室外风环境模拟分析报告
十七中室外风环境模拟分析实施报告
室外风环境模拟分析报告北京市第十七中学分校改扩建工程建筑专业主持人:(设计总负责人)_____________________________审定人:______________________________校审人:________________________________计算人:________________________________北京中帝恒成建筑设计有限公司2016年02月18日1建筑概况 ....................................................................................... 2..2评价依据 ....................................................................................... 2..3•分析方法....................................................................................... 2..3.1原理概述 (2)3.2模拟软件 (3)3.3计算原理 (3)3.4模型设置 (5)3.5参数设置 (5)4评价标准 ....................................................................................... 6..5模拟结果和分析 ................................................................................ 6..5.1风环境模拟模型 (6)5.2工况1 (冬季平均风速工况) (7)5.3工况2 (夏季平均风速工况) (9)5.4工况3 (过渡季平均风速工况) .............................................................. .10 ........6结论 ........................................................................................... 1.1.1建筑概况工程名称北京市第十七中学分校改扩建工程工程地点:北京市朝阳区第十七中学百子湾校区内气候子区寒冷建筑面积地上5861.93 m2地下3321.8 m2建筑层数地上5 地下2建筑高度地上18.0m 地下8.4m北向角度0 °2评价依据1. 北京市《绿色建筑评价标准》DB1仃825-20112. 《民用建筑设计通则》GB 50352 —20053. 《民用建筑供暖通风与空气调节设计规范》GB50736 —20124. 《实用供热空调设计手册》3分析方法3.1 原理概述建筑群和高大建筑物会显著改变城市近地面层风场结构。
室外风环境模拟分析报告
室外风环境模拟分析报告一、引言室外风环境模拟是对特定区域内的风场进行模拟和分析,从而了解该区域的风速、风向和风流规律,为后续的建筑设计、环境污染评估和风电场规划等提供依据。
本报告通过对地区的室外风环境进行模拟分析,旨在提供相关数据和信息,为相关研究和规划工作提供参考。
二、研究方法本次模拟分析使用风场模拟软件进行,包括基于数学模型和大量实测数据进行的室外流体仿真。
根据该地区的地形和气象数据,建立相应的数值模型,运用计算流体力学方法对风场进行模拟,并得出相应的风速、风向和风流规律等数据。
三、模拟分析结果根据模拟分析的结果,本地区的风环境特点如下:1.风速分布:通过模拟分析,我们得到了本地区不同位置的平均风速分布图。
结果显示,该地区的平均风速在5-8m/s之间,风速较为适中。
同时,分析结果还显示,地形起伏和建筑物的干扰对风速分布有较大的影响,局部区域可能会存在阻挡风的现象。
2.风向分布:风向是指风的来向,通过模拟分析,我们得到了本地区不同位置的风向分布图。
结果显示,该地区的风向主要集中在东北风和西南风,分别占总风量的40%和30%,其余的风向占比较小。
3.高低空风流规律:根据模拟分析,我们得知该地区在高空存在风流的现象。
高空风流主要受大气环流系统、地球自转和地形因素的综合影响,平均风速较大,风向相对一致。
而在低空,地形和建筑物的干扰导致风流较为复杂,且平均风速较低。
因此,在建筑设计和规划风电场时,需要考虑风流规律的差异性。
四、影响因素分析本模拟分析还对影响该地区风环境的因素进行了分析。
主要的影响因素包括以下几个方面:1.地形因素:本地区地形起伏较大,山脉和平原交错分布,对风的流动产生一定的阻挡和导流作用,使得风速和风向存在差异性。
2.建筑因素:大型建筑物和高楼大厦对风流产生阻挡和干扰作用,使得风速分布不均匀,风向变化不定。
3.气象因素:季风、气压和温度等气象要素对风环境有一定的影响,如季风的方向和强度会直接影响风向和风速的分布。
西安地区住宅小区室外风环境分析
2022年第10期现代园艺社会经济快速发展,人们生活水平大幅提升,对住房舒适度要求越来越高。
受住宅小区内污染物扩散迅速、通风效率及建筑表面风压等诸多因素影响,大多居民住宅小区存在严重的环境问题,严重影响当地小区环境的舒适度。
为此,只有采取有效的改善措施,不断改善与优化当地住宅小区风环境,才能进一步提高居民住宅舒适度,满足居民对住宅环境的基本要求。
1风环境风环境是由于太阳辐射到地球表面的热量分布不均匀,导致各个区域大气温差过大,空气在受热膨胀后,体积变轻上升,而冷空气变重下降所产生的空气流动,而这种空气流动引发的自然现象被人们称之为风。
风环境是指室外环境下,自然风受城市地形或取样地形面貌的影响形成的风场。
建筑风环境既与光环境、热环境、声环境共存,又与建筑物本身形体结构造型、分布、周围自然环境等有着十分紧密且复杂的联系。
目前,主要被研究的建筑风环境主要包含城市规划和建筑设计等领域。
2城市居民住宅建筑与风之间的关系2.1环境舒适度影响西安市地处陕西省偏南区域,北部为冲积平原,南部为剥蚀山地,地势东南高,西北与西南低,呈簸箕形态。
属暖温带半湿润大陆性季风气候,冷暖干湿、四季分明,冬季寒冷、风少、多雾、少雨雪;春季温暖、干燥、多风、气候多变;夏季炎热多雨、伏旱突出,多雷雨大风;秋季凉爽、气温速降、秋淋明显。
(1)在居民小区风环境控制方面,为保证居民环境舒适度,除去迎风第一排建设,建筑迎风面与背风面表面风压差不大于5Pa;建筑物周围人行去风速控制在5m/s范围内,且室外风速放大系数要小于2,才能满足人们日常出行需求。
(2)在面对过渡季和冬、夏季典型风向和风速条件下,住宅小区设计应合理规划建筑,有效规避冬季不利风向。
可通过设置挡风板、防风墙、防风带等,采取多种防风措施有效阻隔冬季冷风,同时,有效控制建筑周围高度在行人1.5m高度处的风速进行,减小因风速系数过大导致建筑物前后压差过大。
