也能工作)的工作能力。缺点是不 能透过云盖米至30厘米之间的电磁波称为微波,工作在这 一波长范围内的传感器称为微波传感器。各种微波辐射计、 微波散射计、雷达高度计、微波测视雷达和合成孔径雷达 都属于微波传感器。 • 微波有其特定的透射“窗口”。对云层、冰雪、地表植被 有一定的穿透能力;另一方面有水汽和氧的选择带,可以 直接测量大气参数。微波传感器特别适用于海洋,因为海 水是一种导体,微波对海水的导电性能很敏感,可以用微 波测量海水盐度。微波能穿透海冰,所以可以用微波测量 海冰厚度。微波对海面粗糙度也十分敏感.因此可用微波 测量海面风速、风向以及波浪的有关参数, 微波传感器 还可用来测定海面油膜的厚度,以上这些都是可见光和红 外传感器很难胜任的。 • • 微波遥感传感器有无源和有源之分 。
海洋环境监测
•
海洋航运 海洋工程
•
发展趋势
• 海洋遥感技术的出现,使海洋观测系统有了根本 性的转变,目前已逐步转向以卫星遥感为主,辅 以航空遥感、调查船调查、锚泊浮标和岸站系统 的现代海洋观测系统。 • 近20年来,海洋卫星遥感技术发展迅猛异常,并 取得了举世瞩目的成就。现已从实验阶段发展到 业务应用阶段。全世界共发射10多颗专用的海洋 卫星。我国于1998年发射“风云—1(02)”卫 星.其中有3个半通道用于海洋通道;并已立项发 射我国专门的海洋卫星。 • 当前,一个多层、立体、多角度、全方位和全天 候的对地观测网正在形成。
第二章海洋遥感原理与基础海洋遥感
n n in
Snell折射定律: n sin 1 / sin 2 c / v
n′表示电磁波在界面处传播速度和方向的变化,
在可见光范围可用折射仪测得; n〞表示电磁波在
介质中传播的衰减程度, n〞=kλ/4π 。
2024/3/15
2.1 与海洋遥感相关的基本概念
1.反射波段(VIS-VNIR)的相互作用机制
(2)海洋辐照度模型
太阳
b. 穿过海面的总下行辐照度模型
Ed ( ,0 ) Edd ( ,0 ) Eds ( ,0 )
大气
Edd ( ,0 ) Edd ( ,0 )(1 d )
d dsp f
1
2
dsp ( v h )
对于零度角入射:
入射角与折射角之和为90度
(入射角53.1度时出现):
2024/3/15
dsp
与折射率和入射角有关
(n 1) 2
v h
(n 1) 2
dsp
1 (n 1) 2
2 (n 1) 2
2.2 电磁波与海水相互作用机制
2024/3/15
海表
2.2 电磁波与海水相互作用机制
1.反射波段(VIS-VNIR)的相互作用机制
(2)海洋辐照度模型 – a.海面上到达海面的下行辐照度模型
• 到达海面的瑞利散射:
Lr ( ) E0 ( ) cos s toz ( ) t w ( ) to ( ) t aa ( )(1 t r0.95 ) 0.5
Rh
Evi cos n 2 sin 2 cos r sin 2
海洋遥感(OceanicRemoteSensing)
海洋遥感(OceanicRemoteSensing)第十一章海洋遥感(OceanicRemoteSensing)概述(Summary)一、海洋遥感及空间海洋观测历史背景(Backgroundofremotesensingandspatialoceanobservation):1.1957年苏联发射第一颗人造卫星(man-madesatellite)。
1960年NASA (NationalAeronauticsandSpaceAdministration,美国宇航局)发射了第一颗电视与红外(infrared)观测卫星。
1961年美国水星(Aqua)计划。
1973年Skylab证实了可见光(visiblelight)和近红外(nearinfrared)遥感对地球连续观测的能力。
1975年GEOS-3卫星高度计(SatelliteAltimeter)。
2.NOAA(NationalOceanicandAtmosphericAdministration,美国海洋大气局)1972-1976发射NOAA-1,2,3,4,5卫星,装载了红外扫描辐射计(infraredscatteringradiometer)和微波辐射计(microwaveradiometer),估计海表温度(seasurfacetemperature)、大气温度(atmospheretemperature)、湿度剖面(moistureprofile)。
