显式动力学与隐式动力学
13-2.静力隐式-显式和动力显式有限元列式
弹塑性大变形有限元方法胡平§大变形弹塑性本构方程最简单的材料大变形弹塑性本构方程是不考虑加载历史的形变理论的全量本构方程。
这类本构方程基于加载历史是比例加载的基本假定。
对于许多金属冲压成形问题,比例加载的基本假定是近似正确的,因此,基于这类理论的所谓one step inverse algorithm,由于其高效高速的计算效率,近年来被广泛应用于汽车概念设计阶段的冲压工艺性快速校核。
关于全量理论的One-step inverse algorithm的理论知识将另行介绍(参见理论手册)。
然而,更精细和准确的成形问题数值分析应该是能够考虑加载历史的增量本构理论。
为了反映与加载历史的相关性,大变形弹塑性问题需要采用速率型(增量型)的本构方程。
首先,需要在大变形条件下,按照符合客观性的要求,建立增量型本构方程。
由(7.26)式可知,变形率张量[d]是客观张量,但由(7.36)式可知Cauchy应力张量的物质导数[]σ 不是客观张量,所以若用变形率张量和Cauchy应力张量来建立本构方程,则将不满足本构方程的客观性条件(7.42)式。
为此,需要另外定义Cauchy应力张量的导数。
1.Cauchy应力张量的Jaumann导数(率)而Cauchy应力的Jaumann导数定义为01lim tjdt dt(1)推导后得到ijij ik kj kj ki σσσωσω∇=--(2)其矩阵形式为2. 第一Piola 应力(名义应力)张量的本构导数(3)用Cauchy 应力Jaumann 导数表示的第一Piola 应力的本构导数为()ij ij ik kj kj ki ik jk ij kk t t d d l l σσσσσ∇=--++ (4)其矩阵形式为()][t t σ∇= (5)3. 第二Piola 应力张量的本构导数仿照第一Piola 应力本构导数的推导,有()ij ij ij kk kj ik ik jk T t l l l σσσσ=+--(6)把(7.179)式代入(7.182)式,便得用Cauchy 应力Jaumann 导数表示的第二Piola 应力的本构导数为()ij ij ik kj kj ki ij kk T t d d l σσσσ•∇=--+(7)其矩阵形式为(8)4. 大变形弹塑形本构方程三维大变形弹塑形问题属于大变形问题。
ANSYS Workbench 17·0有限元分析:第11章-显式动力学分析
第11章 显式动力学分析自带有学的分析方法。
★ 了解显式动力学分析。
11.1 显式动力学分析概述显式算法主要用于高速碰撞及冲压成型过程的仿真,其在这方面的应用效果已超过隐式算法。
11.1.1 显式算法与隐式算法的区别1.显式算法动态显式算法是采用动力学方程的一些差分格式(如中心差分法、线性加速度法、Newmark 法和Wilson法等),该算法不用直接求解切线刚度,也不需要进行平衡迭代,计算速度较快,当时间步长足够小时,一般不存在收敛性问题。
动态显式算法需要的内存也比隐式算法要少,同时数值计算过程可以很容易地进行并行计算,程序编制也相对简单。
显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时,速度优势才能发挥,因而往往采用减缩积分方法,但容易激发沙漏模式,影响应力和应变的计算精度。
2.隐式算法在隐式算法中,每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这一过程需要占用相当数量的计算资源、磁盘空间和内存。
该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中还要受到迭代次数及非线性程度的限制,所以需要取一个合理值。
第11章显式动力学分析在ANSYS中,显式动力学包括ANSYS Explicit STR、ANSYS AUTODYN 及ANSYSLS-DYNA 3个模块。
1.ANSYS Explicit STRANSYS Explicit STR是基于ANSYS Workbench仿真平台环境的结构高度非线性显式动力学分析软件,可以求解二维、三维结构的跌落、碰撞、材料成型等非线性动力学问题,该软件功能成熟、齐全,可用于求解涉及材料非线性、几何非线性、接触非线性的各类动力学问题。
2.ANSYS AUTODYNAUTODYN用来解决固体、流体、气体及其相互作用的高度非线性动力学问题。
AUTODYN 已完全集成在ANSYS Workbench中,可充分利用ANSYS Workbench的双向CAD接口、参数化建模以及方便实用的网格划分技术,还具有自身独特的前、后处理和分析模块。
隐式与显式动力学的区别-弹性动力学有限元基本解法
1.1. 弹性动力学有限元基本解法 结构系统的通用运动学方程为: tR KU U C U M =++ (1) 求解该动力学振动响应主要有三类方法:(1)时域法(2)频域法(3)响应谱法时域法又可分为:(1)直接积分法,(2)模态叠加法。
直接积分法又可分为中心差分法(显式),Wilson θ(隐式)法以及Newmark (隐式)法等。
本文介绍中心差分法(显式)与Newmark (隐式)法。
1 中心差分法(显式)假定0,1t ,2t ,…,n t 时刻的节点位移,速度与加速度均为已知,现求解)(t t t n ∆+时刻的 结构响应。
中心差分法对加速度,速度的导数采用中心差分代替,即为:)2(12t t t t t tU U U tU ∆+∆-+-∆=)(21t t t t tU U tU ∆-∆+-∆= (2)将(2)式代入(1)式后整理得到 tt t R U M ˆˆ=∆+ (3) 式(3)中CtM tM∆+∆=211ˆ2t t t tt U C tM tU M tK R R ∆-∆-∆-∆--=)211()2(ˆ22分别称为有效质量矩阵,有效载荷矢量。
