变压器后备保护原理与应用

合集下载

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则一、后备保护分析1.差动保护:差动保护是变压器后备保护中最重要的一部分。

其主要原理是通过监测变压器的输入和输出电流之间的差异,来判断变压器内部是否发生故障。

当差动电流大于设定阈值时,差动保护动作,切断变压器电路,以保护变压器。

2.过流保护:过流保护是指变压器输入端或输出端电流超过额定值时,保护装置会发出信号使断路器或刀闸跳闸,以切断电路。

过流保护是保护变压器的重要手段之一,用于防止变压器过负荷运行和短路故障。

3.过温保护:变压器内部温度的急剧升高会导致变压器绝缘材料老化和失效,进而引发火灾事故。

因此,过温保护是必要的。

过温保护通常采用温度传感器监测变压器内部温度,一旦温度超过设定值,保护装置会发出信号,切断电源,停止变压器的运行。

当变压器后备保护装置动作跳闸时,需要及时采取相应的措施进行处理,以保证变压器的安全和设备的正常运行。

1.检查故障原因:首先应该对动作跳闸的原因进行全面、系统的分析,判断是否属于故障动作,并找出故障原因。

可能的故障原因包括变压器内部短路、过载、绕组接地等。

通过检查,可以排除虚警动作,保证变压器的正常运行。

2.故障修复:一旦确定故障原因,需要及时进行故障修复。

对于短路故障,应排除短路点,修复绕组;对于过载故障,应调整负载,使变压器运行在正常负荷范围内;对于绕组接地故障,应检修绝缘层,排除接地点。

3.冷却处理:当变压器发生过温时,需要采取相应的冷却处理措施。

可以通过增加散热器的风量、使用冷却风扇等方式进行冷却,降低变压器内部温度。

4.环境监测:为了预防类似故障的再次发生,需要对变压器周围的环境进行监测。

如监测变压器输入电流和输出电流的差值,监测变压器运行时的温度等参数,及时发现异常情况并采取相应措施。

5.设备保养:定期对变压器进行保养和检修,检查差动保护、过流保护、过温保护等保护装置的运行情况,保证其可靠性和正常功能。

总之,变压器后备保护分析和动作跳闸处理是保证变压器设备安全运行的重要环节。

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则1. 引言变压器是电力系统中的重要设备,为保障电力系统的运行稳定性和安全性,需要对变压器进行全面的保护和管理。

其中,后备保护是保障变压器安全运行的重要手段之一,本文将对变压器后备保护进行分析,并对动作跳闸处理原则进行探讨。

2. 变压器后备保护概述变压器后备保护是指在主保护失灵或运行异常时,为防止变压器继续运行而采取的保护措施。

其目的是保障变压器运行安全,防止事故的发生。

变压器后备保护通常包括以下几种类型:2.1 奇数次谐波保护奇数次谐波保护是通过测量变压器两侧电压的奇数次谐波电压,来判断是否发生故障。

当变压器内部发生故障时,会产生奇数次谐波电流,从而导致两侧电压的奇数次谐波电压不等。

此时,保护装置会发出动作信号,切断变压器的电源,以防止事故的进一步扩大。

2.2 过电压保护过电压保护是指在变压器出现过电压时,通过切断电源,以保护变压器安全运行。

过电压保护通常分为瞬变过电压保护和持续过电压保护两种,其中瞬变过电压保护是指对高压侧电压瞬间剧烈波动所采取的保护措施,而持续过电压保护则是指对发生长时间过电压的情况所采取的保护措施。

2.3 欠电压保护欠电压保护是指在变压器出现欠电压时,通过切断电源,以保护变压器安全运行。

欠电压保护可以有效避免变压器在电网电压异常下继续工作,从而导致事故。

2.4 瞬时过流保护瞬时过流保护是指通过测量变压器两侧电流的波形和幅值来判断变压器是否出现故障。

当变压器内部出现短路等故障时,会产生高幅值的电流,从而导致保护装置动作,切断电源,以保护变压器安全运行。

3. 变压器后备保护动作跳闸处理原则变压器后备保护动作跳闸时,需要对保护装置和变压器进行检查和处理,以确定动作原因和故障位置,全面保障变压器安全运行。

变压器后备保护动作跳闸处理原则主要包括以下几点:3.1 处理动作跳闸信号当变压器后备保护装置发出动作跳闸信号时,需要及时处理,以确定动作原因和故障位置。

变压器后备保护动作原理和事故处理..