1978NASA发射了三颗卫星,喷气动力实验室(JPL)研制的SeasatAGoddard空间飞行中心(GSFC)研制的TIROS-N和Nimbus-7卫星3.SeasatA海洋实验卫星装载了微波辐射计SMMR微波高度计(MicrowaveAltimeter)RA、微波散射计(MicrowaveScatterometer)SASS、合成孔径雷达(SyntheticApertureRadar)SAR、可见红外辐射计VIRR5种传感器,提供的海洋信息:SST、海面高度、海面风场、海浪(seawave)、海冰、海底地形、风暴潮(stormsurges)、水汽(vapour)和降雨(precipitation)等。
海洋遥感复习题
海洋遥感复习题1,绪论部分1, 遥感、海洋遥感遥感:高空或外层空间的各种平台上,运用各种传感器获取目标的电磁波信息,通过数据处理和分析,研究目标的属性与环境关系的一门现代应用技术科学。
利用物体反射或辐射电磁波的固有特性,通过观测电磁波信息达到识别物体及物体存在环境条件的技术。
海洋遥感:利用电磁波与大气和海洋的相互作用原理,从卫星或其他空间平台上观测和研究海洋。
2,海洋遥感发展的几个重要阶段、其标志;传统的海洋遥感:科学调查船20世纪中叶:航空技术推动海洋遥感卫星海洋遥感的三个阶段:探索阶段1970-1978,标志:载人飞船的搭载空间试验和利用陆地气象卫星探测海洋。
试验阶段1978-1985,标志:seasat-a,nimbus-7,tiros-n微波传感器、海色传感器和红外传感器为海洋卫星探测海洋奠定基础。
应用阶段1985-至今,标志:多颗海洋研究卫星发射,反演算法业务化,数据产品标准化。
3,主要的海洋遥感卫星;海洋地形有关的卫星:Geosat,TOPEX/POSEIDON海洋动力环境卫星:ERS-1,2 Radarsat JERS-1 ALMAZ Quikscat Envisat海洋水色卫星:Seastar IRS-p3 ROCSAT-1 HY-1 EOS-Terra EOS-Aqua气象观测卫星:DMSP TRMM Fengyu-1,2,3陆地观测卫星:SPOT Landsat series 中巴CERS4,海洋遥感数据的特点、与常规观测不同;特点:大面积同步观测,搞空间分辨率;长期观测;实时或准实时;船舶浮标不易抵达海区;微波传感器数据全天时、全天候观测。
不同:海洋动态变化;比常规信息小2-3个量级。
5,主动传感器、被动传感器;主动传感器:微博高度计、微博散射计、合成孔径雷达、激光雷达被动传感器:海色传感器、可见红外辐射计、微波辐射计2,海洋遥感基础1,卫星轨道(太阳同步轨道、静地卫星轨道);静地卫星;极轨卫星;2,遥感数据产品类型(Level 0, 1, 2 etc.);Level 0 未经处理的由传感器直接输出的数据Level 1未经处理的数据在一片与附加文件格式Level 2地球物理数据产品如SST等等。
(完整版)海洋遥感复习知识点,推荐文档
名词解释、填空1.海面亮温:低于实际物体的温度指物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度。
2.发射率:观测物体的辐射能量与同观测物体具有相同热力学温度的黑体的辐射能量之比根据发射率,=1黑体,0~1灰体3.大气气溶胶:悬浮在空气中的来自地球表面的小的液体或固体颗粒。
气溶胶类型:海洋型、陆地型、火山爆发自然(陆地海洋火山);人为(汽车尾气、污染物)4.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。
散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。
对可见光的影响较大。
米散射:当微粒的直径与辐射波长差不多时的大气散射。
