第四章材料的断裂韧性..
第4章 金属的断裂韧度
2 (
x y
2
) 2 2 xy ) 2 2 xy
19/49
x y
2
(
x y
2
3 ( 1 2 )
19
第四章 金属的断裂韧性
裂纹尖端附近任一点P(r,θ)的主应力:
KI 1 cos (1 sin ) 2 2 2 r KI 2 cos (1 sin ) 2 2 2 r 3 0(平面应力) 2 K I 3 cos (平面应变) 2 2 r
3/49
3
第四章 金属的断裂韧性
第一节 线弹性条件下金属断裂韧度
大量断口分析表明,金属机件的低应力脆断 断口没有宏观塑性变形痕迹,所以可以认为 裂纹在断裂扩展时,尖端总处于弹性状态, 应力-应变应呈线性关系。 因此,研究低应力脆断的裂纹扩展问题时, 可以用弹性力学理论,从而构成了线弹性断 裂力学。
12/49
12
第四章 金属的断裂韧性
13/49
13
第四章 金属的断裂韧性
14/49
14
第四章 金属的断裂韧性
(三)断裂韧度KIc和断裂K判据
KI是决定应力场强弱的一个复合力学参量,就可将它 看作是推动裂纹扩展的动力,以建立裂纹失稳扩展的 力学判据与断裂韧度。 当σ和a单独或共同增大时,KI和裂纹尖端的各应力分 量随之增大。 当KI增大到临界值时,也就是说裂纹尖端足够大的范 围内应力达到了材料的断裂强度,裂纹便失稳扩展而 导致断裂。 这个临界或失稳状态的KI值就记作KIC或KC,称为断 裂韧度。
8/49
8
第四章 金属的断裂韧性
应力分量:
材料性能与测试课件-第四章材料的断裂韧性
等效裂纹塑性区修正: 等效裂纹塑性区修正:
K =Yσ a + r
Ⅰ
y
K =
Ⅰ
Yσ πa 1 − 0.16Y (σ / σ )
2 s 2
2
K =
Ⅰ
Yσ a 1 − 0.056Y (σ / σ )
等效裂纹修正K 图4-4 等效裂纹修正 Ⅰ
2
16
裂纹扩展能量释放率G 五、裂纹扩展能量释放率 Ⅰ及判据 1、GⅠ:
定义:驱使裂纹扩展的动力假设为弹性能的释放, 定义:驱使裂纹扩展的动力假设为弹性能的释放,令
∂U σ πa = G =− ∂a E ∂U (1 −ν )σ πa G =− = ∂a E
2 Ⅰ 2 2 Ⅰ
平面应力
平面应变
判据: 2、判据:
相似,是应力和裂纹尺寸相关的力学参量。 和KI相似,是应力和裂纹尺寸相关的力学参量。当GⅠ增大到临界值GⅠ C, 失稳断裂, 失稳断裂, GⅠC也称为断裂韧度。表示材料阻止裂纹失稳扩展时单位面 也称为断裂韧度。 积所消耗的能量。 积所消耗的能量。 裂纹失稳扩展断裂G 裂纹失稳扩展断裂G判据
8
图4-2 裂纹尖端的应力分析
应力分量
Ⅰ x
应变分量
Ⅰ x
θ θ (1 + ν ) K 3θ K θ θ 3θ ε = cos (1 − 2ν − sin sin ) σ = cos (1 − sin sin ) E 2πr 2 2 2 2πr 2 2 2 θ θ (1 + ν ) K 3θ K θ θ 3θ ε = cos (1 − 2ν + sin sin ) σ = cos (1 + sin sin ) E 2πr 2 2 2 2πr 2 2 2 2(1 + ν ) K θ θ 3θ K θ θ 3θ sin cos cos ) γ = τ = sin cos cos E 2πr 2 2 2 2πr 2 2 2
第四章 材料的断裂韧性
• 在平面应变条件下
• 对于Ⅰ型穿透裂纹,
• 对于一定材料和厚度的板材,不论其 裂纹尺寸如何,当裂纹张开位移达到 同一临界值δC时,裂纹就开始扩展。
• 临界值δC也称为材料的断裂韧度,表 示材料阻止裂纹开始扩展的能力。
• 平面应变状态应变分量为
2021/7/14
• 平面应变状态x、y轴方向的位移 分量为
2021/7/14
• 可以看出,裂纹尖端任意一点的应力、 应变和位移分量取决于该点的坐标(r, θ)、材料的弹性模数以及参量KI。
• 对于如图所示的平面应力情况,KI可用 下式表示。
2021/7/14
• 若裂纹体的材料一定,裂纹尖端附近某一点的 位置(r,θ)给定,则该点的各应力、应变和 位移分量唯一决定于KI值,KI值愈大,则该点 各 反映应了力裂、纹应尖变端和区位域移应分力量场之的值强愈度高,,故因称此之,为KI 应力场强度因子,它综合反映了外加应力、裂 纹形状、裂纹长度对裂纹尖端应力场强度的影 响,其一般表达式为
• 1968年,Rice提出了J积分,Hutchinson 证明J积分可以用来描述弹塑性体中裂纹 的扩展,在这之后,逐步发展起来弹塑 性断裂力学。
2021/7/14