变压器后备保护动作原理和事故处理..

变压器后备保护动作原理
零序方向过流保护原理图
注:TV断线时,方向元件退出
零序过流保护原理图
变压器后备保护动作原理
中性点直接接地运行时零序保护原理图
中性点直接接地运行变压器零序电流 保护工作原理 零序电流保护I段作为变压器及母线 的接地故障后备保护,其起动电流和延 时t1应与相邻元件单相接地保护I段相 配合,通常以较短延时t1=0.5~1.0S 动作于母线解列;以较长的延时t2=t1 +Δt有选择地动作于断开变压器高压侧 断路器。 零序电流保护II段作为引出线接地故 障的后备保护,其动作电流和延时t3 应与相邻元件接地后备段相配合。通常 t3应比相邻元件零序保护后备段最大 延时大一个Δt,以断开母联断路器或 分段断路器,t4=t3+Δt动作于断开变 压器高压侧断路器。
变电站事故处理系列
变压器后备保护动作原理及事故处理
威虎山公司
座山雕
变压器后备保护动作原理及事故处理
变压器后备保护的配置及原理 变压器后备保护的保护范围 变压器各后备保护动作原因分析
目录
变压器后备保护动作后故障范围的检查 变压器后备保护动作跳闸后的处理
220KV主变电量保护配置图
220KV主变后备保护的配置
主变后备保护动作跳闸,主保护 未动作一般应视为外部故障即母 线故障或线路故障越级使主变后 备保护动作跳闸
主变后备保 护动作原因 分析
零序方向过流:方向指向母 线时,动作后一般是母线或 者线路接地后保护装置拒动 ,方向指向主变时动作后一 般是下一级母线或者线路接 地后保护拒动,主变主保护 拒动的几率很小
经检查,线路 没有保护动作信号 掉牌时有两种可能 :一是故障时保护 没动作,二是母线 故障
分路上有保护动 作信号掉牌时应将 掉牌的线路开关断 开,并检查母线及 变压器跳闸开关无 问题,重点检查线 路开关拒跳原因

