铝合金化学导电氧化与钝化的区别
铝合金表面电化学处理
铝合金表面电化学处理
铝合金表面电化学处理是指将铝合金表面经过电化学处理而形成一层薄膜,从而改变表面特性,来提升其耐腐蚀性,降低摩擦系数和抗冲击性能的过程。
铝合金表面电化学处理包括氧化处理、亚氧化处理和电泳处理三种方式。
氧化处理:将铝合金表面放入到温度为200-300℃的高温氧化液中,在高温氧化液中,铝合金表面上的氧化物会不断地生成,而氧化物则会随时间的延长而不断地加厚,当氧化物膜厚度达到所需要的尺寸时,便可以停止氧化处理。
氧化处理有利于提高铝合金表面的耐腐蚀性和抗冲击性能,其表面硬度也会增加,但它的摩擦系数会略微增加。
亚氧化处理:亚氧化处理通常分为盐酸亚氧化处理和硫酸亚氧化处理两种方式。
盐酸亚氧化处理,将铝合金表面放入到温度为80-90℃的盐酸溶液中,在盐酸溶液中,铝合金表面上的氧化物会不断地生成,而氧化物则会随时间的延长而不断地加厚,当氧化物膜厚度达到所需要的尺寸时,便可以停止处理。
相对于氧化处理,亚氧化处理可以形成一层更加致密的氧化物膜,因此其抗腐蚀性更好,同
时因为在亚氧化处理过程中,氧化物膜的厚度增加,摩擦系数也会增加。
电泳处理:电泳处理是一种特殊的电化学处理方法,它可以在较低温度下,用电解液中的电解质来形成薄膜,从而改变表面特性。
电泳处理中,在电解质的作用下,铝合金的表面会析出氧化物和氢氧化物,而这些氧化物和氢氧化物便会构成一层可以抵抗腐蚀的薄膜,此外,电泳处理还可以提高铝合金的抗冲击性能。
总之,铝合金表面电化学处理是一种有效的改善表面性能的方法,它可以显著提高铝合金的耐腐蚀性,抗冲击性和抗摩擦性,使其应用于航空航天、汽车制造、电子设备等领域更加广泛。
铝合金表面导电处理
铝合金表面导电处理铝合金是一种常用的金属材料,具有轻质、强度高、耐腐蚀等优点,广泛应用于航空航天、汽车制造、电子设备等领域。
然而,铝合金的表面往往存在导电性差的问题,限制了其在一些特定领域的应用。
因此,对铝合金表面进行导电处理成为了一个重要的研究方向。
铝合金表面导电处理的方法有很多种,下面将介绍几种常用的方法。
一、化学处理法化学处理法是一种常见的铝合金表面导电处理方法,其原理是通过在铝合金表面形成一层导电膜来提高其导电性能。
常用的化学处理方法有阳极氧化法和化学镀法。
阳极氧化法是指将铝合金表面置于电解液中,经过一定的电解条件,使铝合金表面形成一层致密的氧化膜,从而提高其导电性能。
化学镀法是通过在铝合金表面镀上一层导电性能较好的金属,如铜、镍等,来改善铝合金的导电性能。
二、物理处理法物理处理法是指通过物理手段改变铝合金表面的形貌和结构,从而提高其导电性能。
常用的物理处理方法有喷砂、刮砂和刷砂等。
这些方法可以增加铝合金表面的粗糙度,增加其与导电材料的接触面积,从而提高导电性能。
三、涂层处理法涂层处理法是指在铝合金表面涂覆一层导电性能较好的材料,如导电漆、导电胶等。
涂层可以填充铝合金表面的微孔,提高其导电性能。
此外,涂层还可以起到防腐蚀和抗氧化的作用,提高铝合金的使用寿命。
四、激光处理法激光处理法是一种新兴的铝合金表面导电处理方法。
激光可以在铝合金表面产生高能量密度的热源,使其表面迅速熔化和凝固,形成一层致密的导电层。
激光处理具有处理速度快、效果好等优点,但设备成本较高,需要专业的操作人员。
除了以上几种方法,还有一些其他的铝合金表面导电处理方法,如电镀法、电解沉积法等。
这些方法各有优缺点,可以根据具体需求选择合适的方法。
铝合金表面导电处理是提高铝合金导电性能的重要手段。
通过化学处理、物理处理、涂层处理和激光处理等方法,可以有效地提高铝合金表面的导电性能,拓展其在各个领域的应用。
随着科技的不断进步,铝合金表面导电处理技术也将不断创新和发展,为铝合金的应用提供更多可能性。
铝合金阳极氧化和导电氧化的区别
铝合金阳极氧化和导电氧化的区别1.铝合金阳极氧化是通过阳极电解的方式,在铝表面形成一层氧化膜。
Anodizing of aluminum alloy is a process of forming an oxide film on the surface of aluminum through anodic electrolysis.2.导电氧化是在金属表面涂覆一层导电涂层,以提高金属的导电性能。