• 断裂力学研究裂纹尖端的应力、应变 和应变能的分布情况,建立了描述裂 纹扩展的新的力学参量、断裂判据和 对应的材料力学性能指标—断裂韧度 ,以此对机件进行设计和校核。
• 式中:Y为裂纹形状系数,取决于裂纹的形状 。
• K型I的和脚Ⅲ标型表裂示纹I的型应裂力纹场,强同度理因,子KⅡ。、KⅢ表示Ⅱ • 对2021于/7/14 不同形状的I型裂纹裂纹,KI和Y的表达式
2021/7/14
2021/7/14
材料力学性能_第四章
4.2 裂纹体的应力分析
线弹性断裂力学研究对象是带有裂纹的线弹性体。严格 讲,只有玻璃和陶瓷这样的脆性材料才算理想的弹性体。 为使线弹性断裂力学能够用于金属,必须符合金属材料 裂纹尖端的塑性区尺寸与裂纹长度相比是一很小的数值条 件。 在此条件下,裂纹尖端塑性区尺寸很小,可近似看成理 想弹性体。 在线弹性断裂力学中有以Griffith-Orowan为基础的能量 理论和Irwin为应力强度因子理论。
小,消耗的变形 功也最小,所以
平面应力
裂纹就容易沿x方
向扩展。
4.5 裂纹尖端的塑性区
为了说明塑性区对裂纹在x方向扩展的影响。
当 =0(在裂纹面上),其塑性区宽度为:
r0 (r ) 0
1 KI 2 ( ) 2 s
K1 y r ,0 2r
4.5 裂纹尖端的塑性区
由各应力分量公式也可直接求出在裂纹线上的
切应力平行于裂纹 面,而且与裂纹线 垂直,裂纹沿裂纹 面平行滑开扩展。
III型(撕开型)断裂
切应力平行作用于 裂纹面,而且与裂 纹线平行,裂纹沿 裂纹面撕开扩展。
4.2 裂纹体的应力分析
4.2.2 I型裂纹尖端的应力场
裂纹扩展是从其尖端开始向前进行的,所以应该分析裂纹 尖端的应力、应变状态,建立裂纹扩展的力学条件。
4.2 裂纹体的应力分析
4.2.1 裂纹体的基本断裂类型
在断裂力学分析中,为了研究上的方便,通常 把复杂的断裂形式看成是三种基本裂纹体断裂的组 合。 I 型(张开型)断裂 (最常见 )
拉应力垂直于裂纹面扩展面,裂纹沿作用力方向 张开,沿裂纹面扩展。
4.2 裂纹体的应力分析
II 型(滑开型)断裂
根据应力强度因子和断裂韧性的相对大小,可以建 立裂纹失稳扩展脆断的断裂K判据,平面应变断裂最 危险,通常以KIC为标准建立,即: 应用:用以估算裂纹体的最大承载能力、允许的裂 纹尺寸,以及材料的选择、工艺优化等。
材料性能学 4.断裂韧性
变。因此,工程 上 KⅠC 是指达到 一定厚度后(平
面应变)断裂韧
度。
过渡区
KC 平面应力
平面应变
KⅠC
B
B
2.5
K C
s
2
五、裂纹尖端塑性区及 KⅠ修正
按K1建立的脆性断裂判据,只适用于线弹性体。其实, 金属材料在裂纹扩展前,其尖端附近总要先出现或 大或小的塑性变形区,
如果塑性区尺寸裂纹尺寸及净截面尺寸小时,(小 一个数量级以上)即在小范围屈服下,对K进行修正 后,依然可用。
究点到裂纹尖端距离 r 有如下关系:
1
y r 2
或
1
r 2 y K
1
当 r →0 时, σy →∞,表明裂纹尖端前沿应力场具有 r 2阶奇异性。参
数 K 表征了应力场奇异性程度,其含义是,当 r →0 时, σy 以 K 的速度→∞, K 越大,则σy →∞的速度也越大,表明应力分布曲线越陡,即应力集中程度 越大,因此,参数 K 又称为“应力场强度因子”。
二、裂纹尖端应力状态
1、平面应力状态
x 0
y 0
xy 0
z 0
yz zx 0
z
E
x
y
对含穿透裂纹的薄板,可将裂纹顶端前沿视为平面应力 状态,此时材料受剪切力大,易于塑性变形,阻碍裂纹扩展。
2、平面应变状态
z 0
x 0 y 0 xy 0
x 0 y 0 z x y
2
R01
1
Hale Waihona Puke Ks平面应力
R02
2
1
2
K
s
2
平面应变
三维塑性区形状及塑性区内应力分布
4.第四章材料的断裂韧性
2012-4-10
(2)第三强度理论
(4-12)
即: (4-13) 于是有裂纹尖端的塑性区为: (4-14)
2012-4-10
平面应力下:(θ=0)
于是有:
(4-15)
2012-4-10
平面应变下:(θ=0) 因σ3 =2υσ1 ,按σ1 -σ3 =σs ,可计算出:
进而求得: (4-16)
2012-4-10
2012-4-10
第四章材料的断裂韧性
主讲 朱协彬
2012-4-10
目录
4.1 概述 4.2 裂纹尖端的应力场 4.3 断裂韧性和断裂判据 4.4 几种常见裂纹的应力强度因子 4.5 裂纹尖端的塑性区 4.6 塑性区及应力强度因子的修正 裂纹扩展的能量判据G 4.7 裂纹扩展的能量判据GI 4.8 GI和KI的关系 影响断裂韧性K 4.9 影响断裂韧性KIC的因素 金属材料断裂韧性K 4.10 金属材料断裂韧性KIC的测定 4.11 弹塑性条件下的断裂韧性