气溶胶引起的,对波长依赖性很小无选择散射:云,所有光都被散射回来5.大气层结构简答,根据温度分布,垂向划分:对流层、平流层、中间层、热成层、外大气层1)对流层:有各种天气现象,强烈对流/温湿分布不均匀/航空活动区,对遥感最重要2)平流层/同温层:天气现象少/空气稳定/水汽、沙尘少,温度随高度增加而增加3)中间层:温度随高度增加而减少,对遥感的辐射传递几乎没影响4)热成层:温度随高度增加而增加,高度电离状态,短波电磁波被电离层折返回地面6.一类水体:浮游植物及其共变的碎屑主导海水光谱特性;二类水体:除浮游植物外的其他物质在海水光谱特性中起主导作用海洋初级生产力:把无机碳变成有机碳的单位时间的速率,和叶绿素浓度、光照、光照时间、光穿透距离有关7.遥感反射比(可见光、海色遥感):公式、向上辐亮度和向下辐照度之比,Rw和Ed之比归一化离水辐亮度:假设太阳在正上,把大气分子散射衰减消除的离水辐亮度8.黄色物质:有色可溶有机物,陆源(植被,棕黄酸),海洋(动物死亡分解)9.生物光学算法:通过离水辐亮度去推导海水中的各主分浓度的算法。
由海水上面的离水辐亮度推导叶绿素浓度、泥沙浓度、k490衰减系数、透明度等。
10.大气校正:由传感器接收到的辐亮度计算出离水辐亮度的过程Lt 是卫星接收的总辐射;第一项是离水辐亮度,接下来三项是大气路径辐射,分别是气溶胶的,分子的,两者都有的,Lwc 是白冒,Lsr 是太阳耀斑。
海洋遥感
长波辐射传输方程—多层τ的线性近似法和 Pade 近似法 微波辐射的特性: 1. 海面发射率 ε 是观测天顶角 θ、辐射计频率 v、极化方式、真实温度 Ts、风速 u 和风向 φ 的函数。 2. 影响海面发射亮温的因素:海面粗糙度和泡沫。 3. 平静海面,满足热动力平衡条件时: ε=1-ρ。 微波表面散射:在两种均匀介质的分界面上,当电磁波从一种介质射入时,在分界面上产生 的散射,叫表面散射。 微波体散射:当电磁波通过某一界面,从一种介质进入另一种介质时,在介质内部产生的散 射,叫体散射。 大气对微波的影响: 1. 在微波波段(1-300GHz 或 30cm-1mm) ,大气衰减主要是 O2 和 H2O 的吸收、大气微粒 (主要是水滴,包括云雾、霾和降水、冰粒和尘埃)的散射造成。对于云雨天气,还考 虑云和降雨的衰减作用。 2. 对于波长相对较长的微波,在大气和非降水的云中传输时,散射作用可忽略,只考虑大 气的吸收和发射。 3. 对于波长相对较短的微波,微粒散射作用不可忽略。 如: 波长>0.3cm 的微波, 直径<100 μm 的水滴对电磁波的衰减主要是水滴的吸收;当水滴直径>100μm(降水)时,散射 作用就很重要 。 天线:是把高频电流转换成无线电波,或把无线电波转换成高频电流的变换器,主要用来发 射和接收无线电波。 天线的特性——辐射效率和辐射方向函数 雷达发射机输出的功率馈送到天线后,通过天线孔径辐射到空间,由于阻抗匹配等因素,发 射功率 Pt 中只有部分功率 Prad 辐射出去。用辐射效率 η 来表示: η=Prad / Pt。 天线的方向性:某特定方向上获得的辐射强度与各向同性天线辐射强度之比。 天线增益: 表示为某一天线与标准天线得到同样功率时在某一方向上的功率密度之比。 描述 了副天线把能量聚集到一个窄的角度范围的能力。分方向增益和功率增益。 波束宽度:指辐射电磁场的大小从主瓣峰值下降 3dB 时 2 点之间的角度间隔。 雷达方程:
海洋科学认知—海洋遥感
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
气象数据监测
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
欧洲航天局Envisat卫星于4月22日拍到这张 墨西哥湾海面漂浮泄漏原油的照片,如图所示, 黑色的原油带距离路易斯安那州并不远。
大连海洋大学海洋环境工程学院 李微
4月25日,浮油面积扩大并发出微光
(MODIS)
大连海洋大学海洋环境工程学院 李微
在这张摄于4月28日的航空照片上,墨西哥 湾海面某处形成一条“原油河”。
大连海洋大学海洋环境工程学院 李微
海洋表面现象监测
大连海洋大学海洋环境工程学院 李微
其他应用实例介绍
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
