微电子封装技术

合集下载

微电子封装的技术ppt

微电子封装的技术ppt

后段封装流程
划片
装片
将制造好的半导体芯片从晶圆上分离出来, 成为独立的个体。
将独立的半导体芯片按照一定的顺序和方式 装入封装壳内。
引线键合
打胶
通过金属引线将半导体芯片的电极与封装壳 的引脚相连,实现电路连接。
用环氧树脂等材料将半导体芯片和引线进行 固定和密封,以保护内部的电路。
封装测试流程
功能测试
信号完整性
高速信号传输过程中需要考虑信号完整性,包括 信号幅度、时间、相位等因素。
时序优化
高速信号传输需要优化时序关系,确保信号传输 的稳定性和可靠性。
高性能化趋势
多核处理器
采用多核处理器技术,提高计 算速度和性能。
GPU加速
采用GPU加速技术,提高图像处 理、人工智能等应用的性能。
存储器集成
将存储器与处理器集成在同一封装 内,提高数据处理速度和性能。
陶瓷材料
具有高导热、高绝缘、高强度和化学稳定性等特点,是微电子封装中应用最广泛 的材料之一,包括氧化铝、氮化硅和碳化硅等。
塑料材料
具有成本低、易加工和重量轻等特点,是微电子封装中应用最广泛的材料之一, 包括环氧树脂、聚酰亚胺和聚醚醚酮等。
最新封装设备
自动测试设备
用于检测芯片的性能和质量,包括ATE(Automatic Test Equipment)和ETE(Electronic Test Equipment)等。
其他领域
医疗设备
微电子封装技术可以实现医疗设备的信号传输和处理,提高医 疗设备的性能和稳定性。
航空航天
微电子封装技术可以实现航空航天设备的信号传输和处理,提高 航空航天的性能和稳定性。
智能家居
微电子封装技术可以实现智能家居设备的信号传输和处理,提高 智能家居的性能和稳定性。

微电子封装技术

微电子封装技术

微电子封装技术第一章绪论1、封装技术发展特点、趋势。

(P8)发展特点:①、微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向引出向面阵列排列发展;②、微电子封装向表面安装式封装(SMP)发展,以适合表面安装技术(SMT);③、从陶瓷封装向塑料封装发展;④、从注重发展IC芯片向先发展后道封装再发展芯片转移。

发展趋势:①、微电子封装具有的I/O引脚数将更多;②、应具有更高的电性能和热性能;③、将更轻、更薄、更小;④、将更便于安装、使用和返修;⑤、可靠性会更高;⑥、性价比会更高,而成本却更低,达到物美价廉。

2、封装的功能(P19)电源分配、信号分配、散热通道、机械支撑和环境保护。

3、封装技术的分级(P12)零级封装:芯片互连级。

一级封装:将一个或多个IC芯片用适宜的材料(金属、陶瓷、塑料或它们的组合)封装起来,同时在芯片的焊区与封装的外引脚间用如上三种芯片互连方法(WB、TAB、FCB)连接起来使之成为有实用功能的电子元器件或组件。

二级封转:组装。

将上一级各种微电子封装产品、各种类型的元器件及板上芯片(COB)一同安装到PWB或其它基板上。

三级封装:由二级组装的各个插板或插卡再共同插装在一个更大的母板上构成的,立体组装。

4、芯片粘接的方法(P12)只将IC芯片固定安装在基板上:Au-Si合金共熔法、Pb-Sn合金片焊接法、导电胶粘接法、有机树脂基粘接法。

芯片互连技术:主要三种是引线键合(WB)、载带自动焊(TAB)和倒装焊(FCB)。

早期有梁式引线结构焊接,另外还有埋置芯片互连技术。

第二章芯片互连技术(超级重点章节)1、芯片互连技术各自特点及应用引线键合:①、热压焊:通过加热加压力是焊区金属发生塑性形变,同时破坏压焊界面上的氧化层使压焊的金属丝和焊区金属接触面的原子间达到原子引力范围,从而使原子间产生引力达到键合。

两金属界面不平整,加热加压可使上下金属相互镶嵌;加热温度高,容易使焊丝和焊区形成氧化层,容易损坏芯片并形成异质金属间化合物影响期间可靠性和寿命;由于这种焊头焊接时金属丝因变形过大而受损,焊点键合拉力小(<0.05N/点),使用越来越少。

第3章微电子的封装技术

第3章微电子的封装技术

第3章微电子的封装技术微电子封装技术是指对集成电路芯片进行外包装和封封装的工艺技术。

封装技术的发展对于提高微电子产品的性能、减小体积、提高可靠性和降低成本具有重要意义。

封装技术的目标是实现对芯片的保护和有效连接,同时满足对尺寸、功耗、散热、信号传输等方面的要求。

封装技术的发展经历了多个阶段。

早期的微电子产品采用插入式封装,芯片通过引脚插入芯片座来连接电路板,这种封装方式容易受到环境的影响,连接不可靠,也无法满足小型化和高集成度的需求。

后来,绝缘层封装技术得到了广泛应用,通过在芯片上覆盖绝缘层,然后连接金属线路,再通过焊接或压力连接的方式实现芯片与电路板之间的连接。

这种封装方式提高了连接的可靠性,但由于绝缘层的存在,芯片的散热能力受到限制。

随着技术的进步,微电子封装技术也得到了快速发展。

现代微电子产品普遍采用半导体封装技术,具有体积小、功耗低、可靠性强和成本低等优点。

常见的半导体封装技术有裸片封装、焊接封装和微球栅阵列封装等。

裸片封装是将芯片裸露在外界环境中,并通过焊接或压力连接的方式与电路板相连。

这种封装方式具有体积小、重量轻和散热能力强的优点,但对芯片的保护较差,容易受到外界的机械和热力作用。

焊接封装是将芯片与封装底座通过焊接的方式连接起来。

常见的焊接技术有电离子焊接、激光焊接和超声波焊接等。

电离子焊接是利用高能电子束将封装底座和芯片焊接在一起,具有连接可靠、焊接速度快的优点。

激光焊接利用激光束对焊接点进行加热,实现焊接。

超声波焊接则是利用超声波的振动将焊接点熔化,并实现连接。

焊接封装具有连接可靠、工艺简单和尺寸小的优点,但要求焊接点的精度和尺寸控制较高。

微球栅阵列封装是一种先进的封装技术,其特点是将芯片中的引脚通过微小球连接到封装底座上。

这种封装方式不仅提高了信号传输的速度和可靠性,还可以实现更高的封装密度和更小的封装尺寸。

微球栅阵列封装需要使用高精度的装备和工艺,但具有很大的发展潜力。

除了封装技术的发展,微电子封装材料的研究也十分重要。

微电子封装技术的未来发展方向是什么?