有效屈服应力: 通常将引起塑性变形的最大主应力,称为有效 屈服应力,以σys 记之。 有效屈服强度与单向拉伸屈服强度之比, 称 为塑性约束系数。 根据最大切应力理论:
2012-4-10
1)按第四强度理论计算
(4-7) 其中σ1 、σ2 、σ3 为主应力。 对裂纹尖端的主应力,可由下式求解: (4-8)
2012-4-10
将Irwin应力场代入上式得:
(4-9)
2012-4-10
代入到第四强度理论中,可计算得到裂纹尖端 塑性区的边界方程为: (4-10)
将上式用图形表示,塑性区的形状如下图:
2012-4-10
4.1 概述
随着高强度材料的使用,尤其在经车、轮船、桥梁和飞机等的意外事故。 传统设计思想: σ <σ许,使用应力小于许用应力。对于塑性材料σ许 =σs /n;对于脆性材料σ许=σb /n; n为安全系数。 从大量灾难性事故分析中发现,这种低应力脆性 破坏主要是由宏观尺寸的裂纹扩展而引起的,这 些裂纹源可能是因焊接质量不高、内部有夹杂或 存在应力集中等原因而引起的。
材料力学性能-第四章-金属的断裂韧度(4)
公式进行判断:
ac
0.25
KIC
2
2021年10月21日 星期四
第四章 金属的断裂韧度
1、高强度钢的脆断倾向 这类钢的强度很高,0.2≥1400MPa,主要用于航 空航天,工作应力较大,但断裂韧度较低,如18Ni马 氏体时效钢,0.2=1700MPa,KIC=78MPa·m1/2,若工 作应力=1250MPa时,利用上述公式可得ac=1mm,这 样小的裂纹在机件焊接过程中很容易产生,用无损检 测方法也容易漏检,所以此类机件脆断几率很大,因 此在选材时在保证不塑性失稳的前提下,尽量选用0.2 较低而KIC较高的材料。
B工艺:/0.2=1400/2100=0.67<0.7,故不必考虑
塑性区修正问题。由公式 KIC YcB a
可得: cB
1 Y
KIC a
Φ 1.1
KIC
a
1.273
47
1.1 3.14 0.001
971MPa
与其工作应力=1400MPa相比, cB< ,即工
作时会产生破裂,说明B工艺是不合格的,这和
2021年10月21日 星期四
第四章 金属的断裂韧度
其0.2=1800MPa,KIC=62MPa·m1/2,焊接后发现焊缝
中有纵向半椭圆裂纹,尺寸为2c=6mm,a=0.9mm,
试问该容器能否在p=6MPa的压力下正常工作?
t
D
解:根据材料力学理 论可以确定该裂纹受 到的垂直拉应力:
pD 61.5 900MPa
趋于缓和,断裂机理不再发生
变化。
2021年10月21日 星期四
第四章 金属的断裂韧度
7.应变速率:应变速率έ具有 KIC
与温度相似的效应。增加έ相 当于降低温度,使KIC下降,
第4章 金属的断裂韧性全(材料07)
2
1 2
2 2 cos 2 1 3 sin 2 (平面应变状态)
K
I s
2
c o s
2
2
1
3
s i n
2
2
3 2 2 2 1-2 cos sin (平面应力状态) 2 4 2
37
3、两种重要裂纹的KI修正公式 (1)无限大板I型裂纹
K I=
Y=
(平面应力状态)
a
1-0.5 s
2
K I=
a
1-0.177 s
2
(平面应变状态)
(2)大件表面半椭圆裂纹
K I= 1.1 a
Y=
1.1
-0.608 s
1 KI R 0 =2r0 s
2
2
(平面应力状态)
1 KI =2r0 R0 (平面应变状态) 2 2 s
34
五、应力场强度因子的修正
1、修正条件:σ/ σs≥0.6~0.7 原因:比值大,塑性区大,影响应力场。
2、修正方法:虚拟有效裂纹
应力 张开型 (I型 ) 正应力 裂纹面 裂纹线 扩展方向 ⊥ ⊥ ⊥ 图例
滑开型 切应力 (Ⅱ型) 撕开型 切应力 (Ⅲ 型)
∥ ∥
⊥ ∥
∥ ⊥
提高:裂纹扩展的基本形式
二、裂纹顶端的应力场分析
1、裂纹尖端各点应力—弹性力学推导
2a
有I型穿透裂纹无限大板的应力分析图
第四章金属的断裂韧性
第四章金属的断裂韧性绪言-、按照许用应力设计的机件不一定安全按照强度储备方法确定机件的工作应力,即丁卜I-厂咚。
按照上述设计的零件应该n不会产生塑性变形更不会发生断裂。
但是,高强度钢制成的机件以及中、低强度钢制成的大型机件有时会在远低于屈服强度的状态下发生脆性断裂一一低应力脆性断裂。
二、传统塑性指标数值的大小只能凭经验。
像3(A)、书(Z)、A k、T k值,只能定性地应用,无法进行计算,只能凭经验确定。
往往出现取值过高,而造成强度水平下降,造成浪费。
中、低强度钢材料中小截面机件即属于此类情况。