舌状Байду номын сангаас角洲 人工截
流
黄河三角洲在上世纪六七十年代发现了丰厚的油 气资源,成为了我国第二大石油基地—胜利油田。 但是油田的勘探开发也随之带来周边沙环咀境的变化, 我们利用3S技术对黄河三角洲河口进行动态监测与 预报。
➢遥感概述 ➢海洋遥感概述 ➢海洋卫星 ➢应用实例
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
大连海洋大学海洋环境工程学院 李微
海洋遥感的应用
➢ 海洋渔业方面 ➢ 海洋水色环境监测 ➢ 海表温度监测 ➢ 海洋灾害监测与预报 ➢ 气象数据监测 ➢ 海洋表面现象监测
其它海洋参数的遥感反演--海洋遥感
化
✓ NDSI=(RefMODIS4-
雪
被
RefMODIS6)/(RefMODIS4+ RefMODIS6)
指 数
> 0.4;
✓ RefMODIS2 > 0.11;
✓ RefMODIS1 > 0.1
2023/12/10
8.2 海冰与冰山现象旳遥感探测
2.海冰与冰山旳遥感探测
(1)光学传感器旳观察措施
研究表白:频率在1.4GHz旳L波段是测量海水表面盐度 旳最佳波段,该波段对海表温度和风速旳敏感度较低。同步 能够采用S波段和C波段来修正海表盐度测量时海表温度和风 202速3/1旳2/1影0 响。
8.1 卫星海洋盐度测量
4.海洋盐度遥感测量旳影响原因分析
(2) 极化 方式 和入 射角
Ellison模 型得到旳 入射角40 度时,海 表亮温对 盐度旳敏 感度
4.海洋盐度遥感测量旳影响原因分析
Ellison模型得 到旳海表亮温 对盐度旳敏感 度随入射角旳 变化
2023/12/10
8.1 卫星海洋盐度测量
4.海洋盐度遥感测量旳影响原因分析
(3)盐度反演精度与亮温旳关系
在相对高温和高盐旳条件下,亮温对盐度更为敏感, 盐度旳反演效果很好(见图)。
• 较大旳亮温误差造成较大旳盐度反演误差;
• 云旳影响
1.4GHz频段上,云旳辐射和散射可利用瑞利散射模式解释。
2023/12/10
8.1 卫星海洋盐度测量
4.海洋盐度遥感测量旳影响原因分析
(4)其他影响海表微波辐射测量误差旳原因
• 表面粗糙度旳影响
可利用雷达和辐射计旳组合数据,降低其影响。
• 电离层旳影响
第十章卫星海洋遥感
悬浮物浓度(suspended matter concentration)、
叶绿素浓度(chlorophyll concentration)、 色素浓度(pigment concentration) 水色(ocean color)等多种海洋要素的监测,以及 大气剖面温度和湿度(atmosphere profile temperature and humidity)、 垂程水汽含量(vertical water vapor column thickness)、 可降雨量(total column precipitable water vapor)、 气溶胶光学厚度(aerosol optical thickness)等许多大气要素的监测。
二、遥感的工作过程
信息的获取
信息的接受
信息的处理
信息的应用
信息源
信息 获取
信息 传输
信息 处理
信息 应用
大 目
传感器
标
卫 星 地 面 站
图 像 数 据
应 用
气
平台
分析结果、图表 输出
接收 预处 理
用户应用 处理
三、遥感的分类
1、按遥感平台分 地面遥感:传感器设置在地面平台上 航空遥感:传感器设置在航空器上 航天遥感:传感器设置在环地球的航 天器上 航宇遥感:传感器设置在星际飞船上
第十章:卫星海洋遥感
一、遥感的定义
• 遥感一词来自英语 Remote Sensing,即“遥 远的感知”。 • 广义理解,泛指一切无接触的远距离探测,包 括对电磁场、力场、机械波(声波、地震波) 等的探测。 • 狭义的理解,遥感是应用探测仪器,不与探测 目标相接触,从远处把目标的电磁波特性记录 下来,通过分析,揭示出物体的特征性质及其 变化的综合性探测技术。 相对于传统接触式测量而言的。
海洋遥感——精选推荐