R ,M ,C ,K 为结构载荷,质量,阻尼,刚度矩阵。
求解线性方程组(3),即可获得t t ∆+时刻的节点位移向量t t U ∆+,将t t U ∆+代回几何方程与物理方程,可得t t ∆+时刻的单元应力和应变。
中心差分法在求解t t ∆+瞬时的位移t t U ∆+时,只需t t ∆+时刻以前的状态变量t U 和t t U ∆-,然后计算出有效质量矩阵M ˆ,有效载荷矢量tR ˆ,即可求出t t U ∆+,故称此解法为显式算法。
中心差分法,在开始计算时,需要仔细处理。
t =0时,要计算t U ∆,需要知道t U ∆-的值。
因此应该有一个起始技术,因而该算法不是自动起步的。
由于0U ,0U ,0U 是已知的,由t =0时的(2)式可知:202U t U t U U t ∆+∆-=∆- 中心差分法中时间步长t ∆的选择涉及两个方面的约束:数值算法的稳定性和计算时间。
显式表达式
显式表达式
显式表达式,可以理解为呈现出来的表达式,或者是显示出来的表达式,相对于隐性表达式。
显式算法基于动力学方程,因此无需迭代;而静态隐式算法基于虚功原理,一般需要迭代计算。
显式算法最大优点是有较好的稳定性。
动态显式算法采用动力学方程的一些差分格式(如广泛使用的中心差分法、线性加速度法、Newmark法和wilson法等),不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取的足够小,一般不存在收敛性问题。
因此需要的内存也比隐式算法要少。
并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。
显式与隐式的区别
使用显式方法,计算成本消耗与单元数量成正比,并且大致与最小单元的尺寸成反比,应用隐式方法,经验表明对于许多问题的计算成本大致与自由度数目的平方成正比,因此如果网格是相对均匀的,随着模型尺寸的增长,显式方法表明比隐式方法更加节省计算成本。
显式算法是建立在i时刻的运动平衡方程,不需要迭代,运算简单但是对步长要求很高,因为其影响精度和稳定性;而隐式算法是建立在i+1时刻的,因此需要迭代,过程复杂些,但是更加精确。
显示积分和隐式积分法
这是ansys里面的两种求解方法。
大多数非线性动力学问题一般多是采用显式求解方法,特别是在求解大型结构的瞬时高度非线性问题时,显示求解方法有明显的优越性。
下面先简要对比一下隐式求解法和显示求解法。
动态问题涉及到时间域的数值积分方法问题。
在80年代中期以前,人们基本上采用纽曼法进行时间域的积分。
根据纽曼法,位移、速度和加速度有着如下关系:u(i+1)=u(i)+△t*v(i)[(1—2p)a(i)+2p*a(i+1)] (1)v(i+1)=V(i)+△t[(1-2q)a(i)+2qa(i+1)] (2)上面式子中u(i+1),u(i)分别为当前时刻和前一时刻的位移,v(i+1)和V(i)为当前时刻和前一时刻的速度,a(i+1)和a(i)为当前时刻和前一时刻的加速度,p 和q为两个待定参数,△t为当前时刻与前一时刻的时问差,符号* 为乘号。
由式(1)和式(2)可知,在纽曼法中任一时刻的位移、速度、加速度都相互关联,这就使得运动方程的求解变成一系列相互关联的非线性方程的求解,这个求解过程必须通过迭代和求解联立方程组才能实现。
这就是通常所说的隐式求解法。
隐式求解法可能遇到两个问题。
一是迭代过程不一定收敛,二是联立方程组可能出现病态而无确定的解。
隐式求解法最大的优点是它具有无条件稳定性,即时间步长可以任意大。
如果采用中心差分法来进行动态问题的时域积分,则有如下位移、速度和加速度关系式:u(i+1)=2u(i)-u(i-1)+a(i)(△t)^2 (3)v(i+1)=[u(i+1)-u(i-1)]/2(△t) (4)式中u(i-1),为i-1时刻的位移。
由式(3)可以看出,当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。
另外,只要将运动过程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。
显式求解法的优点是它既没有收敛性问题,也不需要求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。
abaqus第九讲显式动力学问题
能量分析和吸收能量计算
能量分析:通过后处理计算模型在模拟过程中的总能量、内能和动能等 吸收能量计算:计算模型在受到外力作用时吸收的能量,用于评估结构的稳定性和安全性
损伤和破坏的评估
显示破坏模式和位置
计算破坏概率和损伤容限
案例分析:选取典型的碰撞和冲击问题,如汽车碰撞、冲击载荷等,分析其动力学特性 和求解方法 ABAQUS显式动力学分析:介绍如何使用ABAQUS进行显式动力学分析,包括模型建 立、材料属性设置、边界条件和载荷施加等
结果与讨论:展示分析结果,对结果进行解释和讨论,指出该方法的优缺点和适用范围
结构振动问题分析案例
爆炸和冲击波问题分析案例
模型建立:详细描述如何使 用Abaqus建立爆炸和冲击 波问题的模型
案例背景:介绍爆炸和冲击 波问题的应用场景和重要性
边界条件和载荷:说明在模 型中如何设置边界条件和施
加载荷
求解过程:解释显式动力学 分析的求解过程,包括时间
积分、迭代方法等
THANK YOU
汇报人:XX
载荷和约束条件的施加
定义边界条件和载荷类型 确定载荷和约束的施加位置和大小 考虑模型的初始条件和运动状态 验证模型的正确性和可靠性
初始条件的设置