微电子封装技术的未来发展方向是什么?

微电子封装技术的未来发展方向是什么?在当今科技飞速发展的时代,微电子技术无疑是推动社会进步的关键力量之一。

而微电子封装技术作为微电子技术的重要组成部分,其发展方向更是备受关注。

微电子封装技术,简单来说,就是将芯片等微电子元件进行保护、连接、散热等处理,以实现其在电子产品中的可靠应用。

随着电子产品的日益小型化、高性能化和多功能化,对微电子封装技术也提出了更高的要求。

未来,高性能、高密度和微型化将是微电子封装技术的重要发展方向。

在高性能方面,封装技术需要更好地解决信号传输的完整性和电源分配的稳定性问题。

为了实现这一目标,先进的封装材料和结构设计至关重要。

例如,采用低介电常数和低损耗的材料来减少信号延迟和衰减,以及优化电源网络的布局以降低电源噪声。

高密度封装则是为了满足电子产品集成度不断提高的需求。

通过三维封装技术,如芯片堆叠和硅通孔(TSV)技术,可以在有限的空间内集成更多的芯片,从而大大提高系统的性能和功能。

此外,扇出型晶圆级封装(Fanout WLP)技术也是实现高密度封装的重要手段,它能够将芯片的引脚扩展到更大的区域,增加引脚数量和布线密度。

微型化是微电子封装技术永恒的追求。

随着移动设备、可穿戴设备等的普及,对电子产品的尺寸和重量有着极为苛刻的要求。

因此,封装技术需要不断减小封装尺寸,同时提高封装的集成度和性能。

例如,采用更薄的封装基板、更小的封装引脚间距和更精细的封装工艺等。

绿色环保也是微电子封装技术未来发展的一个重要趋势。

随着环保意识的不断增强,电子产品的生产和使用过程中对环境的影响越来越受到关注。

在封装材料方面,将更多地采用无铅、无卤等环保材料,以减少对环境的污染。

同时,封装工艺也将朝着节能、减排的方向发展,提高生产过程的资源利用率和降低废弃物的排放。

此外,异质集成将成为微电子封装技术的一个重要发展方向。

随着各种新型器件和材料的不断涌现,如化合物半导体、MEMS 器件、传感器等,如何将这些不同性质的器件集成在一个封装体内,实现更复杂的系统功能,是未来封装技术面临的挑战之一。

微电子封装技术的发展趋势

微电子封装技术的发展趋势

微电子封装技术的发展趋势本文论述了微电子封装技术的发展历程,发展现状和发展趋势,主要介绍了几种重要的微电子封装技术,包括:BGA 封装技术、CSP封装技术、SIP封装技术、3D封装技术、MCM封装技术等。

1.微电子封装的发展历程IC 封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式(TH)和表面安装式(SM),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。

微电子封装的发展历程可分为三个阶段:第一阶段:上世纪70 年代以插装型封装为主,70 年代末期发展起来的双列直插封装技术(DIP)。

第二阶段:上世纪80 年代早期引入了表面安装(SM)封装。

比较成熟的类型有模塑封装的小外形(SO)和PLCC 型封装、模压陶瓷中的CERQUAD、层压陶瓷中的无引线式载体(LLCC)和有引线片式载体(LDCC)。

PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装,其引线排列在封装的所有四边。

第三阶段:上世纪90 年代,随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI,VLSI,ULSI相继出现,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大,因此,集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装(BGA),并很快成为主流产品。

2.新型微电子封装技术2.1焊球阵列封装(BGA)阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。

BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是:I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

这种BGA的突出的优点:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;②封装密度更高;由于焊球是整个平面排列,因此对于同样面积,引脚数更高。

微电子封装技术

微电子封装技术

微电子封装技术1. 引言微电子封装技术是在微电子器件制造过程中不可或缺的环节。

封装技术的主要目的是保护芯片免受机械和环境的损害,并提供与外部环境的良好电学和热学连接。

本文将介绍微电子封装技术的发展历程、常见封装类型以及未来的发展趋势。

2. 微电子封装技术的发展历程微电子封装技术起源于二十世纪五十年代的集成电路行业。

当时,集成电路芯片的封装主要采用插入式封装(TO封装)。

随着集成度的提高和尺寸的缩小,TO封装逐渐无法满足发展需求。

在六十年代末,贴片式封装逐渐兴起,为微电子封装技术带来了发展的机遇。

到了二十一世纪初,球栅阵列(BGA)和无线芯片封装技术成为主流。

近年来,微电子封装技术的发展方向逐渐向着三维封装和追求更高性能、更小尺寸的目标发展。

3. 常见的微电子封装类型3.1 插入式封装插入式封装是最早使用的微电子封装技术之一。

它的主要特点是通过将芯片引线插入封装底座中进行连接。

插入式封装一开始使用的是TO封装,后来发展出了DIP(双列直插式封装)、SIP(单列直插式封装)等多种封装类型。

插入式封装的优点是可维修性高,缺点是不适合高密度封装和小尺寸芯片。

3.2 表面贴装封装表面贴装封装是二十世纪六十年代末期兴起的一种封装技术。

它的主要原理是将芯片连接到封装底座上,再将整个芯片-底座组件焊接到印刷电路板(PCB)上。

表面贴装封装可以实现高密度封装和小尺寸芯片,适用于各种类型的集成电路芯片。

常见的表面贴装封装类型有SOIC、QFN、BGA等。

3.3 三维封装三维封装是近年来兴起的一种封装技术。

它的主要原理是在垂直方向上堆叠多个芯片,通过微弧焊接技术进行连接。

三维封装可以实现更高的集成度和更小的尺寸,同时减少芯片间的延迟。

目前,三维封装技术仍在不断研究和改进中,对于未来微电子封装的发展具有重要意义。

4. 微电子封装技术的未来发展趋势随着科技的不断进步,微电子封装技术也在不断发展。

未来,微电子封装技术的发展趋势可以总结为以下几点:1.高集成度:随着芯片制造工艺的不断进步,集成度将继续提高,将有更多的晶体管集成在一个芯片上,这将对封装技术提出更高的要求。