(3)提高对夏季和过渡季自然通风率和效果,在居民构建上,小区楼房建筑格局多为自由式或行列式,能保障居民楼间距的通风性。
2自然通风模拟分析报告
自然通风模拟分析报告委托方:XXXXX绿色咨询:XXXXXX日期:2013-121.概述1.1 自然通风自然通风可以提高居住者的舒适感、有助于健康。
在室外气象条件良好的条件下,加强自然通风还有助于缩短空调设备的运行时间,降低空调能耗,绿色建筑应特别强调自然通风。
建筑能否获取足够的自然通风与通风开口面积的大小密切相关,《绿色建筑评价标准》GB/T 50378-2006规定居住空间通风开口面积与地板面积比,一般情况下,当通风开口面积与地板面积之比不小于5%时,房间可以获得比较好的自然通风。
由于气候和生活习惯的不同,南方更注重房间的自然通风,因此规定在夏热冬暖和夏热冬冷地区,通风开口面积与地板面积之比不小于8%。
1.2 气候状况秦皇岛市的气候类型属于暖温带,地处半湿润区,属于温带大陆性季风气候。
因受海洋影响较大,气候比较温和,春季少雨干燥,夏季温热无酷暑,秋季凉爽多晴天,冬季漫长无严寒。
辖区内地势多变,但气候影响不大。
1月平均气温-5℃,最低气温-20.8℃,7月平均气温25.6℃,最高气温36.7℃,平均每年只有8~9天高于30℃,比基本同纬度的北京低2℃左右。
降水量约700毫米,70%集中在夏季。
2013年最低气温-18℃,最高气温35℃。
夏季盛行西南风(SE),冬季盛行东北偏东风(ENE),而过渡季盛行西南偏西风(WSW)。
根据《中国建筑热环境分析专用气象数据集》,秦皇岛市夏季、冬季和过渡季风向及风速特征如表1所示。
表1 秦皇岛市不同季节风气候特征2.项目概况3.参考标准《绿色建筑评价标准》GB/T 50378-2006中5.5.7条规定:建筑设计和构造设计有促进自然通风的措施。
(一般项)4.模拟过程4.1分析软件模拟计算采用的Airpak软件,是ANSYS公司FLUENT系列软件中,面向建筑通风专业系统分析软件。
Airpak是目前国际上比较流行的商用CFD软件,采用FLUENT的求解器,它可以精确地模拟所研究对象的空气流动、传热和污染等物理现象,它可以准确地模拟通风系统的空气流动、空气品质、传热、污染和舒适度等问题,并依照ISO 7730标准提供舒适度、PMV、PPD等衡量室内空气质量(IAQ)的技术指标。
室外风环境模拟分析报告
室外风环境模拟分析报告目录1项目概况 (3)1.1总平面图..................................................................................................................... 错误!未定义书签。
1.2三维视图..................................................................................................................... 错误!未定义书签。
2模拟概述............................................................................................................................ 错误!未定义书签。
2.1室外风环境 (3)2.2自然通风 (3)3技术路线 (4)3.1分析方法 (4)3.2软件介绍 (4)3.3紊流模型 (4)3.4模拟工况 (5)4参考依据 (6)5评价说明 (6)6室外风环境模拟建模 (7)6.1物理模型 (7)6.2参数设置..................................................................................................................... 错误!未定义书签。
6.2.1来流边界条件 (7)6.2.2出流边界条件 (8)6.2.3收敛判断 (8)7室外风环境模拟分析结果 (9)7.1工况1(冬季最盛行风,E) (9)7.1.1流场与风速 (9)7.1.2风压 (10)7.2工况2(夏季盛行风,SW) (11)7.2.1风压 ...................................................................................................................... 错误!未定义书签。
深圳某项目室外风环境模拟分析
深圳某项目室外风环境模拟分析摘要:城市中高大建筑的数量和高度与日俱增,这些建筑的建成显著改变了城市的风环境。
一方面高大密集的建筑群,降低了城市的通风、自净能力,加剧了在低风速条件下城市的空气污染和热岛效应;而另一方面在风速较大时,高大建筑周围会产生局部强风,影响到行人的舒适与安全,引出行人风环境问题。
本文采用基于CFD原理的计算模拟软件PHOENICS作为模拟工具,分析和评价本项目小区的室外风环境现状与室内自然通风的潜力。
关键词:室外风;坏境模拟;风速;1.概况1.1项目概况本工程为深圳某医院项目。
总用地面积20844.41平方米,总建筑面积109084.35平方米,计容积率面积61567.01平方米,框架结构。
地上18层,地下3层。
本项目主要有医疗综合楼、行政后勤楼、发热感染楼及高压氧仓综合楼、门卫等。
其中医疗综合楼、行政后勤楼、发热感染楼及高压氧仓综合楼为一级耐火等级,门卫为二级耐火等级。
根据深圳市多年的气象资料,深圳的地面风向存在非常明显的季节变化,秋、冬季偏北风为主,春、夏季则以偏东风为主;根据深圳市近多年风向观测记录,深圳市全年的风向频率以东北风最高,秋季与冬季盛行东北风,春季与夏季盛行东南风。
2风速边界条件2.1入口边界条件:由于随着高度的增加,风速会增大,因此,模拟中采用沿高度方向梯度风设置。
考虑实测存在的周围遮挡情况,城市梯度风按照以下公式计算:2.2出流面的边界条件:假定出流面上的流动已充分发展,流动已恢复为无建筑物阻碍时的正常流动,故其出口边界相对压力为零;建筑物表面为有摩擦的平滑墙壁。
3.风环境模拟分析根据报告前面的项目地点气象特点分析,项目的室外风环境研究分为三部分进行:夏季主导风:风速为2.7m/s,风向为东南;冬季主导风:风速为3.4 m/s,风向为东北;过渡季主导风:风速为3.0m/s,风向为东南偏南。
3.1夏季风工况夏季主导风向为东南,平均风速2.7m/s。
图3-1~图3-3为夏季东南风向情况下室外风环境模拟计算结果。
日照绿色佳园风环境模拟报告-2
建筑风环境模拟分析报告绿色佳园1-a#、1-b#、2#住宅楼城市建设研究院二〇一三年三月二十九日2.引用执行标准标准条目: GB/T 50378-2006 绿色建筑评价标准相关条目内容及释义:4.1.13住区风环境有利于冬季室外行走舒适及过渡季、夏季的自然通风。