Conductive oxidation is to coat a conductive layer on the surface of the metal to improve the conductivity of the metal.3.阳极氧化处理可以增强铝合金的耐腐蚀性和硬度。
Anodizing treatment can enhance the corrosion resistance and hardness of aluminum alloy.4.导电氧化处理可以提高金属的导电性,有效降低导电电阻。
Conductive oxidation treatment can improve theconductivity of the metal and effectively reduce theelectrical resistance.5.阳极氧化涂层具有一定的绝缘性能,可以用于绝缘材料的制造。
Anodized coatings have certain insulation properties and can be used for the production of insulating materials.6.导电氧化处理后的金属表面颜色多样,可以根据实际需要进行定制。
The surface color of the metal after conductive oxidation treatment is diverse and can be customized according toactual needs.7.阳极氧化和导电氧化都可以增加金属表面的附着力,延长金属的使用寿命。
螺丝镀层材质
螺丝镀层材质1.镀锌镀锌层为银白色,钝化后具有不同的颜色。
彩虹色钝化——耐蚀性好,膜层导电,装饰性差。
工艺成熟,应用最广泛,蓝白色钝化——装饰性好,耐蚀性差,适用于使用环境好、要求不高的零件银白色钝化——装饰性好,耐蚀性差,适用于使用环境好、要求不高的零件黑色钝化——有一定的装饰性、耐磨性好、耐蚀性好,适用于有一定装饰和耐磨要求的零件。
军绿色钝化——有一定的装饰性、耐蚀性很好、导电性差,适用于有一定外观装饰和好的防腐性能要求的零件。
对于钢和铜,锌是阳极性镀层,在一般环境下有较好的防护性能。
但在海水、海雾直接接触的情况下,其防护性能不如镉镀层。
使用温度不应超过250度,否则会产生镉脆,再低于70度的环境和高于70度的水中,耐蚀性显著下降。
在密封和空气不流通时,非金属挥发物(低分子羧酸、酚、醛、氨气)能腐蚀锌镀层。
促使其迅速产生“白霜”。
2.镀镍镀层为稍带淡黄的银白色,对于钢为阴极性镀层,因此,单层镍不宜作防护层,常以铜+镍+铬复合镀层作为防护层具有良好的抗氧化性,在300——600度条件下能防止零件氧化,常温下具有磁性,加热到360度失去磁性。
硬度低于铬,只能承受轻微的磨擦。
但镀层较硬不易扩善,因此经常做为贵金属电镀和许多装饰性镀层的中间层。
由于不同的添加剂可以镀出成分不同镍镀层,因此派生出许多性能不同的镀镍层并可以进行组合:暗镍、半光亮镍、光亮镍、高硫镍、黑镍、珍珠镍。
镀层特性目前,暗镍已很少使用,其优点:镀层无应力,缺点:外观差,不耐指纹,镀液对杂质敏感,工艺不稳定。
半光亮镍:优点是镀层基本无应力,可取代暗镍。
缺点是使用添加剂,含量难以化验,只能根据试片和经验判定,精确控制有一定的难度。
光亮镍:优点是外观装饰性好,可以达到镜面光亮,镀层硬度较高,缺点:镀层有脆性,不适用于需弯曲或垂直受力的零件,表面如果不在镀装饰铬,外观很容易氧化变色,耐磨性也不如铬层。
高硫镍:镀层夹杂的硫含量较高,镀层活性较强,作为半亮镍和两镍的中间层,提高镍层间的电位差,将纵向腐蚀转化为横向腐蚀,起到牺牲阳极的作用,现在已很少采用。
铝合金电化学腐蚀
铝合金电化学腐蚀
铝合金在某些特定条件下,比如湿润的环境中,可能会发生电化学腐蚀。
电化学腐蚀是一种由电化学反应引起的金属表面的腐蚀现象。
铝合金的电化学腐蚀主要是由以下两种类型的腐蚀反应引起的:
1.氧化还原反应:铝合金中的铝金属可以在氧气的存在下发生氧化还原反应。
在阳极区域,铝金属被氧化为铝离子并释放电子;而在阴极区域,氧气还原为氢离子,并接受之前释放的电子。
这个反应形成了氧化铝(Al2O3)的膜层,称为氧化腐蚀。
2.离子传导:湿润环境中的电解质(如水和盐)可以使铝离子在铝合金表面产生移动。
这些离子就像是电流的载体,沿着金属表面的微小通道传导。
这个过程称为电解质腐蚀。
要避免或减轻铝合金的电化学腐蚀,可以采取以下措施:
1.使用合适的防护涂层:在铝合金表面涂覆一层耐腐蚀的防护涂层,可以隔离铝合金与外界环境的接触,减少腐蚀的可能性。
2.表面处理:通过氧化、阳极氧化、阳极处理等方法改善铝合金表面的抗腐蚀性能。
3.控制环境:避免铝合金暴露在潮湿和腐蚀性环境中,如水、盐水、酸等。
4.使用合适的合金和处理方法:选择具有更好抗腐蚀性能的铝合金材料,并采取适当的加工和热处理方法,来提高铝合金的抗腐蚀性能。
5.定期检查和维护:定期检查铝合金部件的表面,及时修复和保护,防止腐蚀继续发展。
铝表面钝化处理
铝表面钝化处理铝表面钝化处理是一种常见的表面处理技术,旨在提高铝制品的耐腐蚀性能和装饰效果。
通过形成一层致密的氧化膜,可以有效防止铝材料与外界环境的接触,延长其使用寿命。
本文将从铝表面钝化处理的原理、方法和应用领域等方面进行详细介绍。
一、原理铝表面钝化处理的原理是利用铝材料与氧气发生氧化反应,在表面形成一层氧化膜。
这层氧化膜具有良好的附着力和耐腐蚀性,能够有效地保护铝材料。
此外,氧化膜还可以提供一种装饰效果,使铝制品具有更好的外观。
二、方法铝表面钝化处理的方法有多种,常见的包括化学钝化、阳极氧化和电化学钝化等。
1. 化学钝化化学钝化是将铝材料浸泡在含有特定化学物质的溶液中,通过化学反应形成氧化膜。
这种方法简单易行,成本较低,适用于大批量生产。
2. 阳极氧化阳极氧化是通过在铝材料表面形成氧化膜的过程。
首先将铝制品作为阳极,通过电解的方式在酸性溶液中进行处理。
在电解过程中,铝材料表面产生氧化反应,形成致密的氧化膜。
阳极氧化处理可以控制氧化膜的厚度和颜色,具有较好的装饰效果。
3. 电化学钝化电化学钝化是利用电流在铝材料表面产生氧化反应,形成氧化膜。
通过在电解槽中控制电流密度和处理时间,可以得到不同厚度和颜色的氧化膜。
这种方法适用于复杂形状的铝制品,但设备成本较高。
三、应用领域铝表面钝化处理在许多领域都有广泛的应用。
1. 建筑领域铝合金作为一种轻质、高强度的材料,被广泛用于建筑领域。
通过表面钝化处理,可以提高铝材料的耐候性和耐腐蚀性,使其适应各种恶劣的室外环境。
2. 汽车工业铝合金在汽车制造中的应用越来越广泛。
表面钝化处理可以提高铝材料的耐蚀性,延长汽车的使用寿命。
此外,氧化膜还可以提供一种装饰效果,使汽车外观更加美观。
3. 电子行业铝是电子产品中常见的材料之一。
通过表面钝化处理,可以提高铝材料的耐腐蚀性,保护电子器件的稳定性和可靠性。
4. 包装领域铝材料在食品包装和药品包装中得到广泛应用。
通过表面钝化处理,可以提高铝材料的耐腐蚀性,保持包装内物品的品质和安全。
铝及铝合金的钝化方法
铝及铝合金的钝化方法铝及铝合金是一种常见的金属材料,在工业生产和日常生活中被广泛使用。
然而,由于铝的活泼性,容易与氧气发生化学反应产生氧化物,导致铝表面的钝化问题。
这不仅会影响铝材料的外观,还会降低其耐腐蚀性能。
因此,钝化成为提高铝及铝合金耐蚀性的一项重要工艺。
钝化是指通过在金属表面形成一层致密、均匀的氧化膜,从而改善金属材料的耐蚀性能。
对于铝及铝合金而言,常用的钝化方法有化学钝化、电化学钝化和磷化钝化等。
首先是化学钝化。
化学钝化是指将铝材料浸泡于含有氟硅酸钠、硝酸铝等活性成分的镁铝钠水溶液中。
这种方法可以在铝表面形成一层厚约0.01-0.02毫米的氧化膜,提高铝的耐蚀性能。
在工业生产中,化学钝化可以通过喷涂、浸泡、喷淋等方式进行。
该方法的优点是成本低、操作简便,适用于大批量铝材料的钝化处理。
其次是电化学钝化。
电化学钝化是指通过电解的方式,在铝材料表面形成致密、均匀的氧化膜。
在这种方法中,铝材料被作为阳极,在硫酸铝溶液中通以直流电流,使铝表面发生氧化反应,生成保护性的氧化膜。
电化学钝化的优点是能够控制氧化膜的厚度和质量,可选用不同的电解液和工艺参数来满足不同要求。
然而,电化学钝化需要特定的设备和技术,成本较高,适用于对钝化层质量要求较高的特殊场合。
最后是磷化钝化。
磷化钝化是指将铝材料浸泡于含有磷酸盐和硝酸等成分的酸性溶液中,通过与金属铝发生化学反应,在铝表面形成一层磷化层。
这种磷化层具有良好的耐蚀性和耐磨性,同时还能增加铝表面的润滑性。
磷化钝化适用于特殊要求的铝合金,如航空航天、汽车等行业中使用的铝材料。
磷化钝化的优点是蚀齿性好、成本低、工艺简便。
总之,对于铝及铝合金的钝化处理,化学钝化、电化学钝化和磷化钝化是常见的方法。
不同的钝化方法适用于不同的应用场合,通过选择合适的钝化方法,可以有效提高铝及铝合金的耐蚀性能,延长其使用寿命。