微电子封装的关键技术及应用前景论文

微电子封装的关键技术及应用前景论文

微电子封装的关键技术及应用前景论文近年来,各种各样的电子产品已经在工业、农业、国防和日常生活中得到了广泛的應用。

伴随着电子科学技术的蓬勃发展,使得微电子工业发展迅猛,这很大程度上是得益于微电子封装技术的高速发展。

这样必然要求微电子封装要更好、更轻、更薄、封装密度更高,更好的电性能和热性能,更高的可靠性,更高的性能价格比,因此采用什么样的封装关键技术就显得尤为重要。

1.微电子封装的概述1.1微电子封装的概念微电子封装是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出连线端子并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。

在更广的意义上讲,是指将封装体与基板连接固定,装配成完整的系统或电子设备,并确定整个系统综合性能的工程【1】。

1.2微电子封装的目的微电子封装的目的在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使电路具有稳定、正常的功能。

1.3微电子封装的技术领域微电子封装技术涵盖的技术面积广,属于复杂的系统工程。

它涉及物理、化学、化工、材料、机械、电气与自动化等各门学科,也使用金属、陶瓷、玻璃、高分子等各种各样的材料,因此微电子封装是一门跨学科知识整合的科学,整合了产品的电气特性、热传导特性、可靠性、材料与工艺技术的应用以及成本价格等因素。

2微电子封装领域中的关键技术目前,在微电子封装领域中,所能够采用的工艺技术有多种。

主要包括了栅阵列封装(BGA)、倒装芯片技术(FC)、芯片规模封装(CSP)、系统级封装(SIP)、三维(3D)封装等(以下用简称代替)【2】。

下面对这些微电子封装关键技术进行一一介绍,具体如下:2.1栅阵列封装BGA是目前微电子封装的主流技术,应用范围大多以主板芯片组和CPU等大规模集成电路封装为主。

BGA的特点在于引线长度比较短,但是引线与引线之间的间距比较大,可有效避免精细间距器件中经常会遇到的翘曲和共面度问题。

微电子封装的技术

微电子封装的技术

微电子封装的技术
一、微电子封装技术
微电子封装技术是一种具有重要意义的组装技术,指的是将电子元器
件以及各种电路片,封装在一块小型的基板上,以满足电子系统的整体功
能要求。

它包括电路打孔、抹焊、封装层、精细测试和安装等组装工序,
也是电子设备中主要的结构技术之一
1、电路打孔
在打孔前必须进行电路的布局设计,确定打孔位置和孔径,保证元件
的正确安装,以及使孔径和电路块之间的间距符合规范。

在微型电路中,
电路打孔技术主要有两种:以激光电路打孔技术为主,以电火焊技术为辅,以确保其质量和可靠性。

2、抹焊
抹焊是指在电路板上通过焊锡来固定电子元件的一种技术,具有紧密
牢固的焊接效果。

抹焊时首先要按照设计图纸上的规格,将元件安装在电
路板上,再通过焊锡等抹焊材料将元件焊接到电路板上,保证了元件之间
的连接牢固,稳定可靠。

3、封装层
封装层是把一块电路块封装在一块可拆卸的塑料外壳里,具有较好的
封装效果,还可以防护电路板免受灰尘、湿气、油渍等外界因素的侵袭。

封装层还可以减少电路板上元件之间的相互干扰,提高了元器件的工作稳
定性和可靠性
4、精细测试。

PPT微电子封装技术讲义

PPT微电子封装技术讲义
02
金属材料的可靠性较高,能够承 受较高的温度和压力,因此在高 集成度的芯片封装中广泛应用。
高分子材料
高分子材料在微电子封装中主要用于 绝缘、密封和塑形。常见的高分子材 料包括环氧树脂、聚酰亚胺、聚四氟 乙烯等,它们具有良好的绝缘性能和 化学稳定性。
高分子材料成本较低,加工方便,因 此在低端和大规模生产中应用较广。
板级封装
1
板级封装是指将多个芯片或模块安装在同一基板 上,并通过基板与其他器件连接的系统封装类型。
2
板级封装具有制造成本低、易于维修和更换等优 点,因此在消费电子产品中应用广泛。
3
常见的板级封装类型包括双列直插式封装 (DIP)、小外形封装(SOP)、薄型小外形封 装(TSOP)等。
系统级封装
系统级封装是指将多个芯片、模块和其他元器件集成在一个封装体内,形成一个完 整的系统的封装类型。
微电子封装技术的应用领域
通信
高速数字信号处理、 光通信、无线通信等。
计算机
CPU、GPU、内存条 等计算机硬件的封装 和互连。
消费电子
智能手机、平板电脑、 电视等消费电子产品 中的集成电路封装。
汽车电子
汽车控制单元、传感 器、执行器等部件的 封装和互连。
医疗电子
医疗设备中的传感器、 控制器、执行器等部 件的封装和互连。
详细描述
芯片贴装是将微小芯片放置在基板上的过程,通常使用粘合剂将芯片固定在基板 上,以确保芯片与基板之间的电气连接。这一步是封装工艺中的关键环节,因为 芯片的正确贴装直接影响到后续的引线键合和整体封装质量。
引线键合
总结词
引线键合是将芯片的电路与基板的电路连接起来的工艺过程。
详细描述
引线键合是通过物理或化学方法将芯片的电路与基板的电路连接起来的过程。这一步通常使用金属线或带状线, 通过焊接、超声波键合或热压键合等方式将芯片与基板连接起来,以实现电气信号的传输。引线键合的质量直接 影响着封装产品的性能和可靠性。

微电子封装的技术

微电子封装的技术

微电子封装的技术首先,从封装的水平来看,微电子封装技术可以分为芯片级封装(CSP)和模块级封装(MCP)两种。

芯片级封装是将单个芯片封装到粘土封装或球栅阵列(BGA)封装中,以实现零部件的完整性和可操作性。

模块级封装则是将多个芯片和其他器件集成到一个模块中,以实现更高的集成度和功能丰富性。

其次,从封装的类型来看,微电子封装技术包括无封装(bare die)、芯片封装(chip scale package,CSP)、双面封装(flip chip)、三维封装等。