而高强度钢材料机件及中、低强度钢的大型件和大型结构,这种办法并不能确保安全。
三、如何定量地把韧性应用于设计,确保机件运转的可靠性,从而出现了断裂力学。
断裂韧性一一能反映材料抵抗裂纹失稳扩展能力的性能指标。
大量事例和试验分析证明,低应力脆性断裂总是由材料中宏观裂纹的扩展引起的。
这种裂纹可能是冶金缺陷、加工过程中产生或使用中产生。
断裂力学运用连续介质力学的弹性理论,考虑了材料的不连续性,来研究材料和机件中裂纹扩展的规律,确定能反映材料抵抗裂纹扩展的性能指标及其测试方法,以控制和防止机件的断裂,定量地与传统设计理论并入计算。
本章主要介绍断裂韧性的基本概念、测试方法及影响因素,解决断裂韧性与外加应力和裂纹之间的定量关系。
第一节线弹性条件下的金属断裂韧性大量断口分析表明,金属机件或构件的低应力脆性断口没有宏观塑性变形痕迹。
由此可以认为,裂纹在断裂扩展时,其尖端总是处于弹性状态,应力和应变呈线性关系。
因此,在研究低应力脆断的裂纹扩展问题时,可以应用弹性力学理论,从而构成了线弹性断裂力学。
线弹性断裂力学分析裂纹体断裂问题有两种方法:一种是应力应变分析法(应力场分析法),考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据;另一种是能量分析法,考虑裂纹扩展时系统能量的变化,建立能量转化平衡方程,得到相应的断裂G判据。
从这两种分析方法中得到断裂韧度Ki c和Gc,其中K i c是常用的断裂韧性指标,是本章的重点。
材料力学性能 (4)
3、KI 裂纹扩展的动力,、a都是加剧应力场的因素
4、 K Y a
2 E a 2 E a
材料本质属性
?
裂纹扩展的抗力 ?
4.4.4 断裂判据
随着应力
或裂纹尺寸a的增大,KI因子不断增大。当KI因子增大到临界
KI = KIC
值KIC时,裂纹开始失稳扩展,用KIC表示材料对裂纹扩展的阻力,称为平 面应变断裂韧度(性)。因此,裂纹体断裂判据可表示为:
/2
0
m sin
dx
m
= 2
m 2 /
a0为平衡状态时原子间距
√
材料在低应力作用下应该是弹性的,在这一条件下sinx≈x ;同时,曲线开始部分近似 为直线,服从虎克定律,有 Ex / a
m sin
2x
=
2x m
Ex a0
2 m
ij
当 r<<a, θ →0 时,
KI f ij ( ) 1/ 2 (2r )
f ij ( ) 1
ij 0
根据弹性力学,裂纹尖端O点的应力
0
= 2
a/
裂纹尖端的曲率
K I 0 2r 2 a
2r Y
a
裂纹形状系数,与裂纹形式、试件几何形状有关
K I a K IC
可用测定的断裂韧性求断裂应力和临界裂纹尺寸:
c
K IC
a
ac
K 2 IC
2
、G、 K
容易理解 容易测量
G1 G1C
K1 K1C
(能量平衡观点讨论断裂) (裂纹尖端应力场讨论断裂) (应力-屈服强度比较讨论断裂)
第四章 材料的断裂韧性
3. KI的修正 裂纹尖端的弹性应力超过 材料屈服强度之后, 便产生应 力松驰,使塑性区增长 ,改变 了裂纹前的应力分布,不适用 于线弹性条件。 裂纹虚拟向前扩展ry,此时 虚拟裂纹尖端0’前端弹性区的 应力分布GEF,基本上与线弹性 条件下的σ y相重合,对应的裂纹长度为a+ry,称为等效裂 纹 长度.根据线弹性理论: KⅠ=Yσ √(a+ry) KⅠ’= Yζ √a/[1-0.16(KⅠ/ζ s)2]1/2(平面应力)
ac= 40-1000mm
五、材料开发
KIC=(2Eγf)1/2 γf: 断裂能,可见,增大断裂能,即增大裂 纹扩展的阻力,手提高KIC。常在基体中 添加韧性相,如碳纤维增韧非晶玻璃材 料等。
第四章 材料的断裂韧性
传统机件强度设计: 塑性材料 σ ≤[σ ]= σ s/n 脆性材料: σ ≤[σ ]= σ b/n 实际上有时σ <<[σ ]时,机件仍断裂—低应力脆断,其原 因是传统设计把机件看成均匀、无缺陷、没有裂纹的理 想体.但实际工程材料在制造加工中会产生宏观缺陷乃 至裂纹,成为材料脆断的裂纹源, 从而引起低应力断裂. §4.1线弹性条件下的断裂韧性 线弹性体:裂纹体各部分的应力和应变符合虎克定律。 但裂纹尖端极小区存在塑性变形,也适用于线弹性条件。