定义全局初始条件
定义边界条件
定义模型初始条件 初始速度和温度的设置
abaqus显式动力学分析结果后 处理
应力、应变和位移的输出
应力:描述材 料在受力状态 下的内部抵抗
法。
它基于动力学 原理,通过求 解动力平衡方 程来获得结构 在动态载荷下
的响应。
显式动力学具 有较高的计算 效率和精度, 适用于模拟复 杂结构的动态
Ansys显示算法和隐式算法知识完全解读
An sys 显示算法和隐式算法知识完全解读这是 ansys 里面的两种求解方法。
大多数非线性动力学问题一般多是采用显式求解方法, 特别是在求解大型结构的瞬时高度非 线性问题时, 显示求解方法有明显的优越性。
下面先简要对比一下隐式求解法和显示求解法。
动态问题涉及到时间域的数值积分方法问题。
在 80 年代中期以前,人们基本上采用纽曼法 进行时间域的积分。
根据纽曼法,位移、速度和加速度有着如下关系:u(i+1)=u(i)+ △ t*v(i)[(1 — 2p)a(i)+2p*a(i+1)]⑴ v(i+1)=V(i)+A t[(1-2q)a(i)+2qa(i+1)](2) 上面式子中u(i+1),u(i)分别为当前时刻和前一时刻的位移, 一时刻的速度,a(i+1)和a(i)为当前时刻和前一时刻的加速度, 为当前时刻与前一时刻的时问差,符号 * 为乘号。
由式 (1)和式 (2)可知,在纽曼法中任一时 刻的位移、 速度、 加速度都相互关联, 这就使得运动方程的求解变成一系列相互关联的非线性方程的求解, 这个求解过程必须通过迭代和求解联立方程组才能实现。
能出现病态而无确定的解。
隐式求解法最大的优点是它具有无条件稳定性, 任意大。
如果采用中心差分法来进行动态问题的时域积分, 则有如下位移、 速度和加速度关系式:u(i+1)=2u(i)-u(i-1)+a(i)( △ t)A 2(3) v(i+1)=[u(i+1)-u(i-1)] / 2(△ t) (4)式中 u(i-1) ,为 i-1 时刻的位移。
由式 (3)可以看出,当前时刻的位移只与前一时刻的加速度 和位移有关, 这就意味着当前时刻的位移求解无需迭代过程。
另外, 只要将运动过程中的质 量矩阵和阻尼矩阵对角化, 前一时刻的加速度求解无需解联立方程组, 从而使问题大大简化,这就是所谓的显式求解法。
显式求解法的优点是它既没有收敛性问题,也不需要求解联立方 程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。
显式&隐式求解
通过(03)(09)可以得到两种方法的计算特点,显式算法是每一步求解为矩阵乘法,时间步 选择为条件稳定;隐式算法是每一步求解为线性方程组求解,时间步选择为无条件稳定。 下面主要分析两种方法的应用范围。 在求解动力学问题时,将方程在空间上采用有限元法(或其他方法)进行离散后,变为 常微分方程组
C u K u f M u
只不过,在显示动力分析中最消耗 CPU 的一项就是单元的处理。由于积分点的个数与 CPU 时间成正比,采用简化积分的单元便可以极大的节省数据存储量和运算次数,进而提高 运算效率。除节省 CPU 外,单点积分单元在大变形分析中同样有效,Ansys/ls-dyna 单元能承 受比标准 Ansys 隐式单元更大的变形。因此,每种显示动力单元确省为单点积分。但单点积 分有两个缺点:1.出现零能模型(沙漏模态);2.应力结果精确度与积分点相关。为了控制沙 漏,可以采用全积分单元。 总结一下,显示算法、隐式算法与单点积分、全积分不是一个层次上的概念。 我们在求解问题的时候应先根据我们的问题类型来决定是采用显示算法还是隐式算法。 如果是采用显示算法,默认是单点积分,如果产生了沙漏,改用全积分。
u (i 1) 2u (i ) u (i 1) a (i )(t )2 v(i 1) u (i 1) u (i 1) 2t
由上式可以看出,当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻 的位移求解无需迭代过程。另外,只要将运动方程中的质量矩阵和阻尼矩阵对角化,前一时 刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式算法。显式算 法的优点是它即没有收敛性问题,也不需求解联立方程组,其缺点是时间步长受到数值积分 稳定性的限制,不能超过系统的临界时间步长。 显式算法是 ansys/ls-dyna 中主要的求解方法,用于分析大变形、瞬态问题、非线性动力 学问题等。 对于非线性分析, 显示算法有一些基本的特点, 如: 块质量矩阵需要简单的转置; 方程非耦合,可以直接求解;无须转置刚度矩阵,所有的非线性问题(包括接触)都包含在 内力矢量中;内力计算是主要的计算部分;无效收敛检查;保存稳定状态需要小的时间步。 显式算法和隐式算法, 有时也称为显式解法和隐式解法, 是计算力学中常见的两个概念, 但是它们并没有普遍认可的定义,下面收集的一些理解。先看看一般对两种方法的理解和比 较 ============================================================= 显式算法 隐式算法 ----------------------------------------------------------------------------------(01)适用问题 动力学(动态) 静力学(静态) (02)阻尼 人工阻尼 数值阻尼 ----------------------------------------------------------------------------------(03)每步求解方法 矩贮量 小 大 (06)每步计算速度 快 慢 (07)迭代收敛性 无 有 (08)确定解 有确定解 可能是病态无确定解 ----------------------------------------------------------------------------------(09)时步稳定性 有条件 无条件 (10)时间步 小 大 (11)计算精度 低 高 ============================================================= (01)是明显不对的, 只是对两种方法的初级理解, (02)也是同样。 下面要详细讨论这两点。 (03)是每一步求解的方法,(04)(05)(06)(07)(08)是由(03)所决定的,它们不是两种方法的基本 特点。同样,(09)是时间步选择的方法,(10)(11)是由(09)所决定的。