无封装是将芯片直接焊接到基板上,这样可以减少封装的体积和重量;芯片封装则是将芯片封装到封装结构中,以实现电连接和机械保护;双面封装则是将芯片倒置焊接到基板上,以提高电连接密度和散热功效;三维封装则是将多个芯片层叠封装在一起,以实现更高的芯片密度和性能。

最后,从封装的材料来看,微电子封装技术涉及多种封装材料,如基板材料、封装介质、焊料和导电线材料等。

基板材料常用的有有机基板(如FR-4)、无机基板(如陶瓷)和半导体基板(如硅);封装介质常用的有塑料(如环氧树脂)、高分子(如聚酰亚胺)和陶瓷等;焊料常用的有锡铅合金、无铅合金和微合金等;导电线材料常用的有铜、金等。

在微电子封装技术的发展过程中,还涌现出一些新的封装技术。

例如,无线集成电路(RFIC)的封装技术,可以实现高频信号的传输和噪声的抑制,从而提高无线通信系统的性能;3D-IC封装技术,可以将时钟电路、处理器和内存等集成到同一个硅芯片上,实现更高效的数据处理和操作;新型材料的应用,如碳纳米管和石墨烯等材料的应用,可以改善芯片的电性能和热性能,提高封装的可靠性和散热效果。

综上所述,微电子封装技术是一门涉及多个方面的技术,包括封装的水平、封装的类型和封装的材料等。

随着微电子器件的不断发展和需求的增加,微电子封装技术也在不断创新和改进,以适应不断变化的技术需求。

微电子封装

微电子封装

晶圆:由普通硅砂熔炼提纯拉制成硅柱后切成的单晶硅薄片微电子封装技术特点:1:向高密度及高I/O引脚数发展,引脚由四边引出趋向面阵引出发展2:向表面组装示封装(SMP)发展,以适应表面贴装(SMT)技术及生产要求3:向高频率及大功率封装发展4:从陶瓷封装向塑料封装发展5:从单芯片封装(SCP)向多芯片封装(MCP)发展6:从只注重发展IC芯片到先发展封装技术再发展IC芯片技术技术微电子封装的定义:是指用某种材料座位外壳安防、固定和密封半导体继承电路芯片,并用导体做引脚将芯片上的接点引出外壳狭义的电子封装技术定义:是指利用膜技术及微细连接技术,将半导体元器件及其他构成要素在框架或基板上布置、固定及连接,引出接线端子,并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺技术。

(最基本的)广义的电子封装技术定义:是指将半导体和电子元器件所具有的电子的、物理的功能,转变为能适用于设备或系统的形式,并使之为人类社会服务的科学与技术。

(功能性的)微电子封装的功能:1:提供机械支撑及环境保护;2:提供电流通路;3:提供信号的输入和输出通路;4:提供热通路。

微电子封装的要点:1:电源分配;2:信号分配;3:机械支撑;4:散热通道;5:环境保护。

零级封装:是指半导体基片上的集成电路元件、器件、线路;更确切地应该叫未加封装的裸芯片。

一级封装:是指采用合适的材料(金属、陶瓷或塑料)将一个或多个集成电路芯片及它们的组合进行封装,同时在芯片的焊区与封装的外引脚间用引线键合(wire bonding,WB)、载带自动焊(tape automated bonding,TAB)、倒装片键合(flip chip bonding,FCB)三种互联技术连接,使其成为具有实际功能的电子元器件或组件。

二级封装技术:实际上是一种多芯片和多元件的组装,即各种以及封装后的集成电路芯片、微电子产品、以及何种类型元器件一同安装在印刷电路板或其他基板上。

微电子封装资料范文

微电子封装资料范文

微电子封装资料范文
一、微电子封装技术介绍
微电子封装是一种将微电子器件封装在外壳中,以便将它们固定在芯片上并形成一个完整系统的技术。

它的优势在于能将不同的电子器件,如电阻、电容器、变压器、集成电路、芯片、计算机接口、LED等集中在一起,并对其进行统一的封装,使整个系统更加紧凑、集成、模块化。

此外,微电子封装也可以使用特殊的冷焊技术、激光焊技术、熔喷技术等,来满足不同的应用需求。

另外,还可以使用传统的焊点技术,将器件固定在基板上,以确保其牢固可靠的结构。

二、微电子封装的优缺点
①优点:
1、微电子封装能够将不同的电子器件集成成一个模块,使其紧凑、集成,便于系统安装和使用;
2、使用特殊的焊技术以及冷焊技术等,可以确保器件牢固可靠的结构,以及质量的稳定性和可靠性;
3、微电子封装可以防止器件热老化,减少器件老化的可能性,从而提高器件的使用寿命;
4、微电子封装技术可以提高产品的尺寸,这样可以节省空间,提高形式效率,并降低成本。

②缺点:。

第五章微电子封装技术概况可编辑全文

第五章微电子封装技术概况可编辑全文

印制板
回流炉
球栅阵列型封装BGA的优点 A、与QFP相比,可进一步小型化、多端子化,400端子以上 不太困难。
焊料微球凸点
印制板
B、球状电极的不会变形 C、熔融焊料的表面张力作用,具有自对准效果,实
装可靠性高,返修率几乎为零 D、实装操作简单,对操作人员的要求不高 E、BGA引脚很短,缩短了信号路径,减小了引线电感
尺寸芯片封装概念
双列直插式封装(DIP)的裸芯片面积与封装面积之比为1:80, 表面贴装技术SMT中的QFP为1:7, CSP小于1:1.2
CSP是在BGA基础上发展起来的,它既有“封装”又 像无封装,只是在芯片表面为保证贴装焊接做些保护,面阵 列 焊 点 也 是 采 用 适 合 SMT 要 求 的 Pb / Sn 焊 料 球 凸 点 , 与 BGA的外形、结构相似。实质上,CSP就是微小型化了的 BGA,所以在美国将CSP称为μBGA。
P
P
C P
C
特征
针脚或引脚间距
2.54mm
2.54mm (1方向引线)
2.54mm (1方向引线)
1.778mm
2.54mm 宽度方向引线间距缩
短1/2
2.54mm
直插式封装不足之处:为了保证针脚的机械强度,不 能太细,组装密度、工作频率难以提高,不能满足高 效率自动化生产的要求。
第二阶段:表面贴装技术
BGA是目前高密度表面贴装技术的主要代表. 美国康柏公司1991年率先在微机中的ASIC采用了255针脚 的PBGA,从而超过IBM公司,确保了世界第一的微机市场占 有份额。
但是,采用BGA目前还存在以下技术问题,有待进一步研究解决: (1)BGA器件和电路基板材料之间的热膨胀系数匹配问题; (2)焊点质量目测较困难,需用X射线探测; (3)用于小规模IC时,成本竞争力需提高。