将裂纹前端P (r,θ )的点应力表达式σ x、σ y、τ xy代 入上式,得P点的主应力表达式: σ 1= KⅠ/(2π r)1/2×cosθ /2(1+sinθ /2) σ 2= KⅠ/(2π r)1/2×cosθ /2(1-sinθ /2) σ 3=0 (平面应力,薄板) σ 3=2γ ×KⅠ/(2π r)1/2 cosθ /2 (厚板:平面应变) 由第四强度理论(Mises)屈服临界条件: 将上式代入 (σ 1-σ 2)2+(σ 2-σ 3)2+(σ 3-σ 1)2=2σ s2 ( σ 1>σ 2>σ 3 主应力)得屈服区大小: r=1/2π ×(KⅠ/ζ s)2[cos2θ /2(1+3sin2θ /2)] (平面应力) r=1/2π ×(KⅠ/ζ s)2[cos2θ /2(1-2γ )2+3sin2θ /2] (平面应变)
金属材料的断裂和断裂韧性课件
4.4.3 裂纹扩展的能量释放率GI和断裂韧性GIc
➢分析原理:能量法
应变能释放率
扩展 临界
裂纹扩展需要吸 收的能量率
稳定
dU GI dA
裂纹临界条件:G准则
G Ic
dS dA
40
金属材料的断裂和断裂韧性课件
K与G的关系
G
Gc Ic
1K E
1 2
E
2 c
K
2 Ic
41
金属材料的断裂和断裂韧性课件
断裂力学和断裂韧性
➢ 为防止裂纹体的低应力脆断,不得不对其强度——断裂抗
力进行研究,从而形成了断裂力学这样一个新学科。
➢ 断裂力学的研究内容包括裂纹尖端的应力和应变分析;建
立新的断裂判据;断裂力学参量的计算与实验测定,其中 包括材料的力学性能新指标——断裂韧性及其测定,断裂 机制和提高材料断裂韧性的途径等。
随第二相体积分数的增加,钢的韧性都下降,硫化物比碳化物 的影响要明显得多。
➢ 2 基体的形变强化
基体的形变强化指数越大,则塑性变形后的强化越强烈,其结
* Kepn
果是各处均匀的变形。微孔长大后的聚合,将按正常模式进行, 韧性好;相反地,如果基体的形变强化指数小,则变形容易局
部化,较易出现快速剪切裂开。这种聚合模式韧性低。
断裂前无明显的塑性变形,吸收的能量很少,而裂纹的 扩展速度往往很快,几近音速,故脆性断裂前无明显的 征兆可寻,且断裂是突然发生的,因而往往引起严重的 后果 。
➢ 在工程应用中,一般把Ψk <5%定为脆性断裂, Ψk =5%定
为准脆性断裂, Ψ k >5%定为韧性断裂。
➢ 材料处于脆性状态还是韧状态并不是固定不变的,往往因
4第四章材料的韧性和断裂力学
(4-24)
• 是裂纹的临界状态:
• 当δ> δc时,裂纹开裂; • 当δ< δc时,裂纹不开裂。 • 用D-M模型计算的裂纹张开位移如(图4-
11)所示:
{E
其中 E’=
(4-25)
• 则裂纹开裂的临界条件为 :
式中ac为临界裂纹尺寸,σc为屈服应力, σ为工作应力。利用上式也可以计算临界 裂纹尺寸ac,只要事先测得σc。 在小范围屈服条件下,COD值也可以和 应力强因子KI,及断裂韧度KIC建立确定 的关系:
• 2.应力松弛的修正
• 若考虑到因塑性区内塑性变形引起的应 力松弛,则将使得到的塑性区有所扩大。 分析结果,考虑了应力松弛后得到的塑 性区尺寸为:
平面应变
(4-17)
平面应力
(4-18)
• 应力松驰使塑性区尺寸增加了一倍。
• 以上考虑的是无强化材料,对于实际的 强化材 料,裂纹尖端塑性区的形状和尺 寸与上述结果有些出入,但这一结果是 偏于安全的
• (1)裂纹尖端的应力和位移分析及应力强 度因子的概念:
• 设一无限大板,具有长度为2α的中心穿透裂 纹,受双轴拉应力作用,如图1-7示。按弹 性力学的平面问题求解,得出裂纹尖端附近 的应力场为
平面应力
平面应变
位移场为:
w =0
平面应变 (4-4)
平面应力
• 式中r、θ为裂纹尖端附近点的极座标; • σx,σy,σz,τxy,τxz,τyz为应力分量; • u,v, w为位移分量; • G为剪切弹性模量;E为扬氏模; • υ为波松比。
• 假若是厚板,则裂纹前端区域除了靠近板表 面的部位之外,在板的内部,由于z方向受 到严重的形变约束, σz≠0,而w=0。所以, 应力是三维的,处于三向拉伸状态,但应变 是二维的,u≠0,v≠0,即是平面型的。这种 状态称为平面应变状态。
第四章 断裂韧性
塑性变形 产生,韧 窝;解理 裂纹-微观
连 续 体
成 机 理
切
口
bN
k 、Tk
按GB
切口-宏观 裂纹体
缺口敏感度NSR
测试
韧窝;解 (切口)
性
理裂纹-微观
能
落锤实验:零塑性
温度:NDT
假如构件内部有宏观裂纹,上述测试的性能如果 满足要求,能否保证构件运行安全?
构件内部宏观裂纹危害较大。
板越宽(b越大),
KI越大。裂纹长度为
2a时,板的宽度长度 也用2b表示。
(3)有限宽板单边直裂纹:
(4)对无限大物体表面有半椭圆裂纹 , 远处受均匀拉伸:
Plane strain fracture toughness
KI综合反映了外加应力、裂纹长度对裂纹尖端应力场强
度的影响。 一般表达式为:
KIC和KI如何区别?