海洋遥感把传感器装载在人造卫星、宇宙飞船、飞机、火箭和气球等工作平台上,对海洋进行远距离非接触观测,取得海洋景观和海洋要素的图象或数据资料。
基本原理海洋不断地向周围辐射电磁波能量,同时,海面还会反射(或散射)太阳和人造辐射源(如雷达)照射其上的电磁波能量,利用专门设计的传感器,把这些能量接收、记录下来,再经过传输、加工和处理,就可以得到海洋的图象或数据资料。
基本性能海洋遥感系统必须具备如下性能:①具有同步、大范围、实时获取资料的能力,观测频率高。
这样可把大尺度海洋现象记录下来,并能进行动态观测和海况预报。
②测量精度和资料的空间分辨能力应达到定量分析的要求。
③具备全天时(昼夜)、全天候工作能力和穿云透雾的能力。
④具有一定的透视海水能力,以便取得海水较深部的信息。
遥感方式按照传感器工作方式,可以把海洋遥感划分为主动式和被动式两种。
主动式遥感,传感器向海面发射电磁波,然后接收由海面散射回来的电磁波,从散射回波中提取海洋信息或成象。
主动式传感器包括侧视雷达、微波散射计、雷达高度计、激光雷达和激光荧光计等。
被动式遥感,传感器不发射电磁波,只接收海面热辐射能量或散射太阳光和天空光能量,从这些能量中提取海洋信息或成象。
被动式传感器有各种照相机、可见光和红外扫描仪、微波辐射计等。
按工作平台划分,海洋遥感则可分为航天、航空和地面三种遥感方式。
发展概况海洋遥感始于第二次世界大战期间。
发展最早的是在河口海岸制图和近海水深测量中利用航空遥感技术。
1950年美国使用飞机与多艘海洋调查船协同进行了一次系统的大规模湾流考察,这是第一次在物理海洋学研究中利用航空遥感技术。
此后,航空遥感技术更多地应用于海洋环境监测、近海海洋调查、海岸带制图与资源勘测方面。
从航天高度上探测海洋始于1960年。
这一年美国成功地发射了世界第一颗气象卫星"泰罗斯-1"号。
卫星在获取气象资料的同时,还获得了无云海区的海面温度场资料,从而开始把卫星资料应用于海洋学研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释、填空1.海面亮温:低于实际物体的温度指物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度。
2.发射率:观测物体的辐射能量与同观测物体具有相同热力学温度的黑体的辐射能量之比根据发射率,=1黑体,0~1灰体3.大气气溶胶:悬浮在空气中的来自地球表面的小的液体或固体颗粒。
气溶胶类型:海洋型、陆地型、火山爆发自然(陆地海洋火山);人为(汽车尾气、污染物)4.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。
散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。
对可见光的影响较大。
米散射:当微粒的直径与辐射波长差不多时的大气散射。
气溶胶引起的,对波长依赖性很小无选择散射:云,所有光都被散射回来5.大气层结构简答,根据温度分布,垂向划分:对流层、平流层、中间层、热成层、外大气层1)对流层:有各种天气现象,强烈对流/温湿分布不均匀/航空活动区,对遥感最重要2)平流层/同温层:天气现象少/空气稳定/水汽、沙尘少,温度随高度增加而增加3)中间层:温度随高度增加而减少,对遥感的辐射传递几乎没影响4)热成层:温度随高度增加而增加,高度电离状态,短波电磁波被电离层折返回地面6.一类水体:浮游植物及其共变的碎屑主导海水光谱特性;二类水体:除浮游植物外的其他物质在海水光谱特性中起主导作用海洋初级生产力:把无机碳变成有机碳的单位时间的速率,和叶绿素浓度、光照、光照时间、光穿透距离有关7.遥感反射比(可见光、海色遥感):公式、向上辐亮度和向下辐照度之比,Rw和Ed之比归一化离水辐亮度:假设太阳在正上,把大气分子散射衰减消除的离水辐亮度8.黄色物质:有色可溶有机物,陆源(植被,棕黄酸),海洋(动物死亡分解)9.生物光学算法:通过离水辐亮度去推导海水中的各主分浓度的算法。
由海水上面的离水辐亮度推导叶绿素浓度、泥沙浓度、k490衰减系数、透明度等。
10.大气校正:由传感器接收到的辐亮度计算出离水辐亮度的过程Lt是卫星接收的总辐射;第一项是离水辐亮度,接下来三项是大气路径辐射,分别是气溶胶的,分子的,两者都有的,Lwc是白冒,Lsr是太阳耀斑。