变压器后备保护整定计算方法 数据降维

变压器后备保护整定计算方法 数据降维

变压器后备保护整定计算方法数据降维随着电力系统发展和电网规模的不断扩大,变压器在电力系统中的重要性日益凸显。

为了确保变压器的安全运行,后备保护的整定成为必要的工作。

本文将介绍变压器后备保护整定的计算方法,并探讨数据降维在此过程中的应用。

一、变压器后备保护整定计算方法1. 整定背景变压器是电力系统中的重要设备,主要用于电能的传输和变压变流。

为了保证变压器的安全运行,需要设置后备保护。

后备保护的整定涉及到多个参数,包括电压、电流、温度等。

2. 整定原则变压器后备保护的整定原则是根据变压器的额定容量、短路容量以及运行条件等因素进行综合考虑,确保其灵敏度和可靠性。

3. 整定步骤(1)收集和分析数据整定前需要收集变压器运行过程中的相关数据,包括电流、电压、温度等参数。

通过对数据的分析,可以了解变压器的负载情况和可能出现的故障。

(2)确定整定参数根据数据分析的结果,确定后备保护的整定参数。

例如,根据变压器的额定容量和运行条件,确定巡检超过额定电流值的保护参数。

(3)计算整定值根据确定的整定参数,进行计算以得到具体的整定值。

例如,根据变压器短路容量和负载情况,计算巡检超过短路电流的保护整定值。

(4)验证整定结果将计算得到的整定值配置到变压器保护设备中,进行实际验证。

通过实际验证,可以判断整定结果是否符合要求,并进行必要的调整。

二、数据降维在变压器后备保护整定中的应用1. 数据降维的概念数据降维是指通过一系列方法将原始数据映射到低维度的空间中,从而减少数据维度的过程。

数据降维不仅可以简化数据处理过程,还可以提高数据分析的效率和准确性。

2. 数据降维在整定计算中的应用(1)降低计算复杂性变压器的运行数据通常包含大量的参数,降维可以将这些参数转化为更少的维度,从而降低整定计算的复杂性。

(2)提高计算效率通过降维可以减少计算的量,从而提高整定计算的效率。

例如,使用主成分分析等方法可以将大量的数据特征降低到较少的维度,并保留原始数据的主要信息。

主变后备保护原理和保护范围

主变后备保护原理和保护范围
主变后备保护原理和保 护范围
XX,a click to unlimited possibilities
汇报人:XX
目录
01 主 变 后 备 保 护 原 理
02 主 变 后 备 保 护 范 围
Part One
主变后备保护原理
差动保护原理
差动保护原理:利用电流互感器检测主变各侧电流的变化,通过比较主变 各侧电流的大小和相位,实现差动保护。 差动保护的优点:动作速度快,灵敏度高,可靠性高。
距离保护原理
原理:基于电压和电流的相位差来测量短路点到保护装置的距离 优点:不受系统阻抗的影响,可靠性高 局限性:易受系统运行方式的影响,需要校验保护装置的定值 应用场景:适用于长距离输电线路的保护
零序电流保护原理
零序电流的产生:当系统中发生不对称故障时,三相电流的矢量和不为零,形成零序电流。
零序电流保护的原理:通过检测零序电流的大小和方向,判断系统中是否存在故障,进而触 发相应的保护动作。
零序电流保护的优点:结构简单,灵敏度高,能够快速切除故障。
零序电流保护的局限性:易受系统运行方式和接地状况的影响,可能会产生误动作或拒动作。
Part Two
主变后备保护范围
变压器内部故障
变压器内部故障可能引发严 重后果
主变后备保护范围包括变压 器内部故障
主变后备保护能够及时切除 故障,防止事故扩大
差动保护的局限性:易受励磁涌流和变压器充电的影响。
差动保护的应用范围:广泛应用于变压器的保护。
电流保护原理
电流保护原理:通过检测线路中的电流异常变化来触发保护动作,切除故障部分,保证电力 系统安全运行。
动作条件:电流超过整定值,持续时间达到设定时间。
保护类型:过流保护、电流速断保护、差动保护等。

主变后备保护原理和保护范围

主变后备保护原理和保护范围

5、负序电流和单相式低压过电流保护
对于大容量的发电机变压器组,由于额定电流大,电流元件往往不能满足远后备灵敏度的要求,可采用负序电流保护。负序电流元件和反应对称短路故障的单相式低压过电流保护组成。 负序电流保护灵敏度较高,且在星、三角接线的变压器另一侧发生不对称短路故障时,灵敏度不受影响,接线也较简单。
多台变压器并联运行时的接地后备保护
对于多台变压器并联运行的变电所,通常采用一部分变压器中性点接地运行,而另一部分变压器中性点不接地运行的方式。这样可以将接地故障电流水平限制在合理范围内,同时也使整个电力系统零序电流的大小和分布情况尽量不受运行方式的变化,提高系统零序电流保护的灵敏度。
如图5-23所示,T2和T3中性点接地运行,T1中性点不接地运行,K2点发生单相接地故障时,T2和T3由零序电流保护动作而被切除,T1由于无零序电流,仍将带故障运行,此时由于接地中性点失去,变成了中性点不接地系统单相接地故障的情况,将产生接近额定相电压的零序电压,危及变压器和其它电力设备的绝缘,因此需要装设中性点不接地运行方式下的接地保护将T1切除。
过负荷保护反应变压器对称过负荷引起的过电流。保护用一个电流继电器接于一相电流,经延时动作于信号。 过负荷保护的安装侧,应根据保护能反应变压器各侧绕组可能过负荷情况来选择: (1)对双绕组升压变压器,装于发电机电压侧。 (2)对一侧无电源的三绕组升压变压器,装于发电机电压侧和无电源侧。 (3)对三侧有电源的三绕组升压变压器,三侧均应装设。 (4)对于双绕组降压变压器,装于高压侧。 (5)仅一侧电源的三绕组降压变压器,若三侧的容量相等,只装于电源侧;若三侧的容量不等,则装于电源侧及容量较小侧。 (6)对两侧有电源的三绕组降压变压器,三侧均应装设。
后备低阻抗保护对发电机定子绕组和变压器高、低压绕组内部短路的后备保护作用问题: 发电机三相定子绕组内部发生相间短路或匝间短路时,纵然故障点电流很大,机端三相电流有可能并不大,机端二相电压也可能并不显著降低,因此装在发电机机端的阻抗保护反应就很灵敏。 所以阻抗保护不能胜任变压器或发电机绕组内部短路的后备保护作用,只能作为发电机或变压器引线、母线和相邻线路的相间短路后备保护。