第四章 材料的断裂韧性
Fracture toughness of materials
为何测试材料的断裂韧性?
性能指标
标准测试? 裂纹从何 材料是连 裂
b、 k、 、ψ
而来?大 续体?裂 纹
小?
纹体?
形
抗扭强度b、 k
抗弯强度bb HB、HRC、HV、HK 表面HR、显微硬度
按GB 测试
G.R. Irwin(欧文)主要借鉴Griffth理论模型:
The Griffith(1893-1963) approach was global and could not easily be extended to accommodate structures with finite geometries subjected to various types of loadings. The theory was considered to apply only to brittle materials, such as glasses or ceramics.
断裂韧性
1、COD概念
在平均应力σ作用下,裂纹尖端发生塑性变形,出现 塑性区ρ。在不增加裂纹长度(2a)的情况下,裂纹 将沿σ方向产生张开位移δ,称为COD(Crack Opening Displacement)。
2)断裂韧度δc及断裂δ判据
δ≥δc δc越大,说明裂纹尖端区域的塑性储 备越大。 δ、δc是长度 量纲为mm,可用精密 仪器测量。 一般钢材的δc大约为0.几到几mm δc是裂纹开始扩展的判据;不是裂纹失 稳扩展的断裂判据。
(平面应变) 上述关系式,在弹塑性条件下,还不 能完全用理论证明它的成立。 但在一定条件下,大致可延伸到弹塑 性范围。
二、裂纹尖端张开位移(COD)及断 裂韧度δc
裂纹尖端附近应力集中,必定产生应变; 材料发生断裂,即: 应变量大到一定程度; 但是这些应变量很难测量。 ∴有人提出用裂纹向前扩展时,同时向垂直方 向的位移(张开位移),来间接表示应变量的 大小;用临界张开位移来表示材料的断裂韧度。
一、裂纹扩展的基本形式 1、张开型(I型) 2、滑开型(II型) 3、撕开型(III型)
裂纹的扩展常常是组合式,I型的危险性最大。
二、应力场强度因子KI和断裂韧度KIC
1、裂纹尖端应力场、应力分析
①应力场 (应力分量,极座标)
平面应力 σx=0 平面应变 σz=υ(σx+σy)
对于某点的位移则有
GⅠc GⅠc
ac c2
E
2
KⅠc E 2 (1 2 ) KⅠc E
§4-2 弹塑性条件下的断裂韧性
裂纹尖端塑性区尺寸
1 KI 2 R0 ( ) 2ro
s
线弹性理论,只适用于小范围屈服; 在测试材料的KIC,为保证平面应变和小范围屈服, 要求试样厚度 B≥2.5(KIC/σs)2 如:中等强度钢 要求 B=99mm 试样太大,浪费材料,一般试验机也做不好。 ∴发展了弹塑性断裂力学。 原则: ①将线弹性理论延伸; ②在试验基础上提出新的断裂韧度和断裂判据; ③常用的为 J积分法、COD法。
材料性能学课件第四章 材料的断裂韧性
JI
dy
u x
ds
JⅠ为Ⅰ型裂纹的能 量线积分
第二节 弹塑性条件下的断裂韧性
2r 2
2
3
2K I 2r
cos
2
(平面应变)
3 0 (平面应力)
第一节 线弹性条件下的断裂韧性
四、裂纹尖端塑性区及KⅠ的修正
将各主应力代入Von Mises 判据式(4-8),化简后得 到塑性区的边界方程:
图4-3 裂纹尖端塑性区的形状
(平面应力)
2
r
1
2
KI
s
c os2
2
1
3sin
在这些裂纹的不同扩展形式中,以Ⅰ型裂纹
扩展最危险,最容易引起脆性断裂。所以,在 研究裂纹体的脆性断裂问题时,总是以这种裂 纹为对象。
二、裂纹尖端的应力场及应力场强度因子KⅠ
设有一承受均匀拉应力σ的无限大板,中心含有长 为2a的I型穿透裂纹。
12
第一节 线弹性条件下的断裂韧性
应力分量为
x
K I cos 1 sin sin 3
应力状态软性系数小,因而是危险的应力状态。
平面应变状态分量为
x
1 K I
E 2r
cos 1 2
2
sin sin
2
3
2
y
1 K I
E 2r
cos 1 2
2
sin sin 3
22
图4-2 裂纹尖端的应力分析
xy
1 K I
E 2r
sin
2
cos
2
cos 3
2