11.归一化雷达散射截面:信号打在上面,考虑到雷达尺寸和距离的面积;,→维基百科的散射截面,归一化可以描述目标属性雷达散射截面:散射能量与入射能量之比,归一化雷达散射截面:除以面积后的雷达散射截面,。
12.布拉格散射条件:在弹性散射(elastic scattering)中: 入射光的能量没有损耗,但入射光的传播方向发生变化. 当入射光之波长(如X光)与物质晶格间距接近时,为所谓布拉格散射.共振条件:θsin2•=radarwaterkk或者:θλsin2•Λ=water,其中,k是波数,radarλ是雷达波长,Λ为海上波浪的波长,θ是入射角。
13.双尺度模型、组合模型(等价):组合是镜面和布拉格,双尺度是大尺度的海浪叠加小尺度滤波短无线电波。
即小的不规则的短波长叠加在较长、较大波浪上,双尺度模型既考虑了短波长毛细波的布拉格散射,又考虑了长重力波的影响;14.地球物理模式函数:描述微波海面归一化散射系数(归一化雷达散射截面)与风向、风速、入射角之间关系的函数的叫做地球物理模式函数。
散射计、sar用它来进行风速、风向反演;高度计进行风速反演。
σ高度计,反比~w0w SAR(单次测量,须知风向)\散射计(多次测量),正比25minϕσ\~15.高度计有关概念:大地水准面:接近地球表面的地球等势面海平面高度:大地水准面和海洋动力高度之和。
湾流、黑潮的地方比较大。
海面地形(动力高度):平均海面与大地水准面之差海平面:高潮时的海平面和低潮时海平面之间的中值海平面异常:海平面与平均海平面之差参考椭球:和地球表面最接近的椭球16.空间分辨率:空间分辨率是指像素所代表的的地面范围的大小,即扫描仪的瞬时视场,或地面物体能分辨的最小单元。
Hλ/D17.基尔霍夫定律:热平衡时,发射和吸收的相等18.海色卫星:生态、检测、动力19.卫星平台分类:1.简述海洋遥感极其主要研究内容利用电磁波与大气和海洋的相互作用原理,从卫星或其他空间平台上观测和研究海洋。
红外、微波、可见光研究海洋温度、水色、动力地形、风场、盐度、海洋现象的技术2.发展阶段78~85之前是探索阶段,航天技术,seasat,雨云号,泰勒斯85(geosat)-90 实验阶段实验设备,传感器上天90之后各种卫星成系列业务化运行,强调连续性、大量传感器3.主动传感器:高度ALT:Joson/Posedion,Topex,Geosat,HY-2/ALT散射SCAT:Quikscat, ERS/AMI(即可做scat又可做SAR),HY-2/SCAT,ADEOS/Seawinds,,NSCAT, Sea/SASS合成孔径雷达(SAR): ERS/AMI, Radarsat-1,2, HJ, JERS/SAR, CSAR(L波段),GF-3/SAR 被动传感器辐射计:1)红外:NOAA/AVHRR, ERS/ATSR, Terra Aqua/MODIS, Aqua,COCTS3.7μ,10μ,12μ2)可见(海色):OCTS, SeaFS, CZCS, MERIS, MODIS, COCTS, VPP/VIIR412,490,520,550,670,6853)微波: AMSR,SMMI,SMMR,SMOS5~10Hz SST1.4Hz 盐大于10 Hz风SSW22Hz 水汽微波辐射计:SSM,SMMR温度:AVHRR MODIS海色:merris,CZCS、MODISHy1:红外,cocts散射计、高度计、合成孔径雷达主动高度计被动风速、海面高度、温度、盐度、降雨4.与传统观测相比,简述卫星海洋遥感数据的主要特点。
作业有,大面积、大范围、长时间,经济,不能到达的地方(河口极地争议区),多传感器同时研究微波的话全天候,不受天气影响常规是接触性测量,有些地方无法到达,遥感是间接测量需要印证,数据都是反演出来的5.在可见光和近红外波段,大气最主要的散射作用是什么?6.最主要作用是散射可见光,散射,改变能量传播方向,包括瑞利、气溶胶红外(短波),水汽吸收和大气辐射微波:不考虑散射,水滴,电离层分波段说7.简述海洋遥感在海洋科学研究中的作用。