在实际应用中,还需要结合具体材料的性质和要求,选择适合的钝化工艺参数和设备条件,确保钝化效果的稳定和可靠。
铝合金 本色导电氧化
铝合金本色导电氧化
铝合金本色导电氧化通常指的是在铝合金表面进行的一种化学导电氧化处理,旨在提高其电磁屏蔽性能和耐腐蚀性。
具体来说,铝合金本色导电氧化涉及以下几个要点:
1. 氧化膜特性:化学导电氧化后的氧化膜无色透明,膜层厚度较薄,约为0.3~0.5μm,因此具有较好的导电性。
这使得经过导电氧化处理的铝合金部件适用于需要保持一定导电性的场合。
2. 工艺流程:铝合金本色导电氧化的典型工艺流程包括:除油、水洗、碱液腐蚀、精蚀、硝酸酸洗等步骤,最终形成一层氧化铝膜。
3. 影响因素:溶液温度和氧化时间是影响导电氧化质量的两个主要因素。
溶液温度过高可能会导致成膜速度加快,但同时氧化膜容易出现粉化等问题。
4. 与阳极氧化的区别:化学导电氧化(化学氧化)不需要通电,是通过化学反应在铝合金表面形成氧化膜的过程,而阳极氧化则需要在外加电流的作用下进行。
综上所述,铝合金本色导电氧化是一种有效的表面处理方法,它不仅能够提升铝合金的耐腐蚀性和电磁屏蔽能力,还能够保持材料的本色和良好的导电性,适合在电子设备等领域应用。
标准 铝合金 导电氧化
标准铝合金导电氧化
铝合金导电氧化的标准过程如下:
1.清洗:将铝合金件经过碱性清洗、酸性清洗和去油处理,去除表面的杂质和油污。
2.阳极化:将清洗后的铝合金件作为阳极,放置在电解槽中,与阴极(通常是铝或不锈钢)相连,形成电极系统。
3.电解液:通常使用铬酸盐溶液,该溶液具有导电性和高氧化性。
4.通电:接通电源,使铝合金件与电解液中的阴极形成电化学反应。
5.氧化膜生成:在通电的情况下,铝合金表面会逐渐形成一层氧化膜。
6.膜的厚度控制:可以通过调整通电时间和电流强度来控制氧化膜的厚度。
7.后处理:去除表面多余的电解液,并进行必要的清洗和干燥处理。
导电氧化的主要优点是可以在铝合金表面形成一层具有高硬度、耐磨性和耐腐蚀性的氧化膜,从而提高铝合金的表面质量和耐用性。
此外,电氧化过程中产生的氧化膜具有导电性,可以提高铝合金的导电性能。
需要注意的是,不同的铝合金类型和用途可能需要不同的导电氧化处理方法。
在进行导电氧化处理时,应选择合适的电解液、电流和电压等参数,以确保得到高质的氧化膜并达到预期的处理效果。
制表:审核:批准:。
铝及铝合金的电化学氧化
铝及铝合金的电化学氧化(导电氧化):在电解质溶液中,具有导电表面的制件置于阳极,在外电流的作用下,在制作表面形成氧化膜的过程称为阳极氧化,所产生的膜为阳极氧化膜或电化学转化膜.电化学氧化膜与天然氧化膜不同,氧化膜为堆积细胞结构,每个细胞为一个六角柱体,其顶端为一个圆弧形且具六角星形的细孔截断面.氧化膜有两层结构.靠近基体金属的是一层致密且薄,厚度为0.01~0.05μm的纯AL2O3膜,硬度高,此层即为阻挡层;外层为多孔氧化膜层,由带结晶水的AL2O3组成,硬度较低.电化学氧化按电解液的主要成分可分为:硫酸阳极氧化,草酸阳极氧化,铬酸阳极氧化;按氧化膜的功能可分为:耐磨膜层,耐腐蚀膜层,胶接膜层,绝缘膜层,瓷质膜层及装饰氧化.另外铝的表面处理可以用电镀的方式,提高硬度先镀底铜再镀硬铬,装饰可以镀装饰铬,另外阳极氧化也可进行着色处理《材料工程丛书-表面处理手册》1 氧化染色原理众所周知,阳极氧化膜是由大量垂直于金属表面的六边形晶胞组成,每个晶胞中心有一个膜孔,并具有极强的吸附力,当氧化过的铝制品浸入染料溶液中,染料分子通过扩散作用进入氧化膜的膜孔中,同时与氧化膜形成难以分离的共价键和离子键。
这种键结合是可逆的,在一定条件下会发生解吸附作用。
因此,染色之后,必须经过封孔处理,将染料固定在膜孔中,同进增加氧化膜的耐蚀、耐磨等性能。
2 阳极氧化工艺对染色的影响在氧化染色整个流程中,因为氧化工艺原因造成染色不良是比较普遍的。
氧化膜的膜厚和孔隙均匀一致是染色时获得均匀一致颜色的前提和基础,为获得均匀一致的氧化膜,保证足够的循环量,冷却量,保证良好的导电性是举足轻重的,此外就是氧化工艺的稳定性。
硫酸浓度,控制在180—200g/l。
稍高的硫酸浓度可促进氧化膜的溶解反应加快,利于孔隙的扩张,更易于染色;铝离子浓度,控制在5—15 g/l。
铝离子小于5g/l,生成的氧化膜吸附能力降低,影响上色速度,铝离子大于15g/l时,氧化膜的均匀性受到影响,容易出现不规则的膜层。