微电子封装技术及其应用研究

微电子封装技术及其应用研究

微电子封装技术及其应用研究第一章:引言微电子封装技术是现代微电子技术中的重要组成部分,其在各种电子设备和产品中的应用越来越广泛。

封装技术除了能够保护芯片及其内部器件不受外部环境影响外,还能提高其集成度,使电路板布线简单化,功耗降低,信号传输速度加快。

本文将从微电子封装技术的概念、分类等方面入手,介绍微电子封装技术的基本原理和工艺,探讨其在实际应用中的作用和未来发展方向。

第二章:微电子封装技术的概念和分类微电子封装技术是指在微电子芯片上运用一定的封装工艺,将芯片进行包封,通过引脚或其他电器连接方式与外部环境进行连接。

从封装方式来看,常见的微电子封装技术主要有三种:无封装(COB)、裸芯封装(FC)和塑封封装(PLCC)。

其中,无封装封装方式指的是不使用任何塑封材料的封装方式,而是直接在芯片背面搭接球系统,以实现引脚的电器连接;裸芯封装是指在芯片上涂一层导电胶水,通过覆盖在芯片上的电极铜线连接到外部环境;而塑封封装则是将整个芯片用特定的塑料封装起来,通过引脚或其他电器连接方式与外部环境进行连接。

第三章:微电子封装技术的基本原理和工艺微电子封装技术的基本原理是在芯片上运用一定的封装工艺,以实现芯片的保护和封装。

在进行微电子封装前,需要对芯片进行相关处理,以满足封装工艺的要求。

现代微电子封装技术主要采用半导体加工工艺,采用光刻、蒸镀等工艺,通过在芯片上制作金属线、电极、晶圆等结构,最终实现芯片的封装。

在封装过程中,塑封材料是最常用的材料之一,通过将芯片包封在塑封材料中,可以保护芯片不受到外部环境的损害,同时也起到一定的隔热和防潮作用。

第四章:微电子封装技术在实际应用中的作用微电子封装技术在实际应用中具有重要的作用。

首先,封装技术能够提高芯片的集成度,减少芯片体积,从而实现多芯片模组的设计,满足不同类型的电子设备的需要。

其次,封装技术能够提高芯片的可靠性和稳定性,在芯片运行过程中能够保证信号的传输速度和准确度,保证电路的稳定性和可靠性。

微电子封装技术

微电子封装技术

2.5.1 打线键合
打线键合的设计
引线弯曲疲劳、键合点剪切疲劳、相互扩散、柯肯 达尔效应、腐蚀、枝晶生长、电气噪声、振动疲劳、电 阻改变、焊盘开裂是要考虑的方面。
其主要因素有:1)芯片技术、材料和厚度。2)键 合焊盘材料、间距、尺寸。3)时钟频率、输出高或者 低电压。4)每单位长度的最大允许互连电阻。5)最大 的输出电容负载。6)晶体管导电电阻。7)最大的互连 电感。
集成电路封装技术
第2章 封装工艺流程
2.1 流程概述 2.2 芯片减薄 2.3 芯片切割 2.4 芯片贴装 2.5 芯片互连技术 2.6 成形技术 2.7 后续工艺
2.1 流程概述
芯片封装工艺流程一般可以分为两个部分:前 段操作和后段操作。前段操作一般是指用塑料封装 (固封)之前的工艺步骤,后段操作是指成形之后 的工艺步骤。
2.5.1 打线键合
打线键合的材料
金丝
具有优良的抗氧化性。金丝线表面要光滑和清洁以 保证强度和防止丝线堵塞,纯金具有很好的抗拉强度和 延展率,比较常用的金线纯度为99.99%。为了增加其 机械强度,一般加入铍(Be)或者铜(Cu)。
2.5.1 打线键合
打线键合的材料
铝丝
铝丝是超声波键合最常见的引线材料,标准的铝丝 一般加入1% Si或者1% Mg以提高强度。
2.4芯片贴装
焊接粘贴法工艺是将芯片背面淀积一定厚度的 Au或Ni,同时在焊盘上淀积Au-Pd-Ag和Cu的金属 层。
其优点是热传导好。工艺是将芯片背面淀积一 定厚度的Au或Ni,同时在焊盘上淀积Au-Pd-Ag和 Cu的金属层。这样就可以使用Pb-Sn合金制作的合 金焊料将芯片焊接在焊盘上。焊接温度取决于PbSn合金的具体成分比例。

第3章微电子的封装技术

第3章微电子的封装技术

第3章微电子的封装技术
微电子的封装技术是集成电路行业中重要的技术之一,它是将微电子器件封装在一定的结构或材料形式中,使微电子器件具有完整的功能和稳定的性能的技术。

封装技术有助于提高微电子器件的可靠性和功能,并且可以实现对器件的封装封装,封装和测试,以及开发更先进的封装技术,有助于改善元器件的可靠性和功能。

封装技术包括单层封装技术、多层封装技术、全封装技术、焊接封装技术等。

单层封装技术是根据微电子器件的物理结构和电气特性,在其表面涂布一层化学稳定的涂层,使其功能更加稳定可靠的技术。

多层封装技术是根据微电子器件的结构和电气特性,在其表面使用多层封装技术,使其功能更加稳定可靠。

全封装技术是将微电子器件封装于一种全封装材料中,以保护微电子器件免受污染和外界环境的攻击,从而保证其功能的技术。

焊接封装技术是将微电子器件封装在一定的结构中,以保护微电子器件免受环境中的外界物质影响,以及改善器件的可靠性和可靠性的技术。

微电子封装技术在集成电路制造中的应用研究

微电子封装技术在集成电路制造中的应用研究

微电子封装技术在集成电路制造中的应用研究随着现代社会对电子产品需求的增加,集成电路(Integrated Circuit,IC)作为核心元器件,其制造和应用领域不断发展壮大。