显式与隐式积分
显式与隐式积分这是ansys里面的两种求解方法。
大多数非线性动力学问题一般多是采用显式求解方法,特别是在求解大型结构的瞬时高度非线性问题时,显示求解方法有明显的优越性。
下面先简要对比一下隐式求解法和显示求解法。
动态问题涉及到时间域的数值积分方法问题。
在80年代中期以前,人们基本上采用纽曼法进行时间域的积分。
根据纽曼法,位移、速度和加速度有着如下关系:u(i+1)=u(i)+△t*v(i)[(1—2p)a(i)+2p*a(i+1)] (1)v(i+1)=V(i)+△t[(1-2q)a(i)+2qa(i+1)] (2)上面式子中u(i+1),u(i)分别为当前时刻和前一时刻的位移,v(i+1)和V(i)为当前时刻和前一时刻的速度,a(i+1)和a(i)为当前时刻和前一时刻的加速度,p和q 为两个待定参数,△t为当前时刻与前一时刻的时问差,符号* 为乘号。
由式(1)和式(2)可知,在纽曼法中任一时刻的位移、速度、加速度都相互关联,这就使得运动方程的求解变成一系列相互关联的非线性方程的求解,这个求解过程必须通过迭代和求解联立方程组才能实现。
这就是通常所说的隐式求解法。
隐式求解法可能遇到两个问题。
一是迭代过程不一定收敛,二是联立方程组可能出现病态而无确定的解。
隐式求解法最大的优点是它具有无条件稳定性,即时间步长可以任意大。
如果采用中心差分法来进行动态问题的时域积分,则有如下位移、速度和加速度关系式:u(i+1)=2u(i)-u(i-1)+a(i)(△t)^2 (3)v(i+1)=[u(i+1)-u(i-1)]/2(△t) (4)式中u(i-1),为i-1时刻的位移。
由式(3)可以看出,当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。
另外,只要将运动过程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。
显式求解法的优点是它既没有收敛性问题,也不需要求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。
动力学显式方法介绍及其对应仿真类型
显式方法及适用的动力学仿真类型介绍静态准静态动态Eg. 结构问题 E.g. 金属成型 E.g. 冲击问题ΣF = 0ΣF ≈ΣF = ma隐式方法显式方法复杂性成本(C P U )t1t speedsound lengthbeam α)t (t 0-1CPU 占用一个声速函数显式方法显式方法时间积分1.循环节点:(中心差分计算)2.循环单元: (应力计算)1.应变2.应力mt f t f xn n ext n )()(int −= t xx x n n n ∆+=−+ 2121t xxx nn n∆+=++211 0l l l −=ε111121−−=+++l x xn n n εN 1N 2εσE =11++=n n E εσ显式方法时间积分(cont’d)3.节点力:111++−=n n A f σ112++=n n A f σN 1N 2N if jj+1显式流程表时间步长的定义计算时间步长ρE e l c l t ==∆kmt n 2=∆单元时间步节点时间步其中:l = 单元长度c = 声速E = 模量ρ= 密度其中:m = 节点质量k = 等效节点刚度建立物理模型空间:几何体由有限单元离散时间:由时间步离散物理法则•质量守恒•能量守恒•动量守恒•公式—选择时间和空间离散:•拉格朗日•欧拉•任意朗格朗日欧拉(ALE)公式拉格朗日•结构分析•单元材料变形欧拉•CFD –流体•固定在空间的节点•材料通过网格任意拉格朗日欧拉•内部节点移动来减少单元失真•边界节点保持在节点域的边界。
显式算法与隐式算法的区别
显式算法与隐式算法得区别1、显式算法最大优点就是有较好得稳定性。
动态显式算法采用动力学方程得一些差分格式(如广泛使用得中心差分法、线性加速度法、Newmark法与wilson法等),不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取得足够小,一般不存在收敛性问题。
因此需要得内存也比隐式算法要少。
并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。
但显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时速度优势才能发挥。
因而往往采用减缩积分方法,容易激发沙漏模式,影响应力与应变得计算精度。
静态显式法基于率形式得平衡方程组与Euler向前差分法,不需要迭代求解。
由于平衡方程式仅在率形式上得到满足,所以得出得结果会慢慢偏离正确值。
为了减少相关误差,必须每步使用很小得增量。