铝合金表面处理常见工艺
铝合金表面处理常见工艺铝合金以及铝型材的使用已经非常的广泛,为了满足我们的具体使用需求,在使用这些材质时,需要对其表面进行相应的处理,来提高铝合金材质的表面美观度以及使用性能.下面是有关铝合金表面处理常见工艺。
1、喷砂,主要作用是表面清理,在涂装(喷漆或喷塑)前喷砂可以增加表面粗糙度,对附着力提高有一定贡献,但贡献有限,不如化学涂装前处理。
2、着色:对铝进行上色主要有两种工艺:一种是铝氧化上色工艺,另外一种是铝电泳上色工艺。
在氧化膜上形成各种颜色以满足一定使用要求如光学仪器零件常用着黑色纪念章着上金黄色等。
3、导电氧化(铬酸盐转化膜)——用于既要防护又要导电的场合。
4、化学氧化:氧化膜较薄,厚度约为0.5~4微米且多孔,质软,具有良好的吸附性,可作为有机涂层的底层,但其耐磨性和抗蚀性能均不如阳极氧化膜;铝及铝合金化学氧化的工艺按其溶液性质可分为碱性氧化法和酸性氧化法两大类。
按膜层性质可分为:氧化物膜、磷酸盐膜、铬酸盐膜、铬酸-磷酸盐膜。
5、电化学氧化,铝及铝合金的化学氧化处理设备简单,操作方便,生产效率高,不消耗电能,适用范围广,不受零件大小和形状的限制。
氧化膜厚度约为5~20微米(硬质阳极氧化膜厚度可达60~200微米),有较高硬度,良好的耐热和绝缘性,抗蚀能力高于化学氧化膜,多孔,有很好的吸附能力。
6、喷涂:用于设备的外部防护、装饰通常都在氧化的基础上进行。
铝件在涂装前应进行前处理才能使涂层和工件结合牢固,一般的有三种方法1、磷化(磷酸盐法)2、铬化(无铬铬化)3、化学氧化。
7:阳极氧化:就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。
刷镀合用于局部镀或修复。
滚镀合用于小件,如紧固件、垫圈、销子等。
通过电镀,可以在机械制品上获得装饰保护性和各种功能性的表面层,还可以修复磨损和加工失误的工件。
电镀液有酸性的、碱性的和加有铬合剂的酸性及中性溶液,不管采用何种镀覆方式,与待镀制品和镀液接触的镀槽、悬挂具等应具有一定程度的通用性。
阳极氧化、化学氧化(钝化,铬化)以及区别
☆设备简单、操作方便、价格便宜。
☆不影响工件尺寸。
★转化膜厚度
铝合金表面的化学转化膜较薄约0.5~4um,转化膜是一种凝胶体,很难直接测量,通常只是称量工件化学氧化前后的重量,或以表面色泽和盐雾试验来判断氧化膜的耐蚀能力。
★划伤后的防腐功能
铝合金表面的化学转化膜是一种凝胶体,此胶体在转化膜划伤后可以移动,划伤痕周围的凝胶会移动至划伤表面,结合在一起,继续
、阻挡铝合金被腐蚀,仍然有防腐色、白色、草绿色、金黄色、彩虹色,转化膜的最终色泽,由采用的转化膜药水、操作工艺条件有关。
★为什么要进行铝合金的化学转化膜处理?
☆加强铝合金的防锈能力。
☆可以起稳定接触电阴的作用。(曾经一客户产品要求导电氧化,其目的就是起稳定接触电阻及导电作用)
☆转化膜较薄(约0.5~4um),质软、导电、多孔,有良好的吸附能力,通常做为油漆或其他涂料的底层。
精细加工件在前处理工序中需要注意的问题:精细加工件虽然表面的自然氧化膜才初生成、较易清除,但细腻重,特别是孔眼内及其周围(因机加工过程中润滑需要而添加的),这类工件必须先经有机溶剂清洗,若直接用碱洗不但油腻重难以除净,且精细加工面承受不了长时间的强碱腐蚀,结果还会影响到工件表面的粗糙程度和公差的配合,最终成为废品。
3、阳极氧化与导电氧化的区别
1.阳极氧化是在通高压电的情况下进行的,它是一种电化学反应过程;导电氧化(又叫化学氧化)不需要通电,而只需要在药水里浸泡就行了,它是一种纯化学反应。
2.阳极氧化需要的时间很长,往往要几十分钟,而导电氧化只需要短短的几十秒。
3.阳极氧化生成的膜有几个微米到几十个微米,并且坚硬耐磨,而导电氧化生成的膜仅仅0.01—0.15微米左右。耐磨性不是很好,但是既能导电又耐大气腐蚀,这就是它的优点。
钝化及阳极氧化的资料
钝化及阳极氧化的资料钝化及阳极氧化的资料-----------------------作者:-----------------------日期:钝化【dùn huà】钝化的定义一种活性金属或合金,其中化学活性大大降低,而成为贵金属状态的现象,叫钝化。
金属由于介质的作用生成的腐蚀产物如果具有致密的结构,形成了一层薄膜(往往是看不见的),紧密覆盖在金属的表面,则改变了金属的表面状态,使金属的电极电位大大向正方向跃变,而成为耐蚀的钝态。