第一节 线弹性条件下的断裂韧性
第一节 线弹性条件下的断裂韧性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料性能学 四、裂纹尖端塑性区及KⅠ的修正
1、裂纹尖端塑性区: 裂纹尖端附近的σ≥σs→塑性变形→存在裂纹尖端塑性区。
2、塑性区的边界方程
3、在x轴上,θ=0,塑性区的宽度r0为:
4、修正后塑性区的宽度R0为:
18
材料性能学 四、裂纹尖端塑性区及KⅠ的修正
5、等效裂纹的塑性区修正值ry:
6、KⅠ的修正 (σ/σs≥0.6~0.7): 线弹性断裂力学计算得到σy的分布曲线为ADB; 屈服并应力松弛后σy的分布曲线为CDEF; 若将裂纹顶点由O虚移至O´点, 则在虚拟的裂纹顶点O´以外的弹性应力分布曲线为GEH。 采用等效裂纹长度(a+ry)代替实际裂纹长度a,即
14
材料性能学 三、断裂韧度KⅠc和断裂K判据
已知
K Y
1、平面应变断裂韧度KⅠc (MPa·m1/2)
σ↑(或,和) ↑→KⅠ↑ σ↑→σc (或) ↑→c 裂纹失稳扩展→断裂 →KⅠ=KⅠc 2、平面应力断裂韧度Kc σ↑(或,和) ↑→KⅠ↑ σ↑→σc (或) ↑→ c 裂纹失稳扩展→断裂 →KⅠ=Kc ***Kc>KⅠc
无限远处有均匀应力σ的线弹性问题。
AB两点的张开位移为
36
材料性能学
各种断裂韧度关系:
平面应力:
平面应变:
37
材料性能学
§4.3
一、化学成分、组织结构对断裂韧度的影响 1、化学成分的影响 2、基体相结构和晶粒尺寸的影响 3、夹杂和第二相的影响 4、显微组织的影响:影响材料的断裂韧度。 二、特殊改性处理对断裂韧度的影响 1、亚温淬火 2、超高温淬火 3、形变热处理 三、外界因素对断裂韧度的影响 1、温度 2、应变速率
8
材料性能学
§4.1
线弹性条件下的断裂韧性
一、裂纹扩展的基本方式
二、裂纹尖端的应力场及应力场强度因子KⅠ
三、断裂韧度KⅠc和断裂K判据
四、裂纹尖端塑性区及KⅠ的修正
五、裂纹扩展能量释放率GⅠ
六、断裂韧度GⅠc和断裂G判据
9
材料性能学
一、裂纹扩展的基本方式
(根据外加应力的类型和裂纹扩展面的取向关系)
影响材料断裂韧度的因素
38
材料性能学
§4.3
影响材料断裂韧度的因素
四、断裂韧度与强度、塑性和冲击韧度的关系 1、韧断模型
2、脆性断裂模型
3、其它模型
39
材料性能学
§4.4 断裂韧度在工程中的应用
零、断裂韧度在工程中的应用: 第一是设计: 包括结构设计和材料选择. 根据材料的断裂韧度,计算结构的许用应力, 针对要求的承载量,设计结构的形状和尺寸; 根据结构的承载要求、可能出现的裂纹类型, 计算最大应力强度因子,依据材料的断裂韧度进行选材。 第二是校核: 根据结构要求的承载能力、材料的断裂韧度, 计算材料的临界裂纹尺寸, 与实测的裂纹尺寸相比较, 校核结构的安全性,判断材料的脆断倾向。 第三是材料开发: 可以根据对断裂韧度的影响因素, 有针对性地设计材料的组织结构,开发新材料。
35
材料性能学 五、弹塑性条件下的COD表达式
带状屈服模型(或称DM模型)。 设塑性材料无限大薄板中有长为2a的I型穿透裂纹,
在远处作用有平均应力σ,
裂纹尖端的塑性区呈尖劈形; 假设沿x轴将塑性区割开,
使裂纹长度由2a变为2c,
在割面的上下方代之以应力σs,以阻止裂纹张开; 于是该模型就变为在(a,c)和(-a,-c)区间作用有σs,
22
材料性能学
拉伸的弹性应变能(补充)
对拉杆进行逐步加载(认为无动能变化) 利用能量守恒原理: U(弹性应变能)=W(外力所做的功)
1 W P L U E 2
UE
P
L
PL EA
P2L 2 EA
单位体积内的应变能----比能u(单位:J/m3)
P
P
1 P L U 1 2 u V AL 2
KⅠ<KⅠc
即使存在裂纹,也不会发生断裂。
16
材料性能学 四、裂纹尖端塑性区及KⅠ的修正
线弹性断裂力学: 脆性断裂过程中, 裂纹体各部分的应力和应变处于线弹性阶段; 只有裂纹尖端极小区域处于塑性变形阶段。
(厚板) (薄板)
裂纹尖端塑性区: 实际金属,当裂纹尖端附近的σ≥σs →塑性变形→改变裂纹尖端应力分布。 →存在裂纹尖端塑性区。 当σ/σs<0.6~0.7 ,尖端塑性区可忽略; σ/σs≥0.6~0.7 需要修正????