1)它是物理学、信息科学与海洋科学交叉学科,理论涉及电磁波与海洋大气的相互作用以及海洋/大气辐射传递;2)为海洋科学研究、海洋环境、气候变化预测与预报提供数据集;3)卫星海洋遥感的多传感器资料可促进海洋科学交叉学科发展;4)可以发现新的海洋现象,大尺度观测;如中尺度涡现象等8.按波长从大到小排列P,X,C,Ku,L,可见光,红外,并举例说明各个波段主要用在哪些卫星传感器P>L>S>C>X>KuL:盐sar一定穿透深度(军方)海洋不好用,不好散射、风很大才散射,主要微波辐射及测盐度。
Ku:散射计,低风速就能散射,敏感。
S、P、X、C、L:合成孔径雷达;Ku、C、X:散射计上,散射计主要是C;L:盐度,辐射计;可见光:海色传感器;红外:测温的传感器;9.微波为什么有极强的穿透云层的作用因为微波的高频的部分有散射,其他部分不考虑云因为对微波来说,微波1mm-1m波长比粒子直径大得多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被称为具有穿云透雾的能力。
衍射10.简述影响海面发射率的主要因素,并分析说明海洋遥感反演的哪些海洋环境参数与海面发射率有关观测条件:频率、波长,极化,入射角、盐度、风、温度、海面粗糙度都有关系盐度(小于1.4Hz L波段)、风、温度和发射率有关‘1.4GHZ:和SSS有关;6~10GHz:和SST有关;1>10GHZ :和SSW 有关;22GHz :测水汽。
是水汽吸收的通道。
11. 简述影响海色遥感反演的主要问题1)解决大气矫正问题,分子、气溶胶散射,尤其是气溶胶的影响怎么消除,其影响是不固定的很多是人为影响,大气的辐射量占卫星接收到的辐射量的90到95,由卫星测量的幅亮度,计算到海面的2)生物光学算法:一二类水体的问题,对二类水体组分是变化的,甚至溢出的12. 简述卫星高度计测量海浪有效波高和风速的原理前沿的斜率是海面波高标准差的函数(此函数可以通过拟合得到)。
有效波高是指再一次给定的观测中所测得的占波浪总个数三分之一的大波波高的平均值。
有效波高是海面波高标准差的4倍,即波高均方根的4倍。
kh H 431=测风速:由于卫星高度计是天底视主动式传感器,海面平静时回波信号最强。
海面在风的作用下能够产生厘米尺度的波浪,从而引起海面粗糙度(海面均方斜率)的变化。
海面起伏随风增大时,把信号反射回传感器的镜面面积越来越少,回波也就越来越弱。
雷达散射计对于大于或等于其工作波长(2cm )的海面粗糙度变化有敏感反应。
风越大,越矮,风和σ成反比13. 写出海面散射的布拉格散射条件并解释各个参数的物理含义。
简述散射计测量海面风场的物理机制以及产生风向多解的原因和解决办法共振条件:θsin 2•=radar water k k 或者:θλsin 2•Λ=radar ,其中,k 是波数,radar λ是雷达波长,Λ为海上波浪的波长,θ是入射角。
物理机制:布拉格共振。
原因:因为风向和归一化雷达后向散射系数的关系是余弦,不是单值函数,一个后向散射系数最多可以对应四个风向解。
解决办法:一般测4次,比如:41(2)、49(2),如果还消不掉,通过场的方法:求散度、旋度;(粗)预报风场:雷达的风向、散射计的风向,取和预报风向最接近的那个;中值滤波。
14.简述合成孔径雷达对海浪成像的主要机制。
倾斜机制:海浪波浪通常比较长,小尺度重力波在大尺度浪叠加,长波改变小尺度重力波入射角,雷达波和小尺度重力波相互作用流体动力学:小尺度波均匀分布在平面上,大浪的流体速度和小尺度作用,使得小尺度波分布不均匀,这个过程叫做流体动力学机制15.简述合成孔径雷达的主要海洋应用并简要说明其物理机制可用于观测波浪、涡流、风暴潮、内波扰动的海面、海面风及海冰。
现象产生幅聚、幅散,使得短尺度重力波分布改变,短尺度重力波和电磁波布拉格共振。
16.下图是有关大气衰减、黑体辐射随波长的关系,据此分析海色、海温和微波遥感的波段选择依据可见光白天3.7会受太阳影响厉害10.11.12测温用这个区,微波一般用厘米以上,波长越长,大气就没影响17.结合上图简要分析微波辐射计测量海面盐度的波段选择。
18.测盐度频率越小越好,用L波段,大于5的就不能用了因为变化不受盐度影响19.简述多通道微波辐射计测量海面风速的原理。