2、隐式算法隐式算法中,在每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型得线性方程组,这以过程需要占用相当数量得计算资源、磁盘空间与内存。
该算法中得增量步可以比较大,至少可以比显式算法大得多,但就是实际运算中上要受到迭代次数及非线性程度得限制,需要取一个合理值。
3、求解时间t使用显式方法,计算成本消耗与单元数量成正比,并且大致与最小单元得尺寸成反比;应用隐式方法,经验表明对于许多问题得计算成本大致与自由度数目得平方成正比;因此如果网格就是相对均匀得,随着模型尺寸得增长,显式方法表明比隐式方法更加节省计算成本。
所谓显式与隐式,就是指求解方法得不同,即数学上得出发点不一样。
并不就是说显式只能求动力学问题,隐式只能求静力学问题,只就是求解策略不通。
显式求解就是对时间进行差分,不存在迭代与收敛问题,最小时间步取决于最小单元得尺寸。
过多与过小得时间步往往导致求解时间非常漫长,但总能给出一个计算结果。
解题费用非常昂贵。
因此在建模划分网格时要非常注意。
隐式求解与时间无关,采用得就是牛顿迭代法(线性问题就直接求解线性代数方程组),因此存在一个迭代收敛问题,不收敛就得不到结果。
显式与隐式积分
这是ansys里面的两种求解方法。
大多数非线性动力学问题一般多是采用显式求解方法,特别是在求解大型结构的瞬时高度非线性问题时,显示求解方法有明显的优越性。
下面先简要对比一下隐式求解法和显示求解法。
动态问题涉及到时间域的数值积分方法问题。
在80年代中期以前,人们基本上采用纽曼法进行时间域的积分。
根据纽曼法,位移、速度和加速度有着如下关系:u(i+1)=u(i)+△t*v(i)[(1—2p)a(i)+2p*a(i+1)] (1)v(i+1)=V(i)+△t[(1-2q)a(i)+2qa(i+1)] (2)上面式子中u(i+1),u(i)分别为当前时刻和前一时刻的位移,v(i+1)和V(i)为当前时刻和前一时刻的速度,a(i+1)和a(i)为当前时刻和前一时刻的加速度,p和q 为两个待定参数,△t为当前时刻与前一时刻的时问差,符号* 为乘号。
由式(1)和式(2)可知,在纽曼法中任一时刻的位移、速度、加速度都相互关联,这就使得运动方程的求解变成一系列相互关联的非线性方程的求解,这个求解过程必须通过迭代和求解联立方程组才能实现。
这就是通常所说的隐式求解法。
隐式求解法可能遇到两个问题。
一是迭代过程不一定收敛,二是联立方程组可能出现病态而无确定的解。
隐式求解法最大的优点是它具有无条件稳定性,即时间步长可以任意大。
如果采用中心差分法来进行动态问题的时域积分,则有如下位移、速度和加速度关系式:u(i+1)=2u(i)-u(i-1)+a(i)(△t)^2 (3)v(i+1)=[u(i+1)-u(i-1)]/2(△t) (4)式中u(i-1),为i-1时刻的位移。
由式(3)可以看出,当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。
另外,只要将运动过程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。
显式求解法的优点是它既没有收敛性问题,也不需要求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。
显示动力学,隐式动力学
1、显式算法动态显式算法采用动力学方程的一些差分格式(如广泛使用的中心差分法、线性加速度法等),不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取的足够小,一般不存在收敛性问题。
因此需要的内存也比隐式算法要少。
并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。
但显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时速度优势才能发挥, 因而往往采用减缩积分方法,容易激发沙漏模式,影响应力和应变的计算精度。
显式算法基于动力学方程,因此无需迭代静态显式法基于率形式的平衡方程组与Euler向前差分法,不需要迭代求解。
由于平衡方程式仅在率形式上得到满足,所以得出的结果会慢慢偏离正确值。
为了减少相关误差,必须每步使用很小的增量。
2、隐式算法隐式算法中,在每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这个过程需要占用相当数量的计算资源、磁盘空间和内存。
该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中上要受到迭代次数及非线性程度的限制,需要取一个合理值。
而静态隐式算法基于虚功原理,一般需要迭代计算3、求解时间使用显式方法,计算成本消耗与单元数量成正比,并且大致与最小单元的尺寸成反比;应用隐式方法,经验表明对于许多问题的计算成本大致与自由度数目的平方成正比;因此如果网格是相对均匀的,随着模型尺寸的增长,显式方法表明比隐式方法更加节省计算成本4、隐式求解法将冲压成型过程的计算作为动态问题来处理后,就涉及到时间域的数值积分方法问题。
在80年代中期以前,人们基本上使用牛曼法进行时间域的积分。
隐式求解法可能遇到两个问题。
一是迭代过程不一定收敛;二是联立方程组可能出现病态而无确定的解。
隐式求解法的最大优点是它具有无条件稳定性,即时间步长可以任意大。
显式求解法显式求解法的优点是它即没有收敛性问题,也不需求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。
LSDYNA显示动力学简介
2
显式动力学的应用
应力波 传播 接触 碰撞
制造 工艺 耐撞性 分析
3 隐式动力学简介