技术细则说明:高层建筑的出现使得再生风和二次风环境问题凸现出来。
在鳞次栉比的建筑群中,由于建筑单体设计和群体布局不当,有可能导致局部风速过大,行人举步维艰或强风卷刮物体伤人等事故。
研究结果表明,建筑物周围人行区距地1.5m高处风速V<5m/s是不影响人们正常室外活动的基本要求。
以冬季作为主要评价季节,是由于对多数城市而言,冬季风速约为5m/s的情况较多。
此外,通风不畅还会严重阻碍空气的流动,在某些区域形成无风区或涡旋区,不利于室外散热和污染物的消散。
夏季、过渡季自然通风对于建筑节能十分重要,良好的自然通风有利于提高室外环境的舒适度。
夏季大型室外场所恶劣的热环境,不仅影响人的舒适感,当超过极限值时,长时间停留还会引发高比例人群的生理不适甚至中暑。
规划设计时,应进行风环境模拟预测分析和优化,并在模拟分析的基础上采取相应措施改善室外风环境。
本条的评价方法为审核居住区规划设计中的风环境模拟预测分析报告,核对实施情况与设计要求是否相符。
4.1.4 住区建筑布局保证室内外的日照环境、采光和通风的要求,满足现行国家标准《城市居住区规划设计规范》GB 50180中有关住宅建筑日照标准的要求。
技术细则说明:住区建筑的室内外日照环境、自然采光和通风条件与室内的空气质量和室外环境质量的优劣密切相关,直接影响居住者的身心健康和居住生活质量,同时,影响到建筑运行能耗。
加强自然通风还有助于缩短空调设备的运行时间,降低空调能耗,绿色建筑应特别强调自然通风。
使用Ecotect对日照地区进行最佳朝向模拟分析可知,南偏西10°范围内为本地段最佳朝向,设计主要建筑采用正南向,符合要求。
室外风环境模拟分析报告-某小区室外风环境CFD模拟分析报告(详细版)含软件操作过程
某小区项目室外风环境模拟分析报告(模板)项目名称:委托单位:咨询单位:设计单位负责人:审核人:编制人:报告日期:20XX-10-10目录1模拟概述 (1)1.1项目概况 (1)1.2风环境简述 (1)1.3参考依据 (3)1.4评价说明 (3)2技术路线 (4)2.1分析方法 (4)2.2湍流模型 (5)2.3几何模型 (7)2.4参数设置 (8)2.5气候状况 (10)3 模拟结果分析 (11)3.1夏季及过渡季 (11)3.2冬季 (15)4 结论 (19)1模拟概述1.1项目概况本工程位于XX市XX街道XX北路以东、新北路以北,地理位置优越,交通便利。
拟建10栋高层住宅、商业及配套用房,地下非机动车库及地下机动车库。
该地块总用地面积为20万m2,总建筑面积15万m2,计容面积2万m2,总建筑占地18万m2,容积率2.2,建筑密度30.3%,绿地率25.3%。
1.2风环境简述建筑群和高大建筑物会显著改变城市近地面层风场结构。
近地风的状况与建筑物的外形、尺寸、建筑物之间的相对位置以及周围地形地貌有着很复杂的关系。
在有较强来流时,建筑物周围某些地区会出现强风;如果这些强风区出现在建筑物入口、通道、露台等行人频繁活动的区域,则可能使行人感到不舒适、甚至带来伤害,形成恶劣的风环境问题。
在一般的气候条件下,他们直接影响着城市环境的小气候和环境的舒适性;一旦遇到大风,这种影响往往会变成灾害,使建筑外墙局部的玻璃幕墙、窗扇、雨棚等受到破坏,威胁着室内外的安全。
建筑合理布局是改善室外行人区热舒适的关键;主要是避免在寒冷冬季室外行人区风速加速(西北风情况下),如风巷效应,同时在与西北风垂直方向最好增加裙房,加大底座尺寸,避免冲刷效应和边角效应等,如图2所示。
调查统计显示:在建筑周围行人区,若平均风速V>5 m/s的出现频率小于10 %,行人不会有什么抱怨(在10 %大风情况下建筑周围行人区风速小于5 m/s,即可认为建筑周围行人区是舒适的);频率在10%~20%之间,抱怨将增多;频率大于20 %,则应采取补救措施以减小风速。
建筑风环境CFD模拟案例
某小区区建筑风环境模拟报告目录1. 模拟过程及使用软件介绍 (2)1.1 建筑风环境模拟使用软件介绍 (2)1.2 建筑风环境模拟过程 (2)1.2.1 几何模型的建立 (3)1.2.2 网格的划分 (5)1.2.3 求解参数设置 (6)2. 模拟结果 (12)3. 建筑风环境模拟研究思路及问题 (16)附录I 从百度地图获取三维几何模型的尝试 (17)附录2 Fluent入口边界速度UDF命令 (19)REFERENCE (19)建筑风环境的研究主要有三种方式:现场实测、数值模拟和风洞试验。
随着计算机软硬件技术水平的发展,计算能力及计算精度不断提高,计算流体力学(Computational Fluid Dynamics:CFD)的理论和方法得到了不断改进。
基于CFD 技术对流场进行模拟具有操作周期短,操作成本低,可反复修改的特性,相比较于现场实测和风洞试验具有更广阔的应用前景。
但是由于数值模拟技术对输入的参数十分敏感,必须辅以现场实测或风洞试验的验证。
本次模拟区域直径500m,模拟的工况为10m高度处风速为10m/s,风向为225°,输出结果查看高度10m,20m,40m,78m,100m处的速度云图、速度矢量图和压力云图。
1. 模拟过程及使用软件介绍1.1 建筑风环境模拟使用软件介绍(1)前处理软件ANSYS ICEM CFD 15.0ICEM是ANSYS CFD软件族中前处理软件之一。
具有强大的网格划分功能,接口丰富,可接受绝大多数几何模型格式导入,例如AUTO CAD、SolidWorks、PRO/E等。
(2)求解软件ANSYS Fluent 15.0占据CFD领域绝对领先地位的流体仿真软件。
具有多种物理算法、物理模型。
在医学、航天、机械工程等领域均应用广泛。
(3)后处理软件Tecplot 360提供丰富的绘图格式,具备强大的CFD结果可视化功能,图形美观。
1.2 建筑风环境模拟过程使用计算流体力学对建筑室外风场进行数值模拟一般包括以下四个步骤:(1)几何模型的建立(2)对几何模型进行合适的网格划分(3)将划分网格后的模型导入Fluent,设置求解参数并求解(4)结果的后处理(速度云图、速度矢量图、压力云图等)1.2.1 几何模型的建立在几何模型的建立部分,现阶段采用的是陈宸的模型,他是根据彰武校区附近区域的城规图建立CAD 三维模型(据陈宸描述来自他建筑学院的朋友提供)。
0-室外风环境模拟分析总结要点
一、室外风环境模拟分析正文要点①由于建筑体量较大,因此,背风区较大,建筑背风处整体风速较低,约1-1.5m/s,可通过增加建筑间隙或架空增加通风道,改善风环境。
②在地块周边无其他建筑的情况下,风速较大,建议结合景观设计绿化植物,以减缓来流风速。
③室内门窗设计中,建议采用穿堂风或错位通风方式,避免采用侧穿堂方式。
④建议外窗采用平开窗或推拉窗,能够增加有效通风面积;如选用悬窗,建议可开启角度应尽量大,可开启角度应大于45度,悬窗较平开窗或推拉窗的有效通风面积小,通风阻力大,因此,自然通风效果较平开窗、推拉窗差;⑤迎背风面风压差是实现室内自然通风的先决条件,可在风压差较大的立面上设置外窗,以实现较好的室内自然通风;但冬季应注意防风保暖,在迎背风面风压差较大的立面安装气密性好的门窗;⑥从夏季和冬季1.5米处人行高度风速图可以看出,建筑外场人行高度没有发现较大涡流风场,也没有出现风速大于5m/s的区域。