如Fe→Fe++时标准电位为-0.44V,钝化后跃变到+0.5~1V,而显示出耐腐蚀的贵金属性能,这层薄膜就叫钝化膜。
钝化的机理我们知道,铁、铝在稀HNO3或稀H2SO4中能很快溶解,但在浓HNO3或浓H2SO4中溶解现象几乎完全停止了,碳钢通常很容易生锈,若在钢中加入适量的Ni、Cr,就成为不锈钢了。
金属或合金受一些因素影响,化学稳定性明显增强的现象,称为钝化。
由某些钝化剂(化学药品)所引起的金属钝化现象,称为化学钝化。
如浓HNO3、浓H2SO4、HClO3、K2Cr2O7、KMnO4等氧化剂都可使金属钝化。
金属钝化后,其电极电势向正方向移动,使其失去了原有的特性,如钝化了的铁在铜盐中不能将铜置换出。
此外,用电化学方法也可使金属钝化,如将Fe置于H2SO4溶液中作为阳极,用外加电流使阳极极化,采用一定仪器使铁电位升高一定程度,Fe就钝化了。
由阳极极化引起的金属钝化现象,叫阳极钝化或电化学钝化。
金属处于钝化状态能保护金属防止腐蚀,但有时为了保证金属能正常参与反应而溶解,又必须防止钝化,如电镀和化学电源等。
金属是如何钝化的呢?其钝化机理是怎样的?首先要清楚,钝化现象是金属相和溶液相所引起的,还是由界面现象所引起的。
有人曾研究过机械性刮磨对处在钝化状态的金属的影响。
实验表明,测量时不断刮磨金属表面,则金属的电势剧烈向负方向移动,也就是修整金属表面可引起处在钝态金属的活化。
铝及铝合金氧化处理(2)
铝及其合金的氧化处理铝及其合金的氧化处理有化学氧化与电化学氧化两种,化学氧化得到的氧化膜薄,质软不耐磨,抗蚀性差,一般不单独使用,要作为油漆的良好底层。
电化学氧化处理可得到较厚的硬度高的氧化膜,耐热性、绝缘性和抗腐蚀性均好于化学氧化膜,还可染色。
化学氧化处理酸性化学氧化配方组分用量组分 g/L85%H3PO4 50~60ml/L (NH4)2HPO4 2~2.5CrO3 20~25g/L H3BO3 1~1.2NH4HF2 3~3.5g/L温度为30~36℃;时间为3~6min。
说明无色至红绿色,3~4μm,氧化后零件尺寸无变化,适用于各种铝及铝合金。
配方2组分 g/L 组分 g/L85%H3PO4 45 NaF 3CrO3 6温度为20~35℃;时间为10~15min。
说明膜薄、韧性好,抗蚀能力较强,氧化后不需封闭处理,适用于氧化后需要变形的铝及其合金。
碱性化学氧化配方组分 g/L 组分 g/LNa2CO3 50 NaOH 2~2.5Na2CrO3 15温度为80~100℃;时间为10~20min。
说明膜钝化后为金黄色厚度0.5~1适用于铝、铝镁、铝锰合金的氧化,可做油漆底层。
化学氧化后填充处理酸性氧化后处理配方K2Cr2O730~50g/L;温度为90~95℃;时间为5~10min。
说明烘烤温度不高于70℃,适用于酸性氧化pH值=6~6.7。
碱性氧化后钝化处理配方温度为室温;时间为5~15s。
说明烘烤温度不高于50℃。
硫酸阳极氧化直流电氧化配方98%H2SO4 180~200g/L;温度为15~26℃;阳极电流密度为0.8~1.5A/dm2;电压为13~22V;时间为20~40min;阴极材料为铝板。
说明用于铝及铝合金防护氧化。
交流电阳极氧化配方98%H2SO4 130~150g/L;温度为13~26℃;氧化时间为40~50min;电压为18~28V;电流密度为1.5~2.0A/dm2。
加添加剂的硫酸阳极氧化配方组分 g/L 组分 g/L98%H2SO4 150~200 H2C2O4·2H2O 5~6温度为15~25℃;电压为18~24V;电流密度为0.8~1A/dm2。
铝及铝合金的化学导电氧化
铝及铝合金的化学导电氧化铝及铝合金的化学导电氧化1 工艺流程零件验收→初步准备→装挂→化学除油→温水洗→冷水洗→出光→冷水洗→碱腐蚀→温水洗→冷水洗→出光→冷水洗→导电氧化→冷水洗→温水洗→干燥→拆卸→检验→包装。
2 工艺流程说明2.1 验收零件的表面质量应符合设计图纸规定。
点焊组合件应无焊点发黑的现象。
板料应无用砂纸打磨包铝层被破坏的现象。
如有碰伤及划伤等的情况应事先提出,协调完毕才可进行下道工序。
碰伤或划伤的痕迹在氧化后的彩虹色膜层中会显得很清晰。
2.2 初步准备用汽油、酒精、丙酮或硝基稀料擦洗零件表面的油脂及标记。
清除保护胶纸或胶膜。
2.3 装挂零件装挂可采用铝丝、钛材、尼龙或PVC等制成的挂具。