cx kx F (t ) mx
对于特定积分参量的线性问题 对于非线性问题
无条件稳定
可采用较大的时间步
线性逼近,需要多次迭代
收敛需要较小时间步
小结
无须进行收敛检查
收敛
时间步
谢谢
LS/DYNA 显式算法
n1/2 i
x
n1/2 i
x t
n
t f * h / c min
P F H Mx
n n n
n
中心差分法
P:为外力和体力的合力 ∆t为时间增量, f为时间步稳定因子 n时刻加速度→n+1/2时刻各个方向速度 →n+1时刻坐标值 F:为应力放散矢量 H:为沙漏阻力 h为单元的特征尺寸,c为局部应力波波速
无须进行迭代 迭代
时间步大小受CFL条件限制
Explicit Dynamics
LS/DYNA 显式动力学
目录
显式动力学简介 显式算法 隐式动力学简介
1
2
显式动力学的应用
3
4隐式算法Biblioteka 小结1 显式动力学简介
x x
n1 i
x x
n i
n1/2 i n i
t
n1/2
n+1时刻的坐标值 n+1/2时刻各个方向速度 时间步CFL条件限制
隐式与显式动力学的区别-弹性动力学有限元基本解法
1.1. 弹性动力学有限元基本解法结构系统的通用运动学方程为:tR KU U C U M =++ (1) 求解该动力学振动响应主要有三类方法:(1)时域法(2)频域法(3)响应谱法时域法又可分为:(1)直接积分法,(2)模态叠加法。
直接积分法又可分为中心差分法(显式),Wilson θ(隐式)法以及Newmark (隐式)法等。
本文介绍中心差分法(显式)与Newmark (隐式)法。
1 中心差分法(显式)假定0,1t ,2t ,…,n t 时刻的节点位移,速度与加速度均为已知,现求解)(t t t n ∆+时刻的 结构响应。
中心差分法对加速度,速度的导数采用中心差分代替,即为:)2(12t t t t t t U U U t U ∆+∆-+-∆= )(21t t t t t U U tU ∆-∆+-∆= (2) 将(2)式代入(1)式后整理得到tt t R U M ˆˆ=∆+ (3) 式(3)中C tM t M ∆+∆=211ˆ2 t t t t t U C tM t U M t K R R ∆-∆-∆-∆--=)211()2(ˆ22 分别称为有效质量矩阵,有效载荷矢量。
R ,M ,C ,K 为结构载荷,质量,阻尼,刚度矩阵。
求解线性方程组(3),即可获得t t ∆+时刻的节点位移向量t t U ∆+,将t t U ∆+代回几何方程与物理方程,可得t t ∆+时刻的单元应力和应变。
中心差分法在求解t t ∆+瞬时的位移t t U ∆+时,只需t t ∆+时刻以前的状态变量t U 和t t U ∆-,然后计算出有效质量矩阵M ˆ,有效载荷矢量tR ˆ,即可求出t t U ∆+,故称此解法为显式算法。
中心差分法,在开始计算时,需要仔细处理。
t =0时,要计算t U ∆,需要知道t U ∆-的值。
因此应该有一个起始技术,因而该算法不是自动起步的。
由于0U ,0U ,0U 是已知的,由t =0时的(2)式可知: 02002U t U t U U t ∆+∆-=∆-中心差分法中时间步长t ∆的选择涉及两个方面的约束:数值算法的稳定性和计算时间。
显式隐式求解
<显式动力学&隐式动力学分析>1、显式算法基于动力学方程,因此无需迭代;而静态隐式算法基于虚功原理,一般需要迭代计算2、显式算法最大优点是有较好的稳定性。
动态显式算法采用动力学方程的一些差分格式,不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取的足够小,一般不存在收敛性问题。
因此需要的内存也比隐式算法要少。
并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。
但显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时速度优势才能发挥, 因而往往采用减缩积分方法,容易激发沙漏模式,影响应力和应变的计算精度。
静态显式法基于率形式的平衡方程组与Euler 向前差分法,不需要迭代求解。
由于平衡方程式仅在率形式上得到满足,所以得出的结果会慢慢偏离正确值。
为了减少相关误差,必须每步使用很小的增量。
3、隐式算法隐式算法中,在每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这个过程需要占用相当数量的计算资源、磁盘空间和内存。
该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中上要受到迭代次数及非线性程度的限制,需要取一个合理值。
4、求解时间使用显式方法,计算成本消耗与单元数量成正比,并且大致与最小单元的尺寸成反比; 应用隐式方法,经验表明对于许多问题的计算成本大致与自由度数目的平方成正比;因此如果网格是相对均匀的,随着模型尺寸的增长,显式方法表明比隐式方法更加节省计算成本隐式算法将冲压成型过程的计算作为动态问题来处理后,就涉及到时间域的数值积分方法问题。
在80年代中期以前,人们基本上使用纽曼法进行时间域的积分。
根据纽曼法,位移、速度和加速度有着如下的关系:[][](1)()()(12)()2(1)(1)()(12)()2(1)u i u i t v i p a i pa i v i v i t q a i qa i +=+∆⨯-+++=+∆-++上面式子中, u(i+1)和u(i) 分别为当前时刻和前一时刻的位移, v(i+1)和v(i)为当前时刻和前一时刻的速度, a(i+1)和a(i)为当前时刻和前一时刻的加速度,p 和q 为两个待定参数。
abaqus显示和隐式算法的差别