整个建筑流场区域没有出现大面积风景区,滞留区,风速大小适宜,对行人没有不利影响。
⑦从夏季和冬季1.5米处人行高度风压图可以看出,由于建筑遮挡,风压分布不均,东侧风压较小,而西侧风压较大。
从15米和30米风压图可以看出,西侧建筑风压差较大,需做好冬季防风措施。
其余大多数建筑迎风面和背风面能够形成3-5pa左右的压力差,能够较好的满足建筑队自然通风的要求,适宜采用开窗进行自然通风。
⑧从夏季和冬季1.5米人行高度空气龄分布图可以看出,建筑周围人行区域的空气龄大多在300~450区间,没有出现滞留区和涡旋区,空气质量良好,适宜自然通风和人户外运动。
⑨冬季建筑北墙的风压值较大,其余面较为均匀,所以应加强北外墙的构造设计,尤其是提高门窗密闭性能,减小寒风渗透侵袭影响。
⑩夏季,建筑周围人行活动处绝大部分位置风速不超过5米/秒,满足《绿色建筑评价标准》中对室外风环境的要求。
但因建筑较多外廊和形体变化,在局部存在低风区和涡旋区,污染物不易扩散,在极端风环境下会形成风漩涡,影响人员活动。
万科长阳风环境模拟报告0418
万科长阳半岛1#地小区风环境模拟分析报告投资单位:北京中粮万科房地产开发有限公司编制单位:中国建筑科学研究院建筑设计院2010年 04 月 18 日风环境模拟分析报告目 录一、项目概况 (2)二、分析区域 (2)三、建立模型 (3)1、风环境条件 (3)2、模型图 (3)四、计算分析 (4)1、模拟计算指标 (4)2、数学模型的选取 (4)3、计算方法及边界条件 (5)4、风环境模拟及评价 (6)五、结论 (15)一、项目概况本项目为房山区长阳镇居住、文化娱乐 1 号地项目,项目用地位于房山区长阳起步区1 号地内,距离京石高速约5 公里,从京石高速六里桥到京良路出口18 公里。
本项目东至经一南路,南至纬五路,西至军张路,北至京良路;总用地面积22.6 万平米,总建设用地16.1万平米,其中居住面积15.7万平米,文娱0.3万平米。
二、分析区域本次分析主要对该区域的主要居住建筑及建筑周边的小区进行分析,分析区域如下图所示:图1 分析区域示意图三、建立模型1、风环境条件为使计算结果具有一定的代表性,需要选择北京地区的主导风向和风速。
根据气象局1991~2000年这30年间北京地区气象数据的分析知,北京地区各月风环境情况如下:中国地面国际交换站累年月值数据集(1991-2000) 月份 3 4 5 6 7 8风向 NW NW NW W SW W 平均风速 29 30 28 24 21 20 月份 9 10 11 12 1 2风向 WNW NW WNW WNW WNW NW 平均风速 21 22 23 24 25 25 根据以上数据,选取各个季节最大风速月份为各季节代表月份,取相应风速及风向进行小区室外风环境模拟计算。
图2 风向示意图2、模型图本报告采用CFD(Computational Fluid Dynamics,计算流体力学)的方法对建筑周围的风环境状况进行模拟评价,采用目前国际上比较流行的CFD 商用软件包FLUENT进行模拟计算,其准确性获得了不同领域的验证。
小区风环境模拟报告
B
A 旋涡
1.5米处速度场矢量局部放大图 A
1.5米处速度场矢量局部放大图 B
结果分析
• 冬季主导风向为北风时: • (1) 小区内1.5m高处各处皆满足风速不
高于5m/s的要求。 • (2) 半数以上建筑满足建筑前后压差不大
于5Pa的要求。
小区风环境总体评价
• 根据《绿色奥运建筑评估体系》(2003版)中 风环境相应条款的要求。
• 计算范围: • 建筑物尺寸: • 建筑物位置: • 位于Y方向的正中,
距出风口20米。 • 边界条件: • 模型: • 网格划分:
X=25m处,YZ平面上的压力场
负压区
X=25m处,YZ平面上的速度场
X=25m处,YZ平面上的速度矢量图。
回流区
回流区
有关文献显示
L2 / L 2.7
在右图中可以 看出
K-ε湍流模型可 以用于小区风 场计算
L
L2
小区风环境评价
计算模型
入口边界条件按照典型的气象参数选取冬 季北风5m/s,夏季南风2m/s两个工况进行 模拟,风速边界条件采用梯度风。只模拟最 不利工况,因此进行三维稳态速度场和压力 场模拟,采用湍流模型为标准K-ε两方程模 型。
பைடு நூலகம்区平面图
小区立体图
分析方法
• 目前可以用模型实验或者数值模拟的方 法进行预测。这里将采用数值分析的方 法对小区风场进行模拟。
本实验的研究目的
• (1)通过对简单梯度风算例的模拟计算, 验证数值模拟方法研究小区风环境的可 靠性;
• (2)通过对某实际工程风环境的数值模拟 分析,对该小区的风环境进行总体的评 价。
风环境数值模拟方法
1.5米处速度场矢量局部放大图C
XX工程室外风环境模拟
室外自然通风模拟分析报告项目名称:XX工程(棚户区改造工程)委托单位:咨询单位:计算人:核对人:审核人:报告日期声明:l、本报告咨询单位未盖章无效;2、本报告经涂改和复印均无效:3、本报告仅用于指定项目,非本项目无效目录一、项目概述…………………………………………………………l l项目概况………………………………………………………1 2项目气象资料………………………………………………1 3评价标准……………………………………………………1 4参考依据……………………………………………………二、技术路线………………………………………………………2 1分折方法……………………………………………………2 2集合建模及网格划分………………………………………2 2 l来流风速分布……………………………………………2 2 2平均风速的指数律分布…………………………………2 3 3出流面的边界条件…………………………………………2 3 4壁面的边界条件…………………………………………2 3 5控制方程的选取…………………………………………三、模拟结果………………………………………………………3 1夏季工况……………………………………………………3 l_l风速评价。
………………………………………………3 1 2风压评价…………………………………………………3 2冬季工况……………………………………………………3 2.1风速评价…………………………………………………3.2 2风压评价…………………………………………………四、结论……………………………………………………………一、项目概述1.1项目概况项目名称:XX工程(棚户区改造工程)建设单位:威海临港区XXXXXXXX有限公司。
建设地点:本项目用地位于威海临港经济技术开发区中心位置,地理条件优越。
本项目整体用地四面临路,北临XX路,南临XX路,东向是XX路,西向是XX路,交通便利,具有良好的交通环境,地块中间有水系穿过,增加了地块的景观要素。
建筑室外风环境模拟分析.