形状复杂零件应注意,凹部向上,以避免形成气袋,夹具与零件接点应尽量小,防止出现大的夹具印。
处理过程中可利用改变装夹点来使夹具印完全消失。
2.4 化学除油磷酸钠Na3PO4·12H2O(工业级) 50~70 g/L硅酸钠Na2SiO3(工业级) 25~35 g/L十二烷基磺酸钠8~12 g/LT 75~85 ℃t 8~12 min2.5 温水洗水温为35~60℃之间。
2.6 出光硝酸HNO3(d=1.42)(工业级) 300~500 g/L铬酐CrO3(化学级) 5~15 g/LT 室温t 出光为止2.7 碱腐蚀氢氧化钠NaOH(工业级) 20~35 g/L碳酸钠Na2CO3(工业级) 20~30 g/LT 50~60 ℃t <2min2.8 导电氧化⑴配方一:铬酐CrO3(化学级) 3.5~4.0 g/L重铬酸钠Na2Cr2O7(化学级) 3.0~3.5 g/L氟化钠NaF(化学级) 1 g/LT 35~50 ℃t 3~8 min此配方中铬酐和重铬酸钠是生成氧化膜的主要成分.应随着使用过程的消耗,按分析结果不断添加。
如果含量过低则影响膜的颜色,而且结合力不牢。
氟化钠是活性剂,在氧化中起催化作用。
铝合金 表面处理 导电
铝合金表面处理导电铝合金是一种轻质、高强度的材料,广泛应用于航空航天、汽车制造、建筑等领域。
然而,铝合金表面的氧化膜会对其导电性能造成影响。
因此,为了提高铝合金的导电性能,需要进行表面处理。
一种常见的铝合金表面处理方法是阳极氧化。
阳极氧化是通过在铝合金表面形成一层氧化膜,从而增加其表面硬度和耐腐蚀性能。
同时,阳极氧化还可以提高铝合金的导电性能。
在阳极氧化过程中,铝合金件作为阳极,在电解液中施加电流,通过氧化反应形成氧化膜。
这层氧化膜具有多孔结构,可以提高铝合金的导电性能。
除了阳极氧化,还有其他一些表面处理方法可以提高铝合金的导电性能。
例如,化学镀镍是一种常用的方法。
化学镀镍是将铝合金浸入含有镍离子的溶液中,利用化学反应在铝合金表面形成一层镍膜。
这层镍膜具有良好的导电性能,可以提高铝合金的导电性能。
还可以采用电镀方法来进行铝合金表面处理。
电镀是将铝合金浸入含有金属离子的溶液中,利用电流沉积金属在铝合金表面,形成一层金属膜。
这层金属膜具有良好的导电性能,可以提高铝合金的导电性能。
除了上述表面处理方法,还可以利用有机涂层来提高铝合金的导电性能。
有机涂层是将导电性良好的有机材料涂覆在铝合金表面,形成一层薄膜。
这层薄膜具有良好的导电性能,可以提高铝合金的导电性能。
总结起来,铝合金表面处理对于提高其导电性能至关重要。
阳极氧化、化学镀镍、电镀和有机涂层等表面处理方法可以有效提高铝合金的导电性能。
这些表面处理方法不仅可以提高铝合金的导电性能,还可以增加其表面硬度和耐腐蚀性能,从而提高铝合金的整体性能。
在实际应用中,可以根据具体需求选择合适的表面处理方法,以达到最佳的导电效果。
铝合金 表面处理 导电
铝合金表面处理导电铝合金是一种常见的金属材料,具有轻质、强度高、耐腐蚀等优点,广泛应用于各个领域。
然而,铝合金的表面处理对于其导电性能起着至关重要的作用。
本文将从铝合金的表面处理对导电性能的影响、常见的铝合金表面处理方法以及其优缺点等方面进行探讨。
铝合金的表面处理对其导电性能具有重要影响。
铝合金的表面处理能够有效地提高其导电性能,使其更适用于需要良好导电性的场合。
一般来说,铝合金表面处理主要是通过形成一层导电性能良好的氧化层来实现的。
这种氧化层可以提高铝合金的导电性,同时还能够增强其耐腐蚀性能,延长使用寿命。
常见的铝合金表面处理方法有阳极氧化、化学氧化、电镀等。
阳极氧化是最常见的一种表面处理方法,通过在铝合金表面形成氧化铝层来提高导电性能。
阳极氧化处理具有工艺简单、成本低廉等优点,但其氧化层较薄,耐腐蚀性相对较差。
化学氧化是一种通过化学反应在铝合金表面形成氧化层的方法,可以提高导电性能和耐腐蚀性能。
电镀是将一层金属沉积在铝合金表面,形成导电性良好的金属层。
这种方法能够提高铝合金的导电性能,但成本较高。
不同的表面处理方法具有各自的优缺点。
阳极氧化处理简单、成本低廉,适用于大批量生产。
化学氧化处理能够形成较厚的氧化层,提高耐腐蚀性能,但工艺复杂,成本较高。
电镀方法能够形成导电性良好的金属层,但成本较高,且不适用于大批量生产。
因此,在实际应用中需要根据具体要求选择合适的表面处理方法。
除了上述表面处理方法外,还有一些新兴的表面处理技术被应用于铝合金的导电性能提升。