1.1. 弹性动力学有限元基本解法 结构系统的通用运动学方程为: MU CU KU 二 R t( 1)求解该动力学振动响应主要有三类方法:(1)时域法(2)频域法(3)响应谱法 时域法又可分为:(1)直接积分法,(2)模态叠加法。
直接积分法又可分为中 心差分法(显式), Wils on ■'(隐式)法以及Newmark (隐式)法等。
本文介绍中心差分法(显式)与 Newmark (隐式)法。
1中心差分法(显式) 假定0, t 1, t 2,…,t n 时刻的节点位移,速度与加速度均为已知,现求解 t n (t *:t )时刻的结构响应。
中心差分法对加速度,速度的导数采用中心差分代替,即 为:1 2(U t_t -2U t U t T L t1*(U t 「U t J(2) 式代入(1)式后整理得到 t R(3) (3) 中 1 12 M C ■ :t 2 2・:t2 1 1二 R t _(K -〒 M )U t -(〒M -石 C )U —分别称为有效质量矩阵,有效载荷矢量。
R ,M ,C ,K 为结构载荷,质量,阻 尼,刚度矩阵。
求解线性方程组(3),即可获得r . :t 时刻的节点位移向量U t.、.t,将U,*代回几 何方程与物理方程,可得t 时刻的单元应力和应变。
中心差分法在求解t •.迸瞬时的位移U t t时,只需t •氏时刻以前的状态变量U t和 U tj :,然后计算出有效质量矩阵M?,有效载荷矢量R ,即可求出U,t ,故称此解法 为显式算法。
中心差分法,在开始计算时,需要仔细处理。
t=0时,要计算U t ,需要知道u J 的值。
因此应该有一个起始技术,因而该算法不是自动起步的。
由于 U o , U o , U o 是 已知的,由t=0时的(2)式可知:■ ■: t 2 "Uj 二 U 。
- :tU ° U 。
2中心差分法中时间步长:t 的选择涉及两个方面的约束:数值算法的稳定性和计算 时间。
显式和隐式力学计算方法对比研究
显式和隐式力学计算方法对比研究潘科琪【摘要】Shows two kinds of numerical computation method for rigid-flexible dynamics equation and its developments. Based on the explicit nu-merical method, respectively solves i.e. Runge Kutta method and implicit numerical method, i.e. Newmark method, linear and nonlinear dynamics equations for curved beam pendulum and slider-crank mechanism. In condition of the same computation accuracy, results com-parison show that implicit numerical method computation efficiency is obviously higher than the explicit numerical method no matter for solving linear nor the nonlinear dynamics equation. So, the conclusion that implicit numerical method, i.e. Newmark method is recom-mended for calculating the mechanics problem in engineering.%阐述求解刚-柔耦合动力学方程的两种计算方法及其研究进展。
基于显式算法即龙哥库塔法和隐式算法方法即纽马克方法结合牛顿迭代法,分别求解单摆和曲柄滑块系统的线性和非线性的动力学方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(01)适用问题 动力学(动态) 静力学(静态)
(01)每步求解方法 矩阵乘法 线性方程组
(02)时步稳定性 有条件 无条件
-------------------------------------------------------------
(03)适用问题 动力中心差分法 动力Newmark法
静态显式法基于率形式的平衡方程组与Euler向前差分法,不需要迭代求解。由于平衡方程式仅在率形式上得到满足,所以得出的结果会慢慢偏离正确值。为了减少相关误差,必须每步使用很小的增量。
3、隐式算法
隐式算法中,在每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这个过程需要占用相当数量的计算资源、磁盘空间和内存。该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中上要受到迭代次数及非线性程度的限制,需要取一个合理值。
4、求解时间
使用显式方法,计算成本消耗与单元数量成正比,并且大致与最小单元的尺寸成反比;
应用隐式方法,经验表明对于许多问题的计算成本大致与自由度数目的平方成正比;
因此如果网格是相对均匀的,随着模型尺寸的增长,显式方法表明比隐式方法更加节省计算成本
隐式求解法
最后总结,
=============================================================
显式算法 隐式算法
-------------------------------------------------------------
什么叫显示动力学,什么叫隐式动力学分析!