7.7 FLAIR Tutorial 7: Flow over Big Ben这案例是模拟空气流过钟楼的流场,本案例主要介绍在FLAIR VR-Editor中导入stl格式文档的具体方法。
案例模拟的钟楼的大小为长6米,宽6米,高约30米,计算区域的大小设置为长100米,宽100米,高50米(如下图所示)。
本案例介绍WIND的使用方法。
7.7.1 建立模型7.7.1.1 默认模式下启动FLAIR模块•单击桌面PHOENICS-VR图标;•单击File按钮,然后选择'Start new case',然后单击FLAIR,再点OK。
FLAIR VR-Environment就会出现在屏幕上,显示的默认域尺寸为10 mx10mx3m。
7.7.1.2 重新定义Domain的尺寸•通过控制面板将大小更改为X方向为100m,Y方向上为100m,Z方向上为50m。
•单击movement面板上的按钮,然后再单击"Fit to window"。
7.7.2 在计算域中添加objectA. 添加钟楼模型钟楼模型可以通过STL文件来获得,接下来将教我们如何使用'Object management'对话框导入STL文件。
•在'Object management'对话框中,单击'Object' 在下拉菜单中选择'New' (New Object) 选项来激活'Object specification' 对话框。
•将object的name更改为'BIGBEN'。
•单击'Place' 按钮然后设置object的'Position'为:X:40.0 mY:40.0 mZ:0.0 m•单击'Shape'按钮,激活'Shape'对话框,界面如下图所示•单击Import CAD geometry from 'STL File' ,会弹出'Open file'的对话框,显示的是在工作目录下的STL文件。
两种建筑群室外风环境数值模拟分析
收稿日期:2020-10-14作者简介:陈浩(1993-),湖南科技大学研究生毕业,主要研究方向:室内热环境动态分析,E -mail :****************陈浩(深圳市华阳国际工程设计股份有限公司广州分公司,广州 广东 510000)[] 摘要建筑风环境对行人的舒适性与安全、建筑节能和小区污染物的扩散等具有很大的影响。
通过对点式建筑群和板式建筑群的风环境进行数值模拟,并对小区的风环境品质进行评估。
结果表明:板式建筑群中易产生无风区域和涡旋区,不利于污染物的扩散,且当采用板式建筑群时,应当在四周种植植被抵挡来解决建筑群中风速过高问题,因此在城市建设中应多采用点式建筑群。
关键词风环境;自然通风;数值模拟] 中图分类号TU831文献标志码A doi :10.3969/J .ISSN. 1005-9180.2020.04.005] [] Numerical Simulation Analysis of Outdoor Wind Environment ofTwo Kinds of BuildingsCHEN Hao(Guangzhou Branch of Shenzhen Huayang International Engineering Design Co .,Ltd ., Guangzhou ,Guangdong , 510000)Abstract: Building wind environment has a great impact on pedestrian comfort and safety, building energy saving and the diffusion of pollutants in the community. Through the numerical simulation of the wind environment of the point type building group and the plate type building group, the wind environment quality of the community is evaluated. The results show that The wind free area and vortex area are easy to be produced in the slab building group, which is not conducive to the diffusion of pollutants. When the plate type building group is used, vegetation should be planted around the building group to solve the problem of high wind speed in the building group. Therefore, the point type building group should be used more in urban construction.Key words: Wind Environment;Natural Ventilation;Numerical Simulation.两种建筑群室外风环境数值模拟分析由于建筑扰流的复杂性,最初的学者均采用风环境问题涉及行人舒适、安全以及建筑的设计功能是否合理等。
室外风环境模拟分析报告-某小区室外风环境CFD模拟分析报告(详细版)含软件操作过程
某小区项目室外风环境模拟分析报告(模板)项目名称:委托单位:咨询单位:设计单位负责人:审核人:编制人:报告日期:20XX-10-10目录1模拟概述 (1)1.1项目概况 (1)1.2风环境简述 (1)1.3参考依据 (3)1.4评价说明 (3)2技术路线 (4)2.1分析方法 (4)2.2湍流模型 (5)2.3几何模型 (7)2.4参数设置 (8)2.5气候状况 (10)3 模拟结果分析 (11)3.1夏季及过渡季 (11)3.2冬季 (15)4 结论 (19)1模拟概述1.1项目概况本工程位于XX市XX街道XX北路以东、新北路以北,地理位置优越,交通便利。
拟建10栋高层住宅、商业及配套用房,地下非机动车库及地下机动车库。