例如,热喷涂技术可以在铝合金表面形成导电性能良好的涂层,提高其导电性能和耐腐蚀性能。
激光表面处理技术可以在铝合金表面形成微纳米级的结构,提高其导电性能和光吸收能力。
这些新技术的应用为铝合金的导电性能提升提供了新的途径。
铝合金的表面处理对其导电性能具有重要影响。
不同的表面处理方法具有各自的优缺点,需要根据具体要求选择合适的方法。
此外,新兴的表面处理技术为铝合金的导电性能提升提供了新的途径。
铝单板表面处理阳极氧化和化学氧化的区别
★阳极氧化的概念:铝及其合金在相应的电解液和特定的工艺条件下,由于外加电流的作用下,在铝制品(阳极)上形成一层氧化膜的过程.阳极氧化如果没有特别指明,通常是指硫酸阳极氧1、阳极氧化的作用☆防护性☆装饰性☆绝缘性☆提高与有机图层的结合力.安徽铝方通厂家☆提高与无机覆盖层的结合力☆开发中的其它功能2、铝合金的化学转化膜处理(化学氧化,钝化,铬化)★铝合金的化学转化膜通过化学氧化取得,可参考美军标MIL-C-5541。
★为什么要进行铝合金的化学转化膜处理☆加强铝合金的防锈能力。
☆可以起稳定接触电阴的作用。
(曾经一客户产品要求导电氧化,其目的就是起稳定接触电阻及导电作用)☆转化膜较薄(约0.5~4um),质软、导电、多孔,有良好的吸附能力,通常做为油漆或其他涂料的底层。
☆不改变材料的机械性能。
☆设备简单、操作方便、价格便宜。
安徽双曲铝单板☆不影响工件尺寸。
★转化膜厚度铝合金表面的化学转化膜较薄约0.5~4um,转化膜是一种凝胶体,很难直接测量,通常只是称量工件化学氧化前后的重量,或以表面色泽和盐雾试验来判断氧化膜的耐蚀能力。
★划伤后的防腐功能铝合金表面的化学转化膜是一种凝胶体,此胶体在转化膜划伤后可以移动,划伤痕周围的凝胶会移动至划伤表面,结合在一起,继续、阻挡铝合金被腐蚀,仍然有防腐功能。
★颜色铝合金化学转化膜的色泽有灰色、白色、草绿色、金黄色、彩虹色,转化膜的最终色泽,由采用的转化膜药水、操作工艺条件有关。
3、阳极氧化与导电氧化的区别1).阳极氧化是在通高压电的情况下进行的,它是一种电化学反应过程;导电氧化(又叫化学氧化)不需要通电,而只需要在药水里浸泡就行了,它是一种纯化学反应。
2).阳极氧化需要的时间很长,往往要几十分钟,而导电氧化只需要短短的几十秒。
3).阳极氧化生成的膜有几个微米到几十个微米,并且坚硬耐磨,而导电氧化生成的膜仅仅0.01—0.15微米左右。
耐磨性不是很好,但是既能导电又耐大气腐蚀,这就是它的优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝合金化学导电氧化与钝化的区别
摘要:
1.导电氧化与钝化的概念区分
2.铝合金化学导电氧化的过程与特点
3.铝合金钝化的过程与特点
4.两者在实际应用中的区别与选择
正文:
在我们日常生活中,铝合金产品的应用越来越广泛,其化学导电氧化与钝化处理在很大程度上影响着产品的性能和使用寿命。
本文将对铝合金化学导电氧化与钝化进行详细解析,帮助大家了解它们之间的区别,并在实际应用中做出合理的选择。
首先,我们来了解一下导电氧化与钝化的概念区分。
导电氧化是指在铝合金表面通过化学方法形成一层具有导电性的氧化膜,这层氧化膜可以提高铝合金的抗氧化能力、耐磨性和抗腐蚀性。
而钝化则是指在金属表面形成一层不易被进一步氧化的稳定氧化膜,以降低金属的腐蚀速率。
接下来,我们来探讨铝合金化学导电氧化的过程与特点。
导电氧化过程中,铝合金表面与氧化剂发生反应,形成一层致密的氧化膜。
这层氧化膜具有一定的导电性,可以保证铝合金的正常使用。
同时,氧化膜还能提高铝合金的硬度、耐磨性和抗腐蚀性,从而延长产品寿命。
再来看看铝合金钝化的过程与特点。
钝化过程主要是通过化学处理,使铝合金表面形成一层稳定性较高的氧化膜。
这层氧化膜能够有效地阻止进一步的
氧化反应,降低腐蚀速率。
钝化处理后的铝合金在抗氧化、抗腐蚀方面具有更好的性能。
最后,我们来讨论两者在实际应用中的区别与选择。
导电氧化主要用于保证铝合金的导电性能,同时提高其耐磨、抗腐蚀性能。
而钝化则更注重提高铝合金表面的稳定性,降低腐蚀速率。
在实际应用中,根据不同的需求,我们可以选择合适的处理方法。
例如,对于要求高抗氧化性能和耐磨性的铝合金产品,可以选择导电氧化处理;对于要求高稳定性、抗腐蚀性能的产品,可以选择钝化处理。
总之,铝合金化学导电氧化与钝化在提高铝合金性能和延长使用寿命方面具有重要作用。