微电子封装技术作为集成电路制造的关键环节之一,扮演着确保芯片性能和可靠性的重要角色。

本文将就微电子封装技术在集成电路制造中的应用进行研究和探讨。

一、微电子封装技术的概念和作用微电子封装技术是指将芯片连接到外部引脚和器件之间的技术过程。

其主要通过外部引脚接入器件和芯片之间的信号和电力连接,起到连接和保护芯片的作用。

微电子封装技术可以将制造的芯片封装成各种不同形式,如DIP(双列直插封装)、BGA(球栅阵列封装)和QFN(非导电封装)等。

在集成电路制造过程中,微电子封装技术起到了至关重要的作用。

首先,封装技术通过提供外部引脚实现芯片与外部硬件设备之间的连接,从而实现芯片与系统之间的信息交互。

其次,封装技术对芯片进行保护,减少外部环境对芯片性能和可靠性的影响。

此外,封装技术还可以实现芯片与系统的热管理和导热,确保芯片在工作过程中的稳定性。

二、微电子封装技术在集成电路制造中的应用1. DIP封装技术DIP封装技术是最早应用于集成电路制造的一种封装技术,其主要特点是引脚双列排列,适用于直插式插座。

DIP封装技术通常在较低集成度的集成电路上使用,如逻辑门、存储器等。

它具有简单、稳定、易于维修等优点。

DIP封装技术仍然广泛应用于一些对体积大小要求不高的设备中,如家电、通信终端等。

2. BGA封装技术BGA封装技术是近年来发展起来的一种封装技术,其主要特点是在芯片下方焊接球形焊珠,利用球形焊珠来实现芯片与底板之间的连接。

BGA封装技术具有高密度、高速度和低功耗等优势,适用于应用在高性能计算机、通信设备等领域。

此外,BGA封装技术还可以提供更好的散热性能,适应大功率芯片的使用。

3. QFN封装技术QFN封装技术,即非导电封装技术,是一种将芯片引脚通过焊盘直接与底板相连的封装形式。

《微电子封装技术》课件

《微电子封装技术》课件

航空航天设备封装案例
航空航天设备封装案例:航空航天领域对设备的可靠性和稳定性要求极高,而微电子封装技术能够满 足这些要求。例如,在飞机发动机控制系统中、卫星导航系统中等,微电子封装技术发挥着重要作用 。它能够提高设备的可靠性和稳定性,降低成本,并促进小型化、集成化的发展趋势。
具体而言,在飞机发动机控制系统中,微电子封装技术能够实现高精度和高可靠性的控制,从而提高 发动机的性能和安全性。在卫星导航系统中,微电子封装技术能够提高定位精度和信号质量,从而提 高导航的准确性和可靠性。
医疗电子设备封装案例
医疗电子设备封装案例:医疗电子设备对精度和可靠性要求极高,而微电子封装技术能够满足这些要求。例如,在医疗影像 设备、心脏起搏器、血糖监测仪等中,微电子封装技术发挥着重要作用。它能够提高设备的性能和可靠性,降低成本,并促 进小型化、集成化的发展趋势。
具体而言,在医疗影像设备中,微电子封装技术能够提高图像质量和设备性能,从而提高诊断的准确性和可靠性。在心脏起 搏器中,微电子封装技术能够实现高精度和高可靠性的起搏控制,从而提高患者的生命安全和生活质量。在血糖监测仪中, 微电子封装技术能够实现快速、准确的血糖监测,从而帮助患者及时了解自身血糖状况并进行有效控制。
封装测试பைடு நூலகம்
01
封装测试是确保微电子封装产品性能和质量的 重要环节。
03
随着技术的不断发展,新型测试方法也在不断涌现 ,如X射线检测、超声检测等。
02
测试内容包括气密性检测、外观检测、电性能 测试等,以确保产品符合设计要求和性能标准

04
封装测试的发展趋势是高精度、高效率、自动化, 以提高测试准确性和降低成本。

柔性封装技术
03

微电子行业的封装技术资料

微电子行业的封装技术资料

微电子行业的封装技术资料封装技术是微电子行业中的关键环节,它涉及到将微电子器件封装成集成电路,保护其免受外界环境的影响,并提供良好的导电、传热和机械保护等功能。

本文将对微电子封装技术进行详细介绍。

一、封装技术的背景与现状随着微电子器件不断发展,其封装方式也在不断演变。

最初的微电子封装是使用插件式封装,而现在主要采用集成电路封装。

这种封装方式可在小型、轻薄、可靠、高性能的芯片上提供功能强大的封装。

二、封装技术的分类与特点封装技术可根据封装材料和封装方式进行分类。

常见的封装材料包括塑料封装、金属封装和陶瓷封装等。

封装方式有无引脚封装和多引脚封装等。

不同的封装材料和封装方式在导热性能、散热效果、电气性能等方面有所不同。

三、封装技术中的关键环节封装技术中的关键环节包括电路设计、晶圆制备、封装材料选择、封装工艺等。

电路设计要求合理布局,兼顾信号传输和供电等需要;晶圆制备需要严格的工艺流程,确保芯片的质量;封装材料的选择要考虑导热性能、尺寸匹配等因素;封装工艺则涉及到焊接、封装注意事项描写、封装尺寸控制等多个步骤,要保证每个步骤都能准确无误地完成。

四、封装技术的发展趋势随着技术的发展,封装技术也在不断创新。

目前,微电子行业封装技术的发展趋势主要表现在以下几个方面:1. 三维封装技术的应用将进一步提高芯片的集成度和性能。

2. 基于微纳尺度材料和技术的封装将提供更好的导热性和电气性能。

3. 模块化封装技术将使芯片的维修更加方便。

4. 绿色环保封装技术将成为未来发展的重要趋势。

五、封装技术的挑战与前景尽管封装技术在微电子行业中发挥着至关重要的作用,但仍面临一些挑战。

如封装材料的热膨胀系数不匹配、封装工艺的复杂性、芯片密度过高导致的散热问题等。

未来,随着科技的不断进步,这些挑战将得到有效解决,封装技术将进一步提升,为微电子行业带来更多的发展机遇。

总结:微电子行业的封装技术是一项复杂而关键的技术,它直接影响着微电子器件的性能和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1、封装技术发展特点、趋势。