该地块总用地面积为20万m2,总建筑面积15万m2,计容面积2万m2,总建筑占地18万m2,容积率2.2,建筑密度30.3%,绿地率25.3%。
1.2风环境简述建筑群和高大建筑物会显著改变城市近地面层风场结构。
近地风的状况与建筑物的外形、尺寸、建筑物之间的相对位置以及周围地形地貌有着很复杂的关系。
在有较强来流时,建筑物周围某些地区会出现强风;如果这些强风区出现在建筑物入口、通道、露台等行人频繁活动的区域,则可能使行人感到不舒适、甚至带来伤害,形成恶劣的风环境问题。
在一般的气候条件下,他们直接影响着城市环境的小气候和环境的舒适性;一旦遇到大风,这种影响往往会变成灾害,使建筑外墙局部的玻璃幕墙、窗扇、雨棚等受到破坏,威胁着室内外的安全。
建筑合理布局是改善室外行人区热舒适的关键;主要是避免在寒冷冬季室外行人区风速加速(西北风情况下),如风巷效应,同时在与西北风垂直方向最好增加裙房,加大底座尺寸,避免冲刷效应和边角效应等,如图2所示。
调查统计显示:在建筑周围行人区,若平均风速V>5 m/s的出现频率小于10 %,行人不会有什么抱怨(在10 %大风情况下建筑周围行人区风速小于5 m/s,即可认为建筑周围行人区是舒适的);频率在10%~20%之间,抱怨将增多;频率大于20 %,则应采取补救措施以减小风速。
大型高层住宅小区室外风环境模拟分析
f { “
根据 项 目所 在 地 的位 置 以及 周 边 规 划 ,模 拟 计 算 中, 选 择粗 糙度 指数 为 0 . 1 4 。
3 . 2 物理模 型
计 算 区域 :考虑 到计 算机 内存 容 量和 计算 速度 , 在 不 影 响计算 结果 的前 提下 适 当简化 模 型 。 选取 某 大型住 宅 小 区项 目及周 围建筑 建 立模 型 , 如 图 2所示 。
基准高度 h 。( 取标准高度 l O e r )处的风速 ,
n —— 指数 ,主要 与测 定地 点 的地 面粗 糙度 和 温度 垂 直梯度 有 关 , 见表 2 。
表 2 粗 糙 度 指 数 n
3 计算模型及边界
3 - 1 项目 所在地气象参数
该 项 目所 在地 全 年 风 力较 小 , 4 ~8月 以偏 南 风 为
挡 造成 的_ 人 面积 背 风 。 ( 4 ) 设 计 改进 建 议 : 1 #和 5 #两 栋 建筑 之 的风速 较
( 2 ) 根 据不 同 高度平 面 的风 压 图可 知, 本项 日夏 季南
北 向风 差在 4  ̄8 P a左 右 , 可实现 较 好 的 自然通 风 。
( 3 ) 由于住宅 首 层采 用架 空或 局 部架 空 的做法 , 使住
的室外 风环境 得 到有 效改 善 , 避免 了【 士 l 于建 筑 自身 阻
4结果分析
根据 《 , 一 东 建筑 气象 参 数标准》 中 的气象 参 数 , 项 [ I 所 地 市在 四 月~ 八月 主要 为东 南 风和 东南 偏南 风 ,
距地m f , f  ̄ i 1 0米 处 的风速 为 2 . 4 m / s 。由 F 种 丰导 风工 况 边 界条 : 近似 , 故本 文仪模 拟 东南风 工况 。 从 汁锊: 结 果 町知 1 , 项 日人行 风速 均低 于 5 m / s , 人 分 域风速 1 . 5 ~3 . O m / s之 问 。 图 3和 图 4表 明 , 尔南 I F木项 H小 I 内 部的 风 速 人 多在 0 . 8 ~
建筑风环境CFD模拟案例
某小区区建筑风环境模拟报告目录1. 模拟过程及使用软件介绍 (2)1.1 建筑风环境模拟使用软件介绍 (2)1.2 建筑风环境模拟过程 (2)1.2.1 几何模型的建立 (3)1.2.2 网格的划分 (5)1.2.3 求解参数设置 (6)2. 模拟结果 (12)3. 建筑风环境模拟研究思路及问题 (16)附录I 从百度地图获取三维几何模型的尝试 (17)附录2 Fluent入口边界速度UDF命令 (19)REFERENCE (19)建筑风环境的研究主要有三种方式:现场实测、数值模拟和风洞试验。
随着计算机软硬件技术水平的发展,计算能力及计算精度不断提高,计算流体力学(Computational Fluid Dynamics:CFD)的理论和方法得到了不断改进。
基于CFD 技术对流场进行模拟具有操作周期短,操作成本低,可反复修改的特性,相比较于现场实测和风洞试验具有更广阔的应用前景。
但是由于数值模拟技术对输入的参数十分敏感,必须辅以现场实测或风洞试验的验证。
本次模拟区域直径500m,模拟的工况为10m高度处风速为10m/s,风向为225°,输出结果查看高度10m,20m,40m,78m,100m处的速度云图、速度矢量图和压力云图。
1. 模拟过程及使用软件介绍1.1 建筑风环境模拟使用软件介绍(1)前处理软件ANSYS ICEM CFD 15.0ICEM是ANSYS CFD软件族中前处理软件之一。
具有强大的网格划分功能,接口丰富,可接受绝大多数几何模型格式导入,例如AUTO CAD、SolidWorks、PRO/E等。
(2)求解软件ANSYS Fluent 15.0占据CFD领域绝对领先地位的流体仿真软件。
具有多种物理算法、物理模型。
在医学、航天、机械工程等领域均应用广泛。
(3)后处理软件Tecplot 360提供丰富的绘图格式,具备强大的CFD结果可视化功能,图形美观。
1.2 建筑风环境模拟过程使用计算流体力学对建筑室外风场进行数值模拟一般包括以下四个步骤:(1)几何模型的建立(2)对几何模型进行合适的网格划分(3)将划分网格后的模型导入Fluent,设置求解参数并求解(4)结果的后处理(速度云图、速度矢量图、压力云图等)1.2.1 几何模型的建立在几何模型的建立部分,现阶段采用的是陈宸的模型,他是根据彰武校区附近区域的城规图建立CAD 三维模型(据陈宸描述来自他建筑学院的朋友提供)。
室外风环境分析
室外风环境分析在校园环境的尺度上,合理的单体设计和群体布局可以形成良好的室外风环境。
在建筑设计中,需要考虑建筑设计方案对室外风环境的影响。
本节利用CFD软件,对江南大学数媒学院楼和商学院楼建筑方案的室外风环境进行数值模拟,并对其他几种布局方案进行比对分析。
4.1 室外风环境评价标准研究结果表明,建筑物周围人行区1.5m高处风速宜低于5m/s,以保证人们在室外的正常活动,但通风不畅也会严重的阻碍空气的流动,在某些区域形成无风区和涡旋区,不利于室外散热和污染物消散,因此应尽量避免风速过大或形成静风区。