2011-07-02 19:12:13
1、显式算法基于动力学方程,因此无需迭代;而静态隐式算法基于虚功原理,一般需要迭代计算
2、显式算法最大优点是有较好的稳定性。
动态显式算法采用动力学方程的一些差分格式(如广泛使用的中心差分法、线性加速度法、Newmark法和wilson法等),不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取的足够小,一般不存在收敛性问题。因此需要的内存也比隐式算法要少。并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。但显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时速度优势才能发挥, 因而往往采用减缩积分方法,容易激发沙漏模式,影响应力和应变的计算精度。
(01)是明显不对的,只是对两种方法的初级理解,(02)也是同样。下面要详细讨论这两点。(03)是每一步求解的方法,(04)(05)(06)(07)(08)是由(03)所决定的,它们不是两种方法的基本特点。同样,(09)是时间步选择的方法,(10)(11)是由(09)所决定的。
通过(03)(09)可以得到两种方法的计算特点,显式算法是每一步求解为矩阵乘法,时间步选择为条件稳定;隐式算法是每一步求解为线性方程组求解,时间步选择为无条件稳定。
(02)阻尼 人工阻尼 数值阻尼
-------------------------------------------------------------
(03)每步求解方法 矩阵乘法 线性方程组
(04)大矩阵(总刚) 否 是
2)求解非线性静力学问题,虽然求解过程需要迭代,或者是增量法,但是没有明显的时步问题,所以不应将其看作隐式算法。
3)静态松弛法,可以认为是将动力学问题看作静力学问题来解决,每一步达到静力平衡,需要数值阻尼。
4)动态松弛法,可以认为是将静力学问题或者动力学问题,分为时步动力学问题,采用向后时步迭代的思想计算。对于解决静力学问题时,需要人工阻尼。
动力动态松弛法 动力静态松弛法 静力动态松弛法
=============================================================
附加说明:
1)求解线性静力学问题,虽然求解线性方程组,但是没有时步的关系,所以不应将其看作隐式算法。
(05)数据存贮量 小 大
(06)每步计算速度 快 慢
(07)迭代收敛性 无 有
(08)确定解 有确定解 可能是病态无确定解
-------------------------------------------------------------
(09)时步稳定性 有条件 无条件
(10)时间步 小 大
(11)计算精度 低 高=============================================================
下面主要分析两种方法的应用范围。
在求解动力学问题时,将方程在空间上采用有限元法(或其他方法)进行离散后,变为常微分方程组[M]{..u}+[C]{.u}+[K]{u}={f}。求解这种方程的其中两种方法为,中心差分法和Newmark法。采用中心差分法解决动力学问题被称为显式算法,采用Newmark法解决动力学问题被称为隐式算法。
在求解动力学问题时,离散元法(也有其他方法)主要有两种思想:动态松弛法(向后时步迭代),静态松弛法(每一步要平衡)。动态松弛法是显式算法,静态松弛法是隐式算法。其中冲压成型就是动态松弛法的主要例子。
在求解静力学问题时,有时候将其看作动力学问题来处理而采用动态松弛法,这是显式算法。其中冲压成形就是主要例子。
在80年代中期以前显式算法主要用于高速碰撞的仿真计算,效果很好。自80年代后期被越来越广泛地用于冲压成型过程的仿真,目前在这方面的应用效果已超过隐式算法。显式算法在冲压成型过程的仿真中获得成功应用的关键,在于它不像隐式算法那样有解的收敛性问题。
显式算法和隐式算法,有时也称为显式解法和隐式解法,是计算力学中常见的两个概念,但是它们并没有普遍认可的定义,下面收集的一些理解。先看看一般对两种方法的理解和比较,=============================================================
将冲压成型过程的计算作为动态问题来处理后,就涉及到时间域的数值积分方法问题。在80年代中期以前,人们基本上使用牛曼法进行时间域的积分。根据牛曼法,位移、速度和加速度有着如下的关系:上面式子中 , 分别为当前时刻和前一时刻的位移, 和 为当前时刻和前一时刻的速度, 和 为当前时刻和前一时刻的加速度,β和γ为两个待定参数。由上式可知,在牛曼法中任一时刻的位移、速度和加速度都相互关联,这就使得运动方程的求解变成一系列相互关联的非线性方程的求解。这个求解过程必须通过迭代和求解联立方程组才能实现。这就是通常所说的隐式求解法。隐式求解法可能遇到两个问题。一是迭代过程不一定收敛;二是联立方程组可能出现病态而无确定的解。隐式求解法的最大优点是它具有无条件稳定性,即时间步长可以任意大。
显式求解法
如果采用中心差分法来进行动态问题的时域积分,则有如下位移、速度和加速度关系:
由上式可以看出,当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。另外,只要将运动方程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。显式求解法的优点是它即没有收敛性问题,也不需求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。由于冲压成型过程具有很强的非线性,从解的精度考虑,时间步长也不能太大,这就在很大程度上弥补了显式求解法的缺陷。