断裂包括裂纹萌生、扩展直至断裂。
裂纹扩展包括开始(亚稳)扩展、失稳扩展。 裂纹萌生抗力、扩展抗力,均小于σs。
低应力脆断: σ<σs 脆性断裂
4
材料性能学
前 言
3、断裂力学发展历史: 线弹性断裂力学
(高强度钢——小范围屈服);
弹塑性断裂力学 (中低强度钢——大范围屈服) 。
4、断裂力学研究对象:
研究裂纹尖端的应力、应变和应变能 →建立断裂韧度 →对机件进行设计和校核。 5、本章讲述: 断裂力学的基本原理; 断裂韧度的意义、影响因素及应用。
以及参量KⅠ。
K
(无限大板I型穿透裂纹)
12
应力场强度因子KⅠ反映了裂纹尖端区域应力场的强度。
材料性能学 二、裂纹尖端的应力场及应力场强度因子KⅠ
2、KⅠ一般表达式:
K Y
(MPa· m1/2)
综合反映了外加应
力和裂纹位置、长度
对裂纹尖端应力场强 度的影响。
13
材料性能学
1、线弹性条件下,
2、弹塑性条件下,
JⅠ=GⅠ= - ∂U/∂a
JⅠ= - ∂U/∂a
31
材料性能学
三、断裂韧度JⅠc及断裂J判据
1、断裂韧度JⅠc: 应力应变场的能量,
达到使裂纹开始扩展的临界状态时,
则JⅠ积分值也达到相应的临界值JⅠc。 2、断裂J判据: JⅠ≥JⅠc
32
材料性能学
四、裂纹尖端张开位移(COD)的概念
15
材料性能学 三、断裂韧度KⅠc和断裂K判据
断裂应力(裂纹体的断裂强度)σc: 裂纹失稳扩展的临界状态所对应的平均应力。 临界裂纹尺寸c:, 裂纹失稳扩展的临界状态所对应的裂纹尺寸?? 断裂韧度 Kc Y c KⅠ≥ KⅠc 4、破损安全:
c
3、裂纹失稳扩展脆断的断裂K判据: (σ/σs<0.6~0.7)
29
材料性能学
一、J积分的概念
1、线弹性条件下GⅠ的能量线积分的表达式 GⅠ=-∂U/∂a=∫Γ(ωdy-∂u/∂xTds) 2、弹塑性条件下GⅠ的能量线积分的表达式 JⅠ=∫Γ(ωdy-∂u/∂xTds) J积分反映了裂纹尖端区的应变能, 即应力应变的集中程度。
30
材料性能学
二、J积分的能量率表达式
33
材料性能学
四、裂纹尖端张开位移(COD)的概念
3、弹性条件(小范围屈服)下的COD表达式: (1)裂纹由a虚拟扩展到a+ry, 尖端由O点移到O´, 尖端的张开位移 就是O点在y轴张开位移, 即δ=2v.
I型穿透裂纹
34
材料性能学
四、裂纹尖端张开位移(COD)的概念
I型穿透裂纹
(2)断裂韧度δc : δ → δc →裂纹开始扩展。 (3)断裂δ判据: δ ≥ δc (裂纹开始扩展的断裂判据)
5
材料性能学
前
言
6、裂纹类型(摘自P84附表)
6
材料性能学
第四章
材料的断裂韧性
§4.1 线弹性条件下的断裂韧性 §4.2 弹塑性条件下的断裂韧性 §4.3 影响材料断裂韧度的因素
§4.4 断裂韧度在工程中的应用
7
材料性能学
§4.1
线弹性条件下的断裂韧性
1、线弹性断裂力学: 脆性断裂过程中, 裂纹体各部分的应力和应变处于线弹性阶段, 只有裂纹尖端极小区域处于塑性变形阶段。 2、研究方法: (1)应力应变分析法: 研究裂纹尖端附近的应力应变场; 提出应力场强度因子及对应的断裂韧度和K判据; (2)能量分析法: 研究裂纹扩展时系统能量的变化; 提出能量释放率及对应的断裂韧度和G判据。
根据弹性理论(修正后):
24
材料性能学
补充
驱使裂纹扩展的动力是弹性能的释放率。 把裂纹扩展单位面积时,系统释放的势能的数值,称为裂纹扩
展能量释放率,简称为能量释放率或能量率,并用G表示。
25
材料性能学
§4.1 线弹性条件下的断裂韧性
五、裂纹扩展能量释放率GⅠ: 1、平面应力GⅠ: GⅠ= σ2π/E 2、平面应变GⅠ: GⅠ=(1-ν2)σ2π/E 六、断裂韧度GⅠc和断裂G判据: 1、断裂韧度GⅠc: GⅠ→GⅠc →裂纹失稳扩展而断裂。 表示材料阻止裂纹失稳扩展时单位面积所消耗的能量。 26 2、裂纹失稳扩展断裂G判据 GⅠ≥ GⅠc
目前常用的方法有J积分法和COD法。
J积分法是由GI延伸出来的一种断裂能量判据; COD法是由KI延伸出来的一种断裂应变判据。
28
材料性能学
§4.2 弹塑性条件下的断裂韧性
一、J积分的概念
二、J积分的能量率表达式
三、断裂韧度JⅠc及断裂J判据 四、裂纹尖端张开位移(COD)的概念 五、弹塑性条件下的COD表达式
1、来源: (1)对于中、低强度钢构件,低应力脆 断: 断口具有90%以上的结晶状特征; 而制取的小试样,发生纤维状的韧断。 (2)构件承受多向应力 →使裂纹尖端的塑性变形受到约束 →当应变量达到某一临界值 →材料就发生断裂。 2、定义: 裂纹体受载后,在裂纹尖端沿垂直裂 纹方向所产生的位移,用δ表示。
材料性能学
1
材料性能学
前 言
韧度(韧性)定义: 是材料断裂前吸收塑性变形功和断裂功的能力。 包括静力韧度、冲击韧度、断裂韧度。 (1)静力韧度( ) = (Sk2-σ0.22)/2D (2)冲击韧度或冲击值αKU(αKV): αKU(αKV)=AKU(AKV)/FN 冲击功: GH1-GH2=AK (3)理论断裂强度(理想晶体脆性断裂): σm=(Eγs/a0)1/2 (4)断裂强度的裂纹理论(格里菲斯裂纹理论): (实际断裂强度) σc≈(Eγs/a)1/2