此外,室外风环境是室外环境舒适度的重要影响因素,人的舒适感与风速之间的关系如表4-1所示。
现阶段主要关注由数媒学院和商学院围合庭院室外人活动区域的风速和流场,以及不同楼层高度临外墙面的夏季风速分布,以利于夏季利用自然通风降温。
根据建筑设计方案可分为三部分:(1)室外地面人行区高度(标高1.5m)的风速分布;(2)标高7m(可能的连廊及群楼影响)南墙临界面的风速分布。
(3)标高12m的南墙临界面的风速分布4.2 模型及计算边界条件基于不同的规划布局,建立室外风场计算模型,建模时尽量遵循建筑实体形状,并做适当简化。
两栋学院楼所处的校园东面有较好的夏季通风条件。
夏季主导风向为东南风,冬季主导风向为东北风。
由于原来方案在东面有裙房的布局使其风口收窄,另外数媒学院高度为8层,可能会阻挡夏季东南风。
模拟分析旨在验证是否这两个因素会导致夏季通风不畅。
另外也进行了其他可能布局的模拟分析,比对其优劣。
根据相关气象资料,计算时将近地层(10m 高度内)来流风速设置如下:夏季—东南偏东向(25度),平均风速2.1m/s;4.3 模拟结果分析、图1、原方案夏季室外1.5m高风速色阶图(风速范围1 m/s—3m/s)图2、原方案夏季室外7.0m高风速色阶图(风速范围1 m/s—3m/s)图3、原方案夏季室外12.0m高风速色阶图(风速范围1 m/s—3m/s)由图可知,原来方案在东面的裙房对于夏季地面风环境有一定影响,但留出的风口使大部分地面环境风速保持在1.5m/s,只是在裙房和主楼的转角处有风影区,通风受到一定阻碍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通锦.国际新城三期项目(通锦.国际嘉园)1号地块室外风通风--室外风环境模拟分析报告提供者:深圳市筑道建筑工程设计有限公司成都分公司声明:1、本报告无咨询单位签字盖章无效;2、本报告涂改、复印均无效;3、本报告仅对本项目有效。
项目名称:通锦·国际新城三期项目(通锦·国际嘉园)委托单位:深圳市筑道建筑工程设计有限公司成都分公司报告编写人:校对人:审核人:项目负责人:批准人:报告编号:报告日期:2016年1月目录1 模拟概述 (2)项目概况 (2)气候概况 (2)达州市属湿润季风气候类型。
由于地形复杂,区域性气候差异大。
海拔800米以下的、、地区气候温和,、、夏热、,四季分明,长;海拔800至1000米的低、中山气候温凉、阴湿,回春迟,夏日酷热,秋凉早,冬寒长;海拔1000米以上的中山区,光热资源不足,寒冷期较长,春寒和秋霜十分突出。
达州市热量资源丰富,雨热同期,全年平均气温度-度之间,无霜期300天左右。
(2)风环境影响 (3)参考依据 (3)评价标准 (4)2 分析流程 (4)评价方法 (4)几何模型 (5)网格划分 (6)湍流模型 (7)边界条件 (8)数学模型 (9)求解方法 (10)模拟工况 (10)3 结果分析 (11)工况1(夏季工况) (11)工况2(冬季工况) (14)4 结论 (16)1 模拟概述项目概况1、工程名称:通锦•国际新城三期项目2、建设单位:四川路桥通锦房地产开发有限公司3、建设用地:该项目位于四川省达州市,位于四川省东北部,重庆以北,是由原达川地区更名建立的一个地级市,总面积16591平方千米。
达州市辖1个市辖区、5个县、1个县级市,有大面积的园林,是四川省的人口大市、农业大市、工业重镇,素有着中国气都和中国苎麻之乡的“川东明珠”美誉。
达州地理坐标为北纬30 º75′-32 º07′,东经106 º94′-108 º06′,属亚热带湿润季风气候类型,冬暖夏凉。
达州地势东北高,西南低,北部山体切割剧烈,山势陡峭,形成中、低山地地貌单元;图1达州市通锦·国际新城三期项目总平面本项目位于达州中南部,地势较为平缓,形成平等谷底地貌单元。
气候概况达州市属湿润季风气候类型。
由于地形复杂,区域性气候差异大。
海拔800米以下的、、地区气候温和,、、夏热、,四季分明,长;海拔800至1000米的低、中山气候温凉、阴湿,回春迟,夏日酷热,秋凉早,冬寒长;海拔1000米以上的中山区,光热资源不足,寒冷期较长,春寒和秋霜十分突出。
达州市热量资源丰富,雨热同期,全年平均气温度-度之间,无霜期300天左右。
风环境影响建筑群和高大建筑物会显著改变城市近地面层风场结构。
近地风的状况与建筑物的外形、尺寸、建筑物之间的相对位置以及周围地形地貌有着很复杂的关系。
在有较强来流时,建筑物周围某些地区会出现强风;如果这些强风区出现在建筑物入口、通道、露台等行人频繁活动的区域,则可能使行人感到不舒适、甚至带来伤害,形成恶劣的风环境问题。
在一般的气候条件下,他们直接影响着城市环境的小气候和环境的舒适性;一旦遇到大风,这种影响往往会变成灾害,使建筑外墙局部的玻璃幕墙、窗扇、雨棚等受到破坏,威胁着室内外的安全。
调查统计显示:在建筑周围行人区,若平均风速V>5 m/s的出现频率小于10%,行人不会有什么抱怨(在10%大风情况下建筑周围行人区风速小于5 m/s,即可认为建筑周围行人区是舒适的);频率在10%~20%之间,抱怨将增多;频率大于20%则应采取补救措施以减小风速。
另外,行人在风速分布不均区域活动时,若在小于2m的距离内平均风速变化达70%,即从低风速区突然进入高风速区,人对风的适应能力将大减。
因此在设计阶段,应对建筑物的室外风环境做出评价,分析建筑之间位置关系对室外风环境的影响。
同时,室外风环境深刻影响建筑室内风环境,特别对建筑防风与自然通风有着决定性影响。
冬季建筑防风,有效减少气流渗透,降低采暖能耗,而夏季与过渡季节的自然通风则能降低建筑空调能耗。
自然通风主要有以下 3 种作用:舒适通风、降温通风、健康通风。
通过通风增加人的舒适度,从而提高人体热舒适感觉;通过建筑周围气流将建筑周边以及房间里的热量散发到空气中去;同时通过通风,为室内提供新鲜空气,降低室内二氧化碳浓度。
建筑室外风环境模拟分析,主要考虑室外风场以及室外风环境对室内环境影响两方面内容。
本报告综合考虑风速、风压两个因素,对达州市通锦.国际新城三期项目(通锦.国际嘉园)及周边的风环境进行分析评价,并进一步为室内自然通风适用与否以及舒适性分析提供参考数据。