(P8)发展特点:①、微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向引出向面阵列排列发展;②、微电子封装向表面安装式封装(SMP)发展,以适合表面安装技术(SMT);③、从陶瓷封装向塑料封装发展;④、从注重发展IC芯片向先发展后道封装再发展芯片转移。

发展趋势:①、微电子封装具有的I/O引脚数将更多;②、应具有更高的电性能和热性能;③、将更轻、更薄、更小;④、将更便于安装、使用和返修;⑤、可靠性会更高;⑥、性价比会更高,而成本却更低,达到物美价廉。

2、封装的功能(P19)电源分配、信号分配、散热通道、机械支撑和环境保护。

3、封装技术的分级(P12)零级封装:芯片互连级。

一级封装:将一个或多个IC芯片用适宜的材料(金属、陶瓷、塑料或它们的组合)封装起来,同时在芯片的焊区与封装的外引脚间用如上三种芯片互连方法(WB、TAB、FCB)连接起来使之成为有实用功能的电子元器件或组件。

二级封转:组装。

将上一级各种微电子封装产品、各种类型的元器件及板上芯片(COB)一同安装到PWB或其它基板上。

三级封装:由二级组装的各个插板或插卡再共同插装在一个更大的母板上构成的,立体组装。

4、芯片粘接的方法(P12)只将IC芯片固定安装在基板上:Au-Si合金共熔法、Pb-Sn合金片焊接法、导电胶粘接法、有机树脂基粘接法。

芯片互连技术:主要三种是引线键合(WB)、载带自动焊(TAB)和倒装焊(FCB)。

早期有梁式引线结构焊接,另外还有埋置芯片互连技术。

第二章芯片互连技术(超级重点章节)1、芯片互连技术各自特点及应用引线键合:①、热压焊:通过加热加压力是焊区金属发生塑性形变,同时破坏压焊界面上的氧化层使压焊的金属丝和焊区金属接触面的原子间达到原子引力范围,从而使原子间产生引力达到键合。

两金属界面不平整,加热加压可使上下金属相互镶嵌;加热温度高,容易使焊丝和焊区形成氧化层,容易损坏芯片并形成异质金属间化合物影响期间可靠性和寿命;由于这种焊头焊接时金属丝因变形过大而受损,焊点键合拉力小(<0.05N/点),使用越来越少。

②、超声焊:利用超声波发生器产生的能量和施加在劈刀上的压力两者结合使劈刀带动Al丝在被焊区的金属化层表明迅速摩擦,使Al丝和Al膜表面产生塑性形变来实现原子间键合。

与热压焊相比能充分去除焊接界面的金属氧化层,可提高焊接质量,焊接强度高于热压焊;不需要加热,在常温下进行,因此对芯片性能无损害;可根据不同需要随时调节键合能量,改变键合条件来焊接粗细不等的Al丝或宽的Al带;AL-AL超声键合不产生任何化合物,有利于器件的可靠性和长期使用寿命。

③、金丝球焊:球焊时,衬底加热,压焊时加超声。

操作方便、灵活、焊点牢固,压点面积大,又无方向性,故可实现微机控制下的高速自动化焊接;现代的金丝球焊机还带有超声功能,从而具有超声焊的优点;由于是Au-Al接触超声焊,尽管加热温度低,仍有Au-Al中间化合物生成。

球焊用于各类温度较低、功率较小的IC和中、小功率晶体管的焊接。

载带自动焊:TAB结构轻、薄、短、小,封装高度不足1mm;TAB的电极尺寸、电极与焊区节距均比WB大为减小;相应可容纳更高的I/O引脚数,提高了TAB的安装密度;TAB的引线电阻、电容和电感均比WB小得多,这使TAB互连的LSI、VLSI具有更优良的高速高频电性能;采用TAB互连可对各类IC芯片进行筛选和测试,确保器件是优质芯片,大大提高电子组装的成品率,降低电子产品成本;TAB采用Cu箔引线,导热导电性能好,机械强度高;TAB的键合拉力比WB高3~10倍,可提高芯片互连的可靠性;TAB使用标准化的卷轴长度,对芯片实行自动化多点一次焊接,同时安装及外引线焊接可实现自动化,可进行工业化规模生产,提高电子产品的生产效率,降低产品成本。

TAB广泛应用于电子领域,主要应用与低成本、大规模生产的电子产品,在先进封装BGA、CSP和3D封装中,TAB也广泛应用。

倒装焊:FCB芯片面朝下,芯片上的焊区直接与基板上的焊区互连,因此FCB的互连线非常短,互连产生的杂散电容、互连电阻和电感均比WB和TAB小的多,适于高频高速的电子产品应用;FCB的芯片焊区可面阵布局,更适于搞I/O数的LSI、VLSI芯片使用;芯片的安装互连同时进行,大大简化了安装互连工艺,快速省时,适于使用先进的SMT进行工业化大批量生产;不足之处如芯片面朝下安装互连给工艺操作带来一定难度,焊点检查困难;在芯片焊区一般要制作凸点增加了芯片的制作工艺流程和成本;此外FCB同各材料间的匹配产生的应力问题也需要很好地解决等。

2、WB特点、类型、工作原理(略)、金丝球焊主要工艺、材料(P24)金丝球焊主要工艺数据:直径25μm的金丝焊接强度一般为0.07~0.09N/点,压点面积为金丝直径的2.5~3倍,焊接速度可达14点/秒以上,加热温度一般为100℃,压焊压力一般为0.5N/点。

材料:热压焊、金丝球焊主要选用金丝,超声焊主要用铝丝和Si-Al丝,还有少量Cu-Al丝和Cu-Si-Al丝等。

3、TAB关键材料与技术(P29)关键材料:基带材料、Cu箔引线材料和芯片凸点金属材料。

关键技术:①芯片凸点制作技术②TAB载带制作技术③载带引线与芯片凸点的内引线焊接技术和载带外引线的焊接技术。

4、TAB内外引线焊接技术(P37)①内引线焊接(与芯片焊区的金属互连):芯片凸点为Au或Ni-Au、Cu-Au等金属,载带Cu箔引线也镀这类金属时用热压焊(焊接温度高压力大);载带Cu箔引线镀0.5μm厚的Pb-Sn或者芯片凸点具有Pb-Sn时用热压再流焊(温度较低压力较小)。