参考依据本项目主要参照资料为:★《绿色建筑评价标准》GB/T 50378—2014★《建筑通风效果测试与评价标准》JGJ/T 309—2013★《绿色建筑评价技术细则》委托方提供的达州市通锦·国际新城三期项目的总平面图、建筑专业设计图纸、设计效果图等图纸资料★《民用建筑设计通则》GB 50352—2005★委托方提供的其他相关资料评价标准《绿色建筑评价标准》GB/T 50378-2014中条对建筑的室外风环境状况提出了明确的要求:场地内风环境有利于室外行走、活动舒适和建筑的自然通风。
评分规则如下:1 冬季典型风速和风向条件下评分规则:1)建筑物周围人行区风速低于5m/s,且室外风速放大系数小于2,得2分;2)除迎风第一排建筑外,建筑迎风面与背风面表面风压差不超过5Pa,再得1分;2 过渡季、夏季典型风速和风向条件下:1)场地内人活动区不出现涡旋或无风区,得2分;2)50%以上可开启外窗室内外表面的风压差大于,得1分。
2 分析流程本报告主要对达州市通锦.国际新城三期项目(通锦.国际嘉园)及周边的风场分布状况及其对室内通风的影响进行分析,验证其是否满足其是否达到第条一般项的相关要求。
评价方法建筑通风效果的测评方法包括风洞实验、模型试验和数值模拟三种,分别针对室外和室内两部分。
室外通风涉及的室外风场范围非常大,采用前两种方法的成本过高并且周期很长,可行性较差。
模拟实验是计算流体力学CFD(Computational Fluid Dynamics)在建筑通风模拟评价领域的应用,可以大大降低测试成本,缩减评价周期。
本项目采用斯维尔Vent2014软件实现建筑室外风环境的数值模拟评价。
斯维尔Vent2014软件依据CFD基本求解原理和流程,紧贴《绿色建筑评价标准》GB/T 50378-2006和《绿色建筑设计标准》DB11/938-2012对风速和风压的要求,以及《建筑通风效果测试与评价标准》JGJ/T309-2013标准对于模拟评价的要求;并且软件软件构建于AutoCAD平台,形成基于BIM技术并被CFD计算核心识别的模拟模型。
同时,软件根据建筑风环境模型的特征实现了“一键式”操作的智能化计算,涵盖了模型处理、网格划分和网格质量判断、模拟工况数据库、计算参数设置、迭代求解控制、结果管理的整个流程。
此外,Vent2014通过实验测试(参照权威的AIJ风洞模拟数据),模拟值与实测值误差小于20%。
综上所述,本项目选择采用Vent2014软件。
几何模型本报告根据委托方提供的建筑总平面图以及其他相关资料建立达州市通锦.国际新城三期项目(通锦.国际嘉园)的室外风环境模拟模型,若由于委托方提供资料不实或方案变化而导致分析差错,我方将不承担责任。
室外通风的几何模型实际为包围建筑群的风场范围,该风场范围确定了计算区域,以下为本项目风场范围创建。
通过Vent模型观察功能分析模型中包括达州市通锦.国际新城三期项目(通锦.国际嘉园)中建筑物的高度以及分布情况,并通过建筑总平面图分析建筑群整体尺寸,依据《建筑通风效果测试与评价标准》JGJ/T 309—2013对于室外风场尺寸的要求,软件自动创建合适的风场范围。
模型观察及风场范围分别如下图所示:图2 达州市通锦·国际新城三期模型观察图3 达州市通锦·国际新城三期风场范围网格划分网格参数对网格划分的精度和效果起决定性作用。
网格太密会导致计算速度下降并浪费计算资源;网格太疏导致计算精度不足结果不够准确,合理的网格方案需要考虑对计算域中不同的部分采用不同的网格方案。
Vent2014充分考虑以下影响网格划分和网格质量的因素:●建筑附近或者远离建筑的区域:前者要求网格较密,后者网格密度可以适当减小;●贴近地面的区域:网格需要加密以捕捉地面摩擦力对近地面层风场的影响;●贴近建筑的区域:网格需要加密以捕捉建筑表面摩擦力对靠近建筑表面风场的影响;●有明显局部特征的建筑物轮廓:如较大尺寸的尖角、凹槽、凸起,网格需要加密捕捉局部特征对风场的影响;图4 达州市通锦·国际新城三期米水平高度处网格全局图图5 达州市通锦·国际新城三期网格局部放大图湍流模型湍流模型反映了流体流动的状态,在流体力学数值模拟中,不同的流体流动应该选择合适的湍流模型才会最大限度模拟出真实的流场数值。
Vent2014依据《建筑通风效果测试与评价标准》JGJ/T 309—2013推荐的RNG k –ε湍流模型进行室外流场计算。
下表为几种工程流体中常见的湍流模型适用性: 表 1 常用湍流模型适用范围常用湍流模型特点和适用工况 standard k-ε 模型 简单的工业流场和热交换模拟,无较大压力梯度、分离、强曲率流,适用于初始的参数研究RNG k-ε模型 适合包括快速应变的复杂剪切流、中等旋涡流动、局部转捩流如边界层分离、钝体尾迹涡、大角度失速、房间通风、室外空气流动realizable k-ε 模型 旋转流动、强逆压梯度的边界层流动、流动分离和二次流,类似于RNG边界条件边界条件为进行数值模拟计算的必要条件,对于建筑风场,需要输入风场的入口和出口边界条件。
入口边界1)入口风设置风场入口平均风速为风场计算的必要边界条件,Vent2014依据《民用建筑供暖通风与空气调节设计规范》GB50736-2012提供全国各地冬夏两季的风速数据库,过渡季节的风速要以当地气象资料作为参考。
通锦.国际新城三期项目(通锦.国际嘉园)的入口风速参考数据库中项目所在地达州的冬夏两季气象资料,并结合达州当地过渡季节的气象数据,具体数据见章模拟工况。
2) 梯度风由于随着高度的增加,风速会增大,而且风速随高度增大的规律还与地面粗糙度有关。
Vent2014参考《建筑通风效果测试与评价标准》JGJ/T 309—2013,采用指数函数梯度风。
四类地貌(不同地面粗糙度)中平均风速随高度变化的规律:ανν⎪⎪⎭⎫ ⎝⎛=Rz z R 式中:ν、z ——任何一点的平均风速和高度;R ν、R z ——标准高度R z 处的平均风速R ν和标准高度值,《建筑结构荷载规范》GB50009-2001规定自然风场的标准高度取10m ;α——地面粗糙度指数,其取值如下表;表2 不同类型地表面下的α值与梯度风高度表地面类型适用区域指数n A 近海海面、海岛、海岸、湖岸及沙漠地区B田野乡村、丛林、丘陵,房屋较稀疏的乡镇和城市郊区C 密集建筑群的城市市区 D密集建筑群且房屋较高的城市市区3) 出流边界条件建筑出流面上空气流动按湍流充分发展考虑,边界条件按自由出口设定。