焊接过程:对位→焊接→抬起→芯片传送焊接条件:主要由焊接温度(T)、压力(P)、时间(t)确定,其它包括焊头平整度、平行度、焊接时的倾斜度及界面的侵润性,凸点高度的一致性和载带内引线厚度的一致性也影响。

T=450~500℃,P≈0.5N/点,t=0.5~1s焊接后焊点和芯片的保护:涂覆薄薄的一层环氧树脂。

环氧树脂要求粘度低、流动性好、应力小切Cl离子和α粒子含量小,涂覆后需经固化。

筛选测试:加热筛选在设定温度的烘箱或在具有N2保护的设备中进行;电老化测试。

②外引线焊接(与封装外壳引线及各类基板的金属化层互连):供片→冲压和焊接→回位。

5、FCB特点、优缺点(略,同1)6、UBM含义概念、结构、相关材料(P46)UBM(凸点下金属化):粘附层-阻挡层-导电层。

粘附层一般为数十纳米厚度的Cr、Ti、Ni等;阻挡层为数十至数百纳米厚度的Pt、W、Pd、Mo、Cu、Ni等;导电层金属Au、Cu、Ni、In、Pb-Sn等。

7、凸点主要制作方法(P47—P58)蒸发/溅射凸点制作法、电镀凸点制作法、化学镀凸点制作法、打球(钉头)凸点制作法、置球及模板印刷制作焊料凸点、激光凸点制作法、移置凸点制作法、柔性凸点制作法、叠层凸点制作法、喷射Pb-Sn焊料凸点制作法。

8、FCB技术及可靠性(P70—P75)热压FCB可靠性、C4技术可靠性、环氧树脂光固化FCB可靠性、各向异性导电胶FCB可靠性、柔性凸点FCB可靠性9、C4焊接技术特点(P61)C4技术,再流FCB法即可控塌陷芯片连接特点:①、C4除具有一般凸点芯片FCB优点外还可整个芯片面阵分布,再流时能弥补基板的凹凸不平或扭曲等;②、C4芯片凸点采用高熔点焊料,倒装再流焊时C4凸点不变形,只有低熔点的焊料熔化,这就可以弥补PWB基板的缺陷产生的焊接不均匀问题;③、倒装焊时Pb-Sn焊料熔化再流时较高的表面张力会产生“自对准”效果,这使对C4芯片倒装焊时的对准精度要求大为宽松。

10、底封胶作用(P67)保护芯片免受环境如湿气、离子等污染,利于芯片在恶劣环境下正常工作;使芯片耐受机械振动和冲击;减少芯片与基板间热膨胀失配的影响;可避免远离芯片中心和四角的凸点连接处的应力和应变过于集中。

这些最终可使芯片可靠性大大提高。

11、各向同性、各向异性导电胶互连原理(P65)ACA倒装焊原理:先在基板上涂覆ACA,将带有凸点的IC芯片与基板上的金属焊区对位后在芯片上加压并进行ACA固化,这样导电粒子挤压在凸点与焊区之间,使上下接触导电,而在xy平面各方向上导电粒子不连续,故不导电。

第三章插装元器件的封装技术1、插装元件分类(P80)按外形结构:圆柱形外壳封装(TO)、矩形单列直插式封装(SIP)、双列直插式封装(DIP)、针栅阵列封装(PGA)等。

按材料:金属封装、陶瓷封装、塑料封装等。

2、DIP封装技术工艺流程(P84)陶瓷熔封DIP(CDIP):生瓷料准备→流延制模→冲片冲腔→冲孔并填充金属化→金属化印制→叠片压层→热切→侧面金属化印制→排胶烧结→电镀或化学镀Ni→钎焊封口环和外引线→电镀Ni-Au→外壳检漏、电测试→IC芯片安装→引线键合→IC芯片检测→封盖→检漏→成品测试→打印包装。

塑封型DIP(PDIP):将IC芯片用粘接剂粘接在引线框架的中心芯片区,IC芯片各焊区与局部电镀Ag的引线框架各焊区用WB连接,然后将引线框架置于塑封模具下模并盖上上模,将环氧坯料注入注塑机加热模具至150℃~180℃,保温2~3min后脱模,清除毛刺并对引线切筋后打弯成90°即成标准PDIP。

最后进行高温老化筛选并充分固化,测试分选打印包装出厂。

3、PGA技术的特点(P86)PGA针引脚以2.54mm节距在封装底面上呈栅阵排列,所以I/O数高达数百乃至上千个;PGA是气密封的,所以可靠性搞;PGA制作工艺复杂、成本高,故适于可靠性要求高的军品使用。

4、金属外壳封装主要原理和封装技术(P87-92)特点:良好的热、电、机械性能;使用温度范围广;气密性优良;封装多为金属外壳配合陶瓷基板封装,壳体较大;封装单芯片和厚、薄膜HIC。

分类:浅腔式外壳系列、平板式、扁平式、功率外壳式、AIN陶瓷基板外壳系列等。

封装技术:典型HIC组装/封装技术,以SMC/SMD 与IC芯片混合组装为例。

优点:陶瓷基板导热系数比PWB高一个数量级以上,传热快,受热均匀,焊接时温度低,焊料熔化一致性好,焊接缺陷大为减少;热匹配好,界面应力降低,降低热循环造成的疲劳失效;可允许更高的功率密度;化学稳定性好。

缺点:制作工艺复杂;难以制作平整的大基板;成本高。

工艺流程:成膜基板制备→组装前的清洗→贴装SMC/SMD→再流焊→焊后清洗→芯片粘接、固化和清洗→芯片引线键合→封帽钱检验。

封帽工艺:熔焊封接法(平行缝焊、激光焊、电焊)和焊料封接法。

第四章表面安装元器件的封装技术1、SMD分类和优缺点(P98)按封装外形:“芝麻管”形、圆柱形、SOT形、PQFP、PLCC、BGA/CSP、裸芯片安装DCA。

相关文档
最新文档