变压器后备保护原理与应用

变压器后备保护原理与应用
变压器和容量较大的降压变压器 1.动作电流 按变压器额定电流In整定,不必考虑电动 机自起动和并列运行变压器跳闸引起的最 大负荷电流。 2.动作电压整定 (1)按正常运行时可能出现的最低电压整定 (2)按电动机自起动时的电压整定
低压过流逻辑框图
U ab < Ul
U bc< Ul
+
t1
信号
出口 信号

变压器接地后备保护
变压器接地后备保护
变压器接地后备保护
相间故障后备保护故障时间整定
单侧电源的双绕组降压变压器 单侧电源的三绕组降压变压器,相间故障后备保

护一般在低压侧和电源侧。 高压及中压侧均有电源的三绕组降压变压器 双绕组升压变压器,相间故陈后备保护装在变压 器的低压侧 中压侧无电源的三绕组升压变压器,相间故障后 备保护装于低压侧和中压侧 三侧均有电源的三绕组升压变压器
后备低阻杭保护
后备低阻杭保护对发电机定子绕组和变压器高、
低压绕组内部短路的后备保护作用问题 发电机三相定子绕组内部发生相间短路或匝间短 路时,纵然故障点电流很大,机端三相电流有可 能并不大,机端二相电压也可能并不显著降低, 因此装在发电机机端的阻抗保护反应就很不灵敏。 教材p72 所以阻抗保护不能胜任变压器或发电机绕组内部 短路的后备保护作用,只能作为发电机或变压器 引线、母线和相邻线路的相间短路后备保护。
K 低压元件灵敏度 : sen U K . max > 1.2 U op K re
3)负序电压元件 U 2op (0.06 ~ 0.12)U N 负序电压元件灵敏度
K sen U k 2. min U 2 op
> 1.2
相间短路后备保护
负序电流和单相式低电压起动的过电流保护

变压器主保护与后备保护知识

变压器主保护与后备保护知识

变压器是连续运行的静止设备,运行比较可靠,故障机会较少。

但由于绝大部分变压器安装在户外,并且受到运行时承受负荷的影响以及电力系统短路故障的影响,在运行过程中不可避免的出现各类故障和异常情况。

1、变压器的常见故障和异常变压器的故障可分为内部故障和外部故障。

内部故障指的是箱壳内部发生的故障,有绕组的相间短路故障、一相绕组的匝间短路故障、绕组与铁芯间的短路故障、绕组的断线故障等。

外部故障指的是变压器外部引出线间的各种相间短路故障、引出线绝缘套管闪络通过箱壳发生的单相接地故障。

变压器发生故障危害很大。

特别是发生内部故障时,短路电流所产生的高温电弧不仅会烧坏变压器绕组的绝缘和铁芯,而且会使变压器油受热分解产生大量气体,引起变压器外壳变形甚至爆炸。

因此变压器故障时必须将其切除。

变压器的异常情况主要有过负荷、油面降低、外部短路引起的过电流,运行中的变压器油温过高、绕组温度过高、变压器压力过高、以及冷却系统故障等。

当变压器处于异常运行状态时,应给出告警信号。

2、变压器保护的配置短路故障的主保护:主要有纵差保护、重瓦斯保护等。

短路故障的后备保护:主要有复合电压闭锁过流保护、零序(方向)过流保护、低阻抗保护等。

异常运行保护:主要有过负荷保护、过励磁保护、轻瓦斯保护、中性点间隙保护、温度油位及冷却系统故障保护等。

3、非电量保护利用变压器的油、气、温度等非电气量构成的变压器保护称为非电量保护。

主要有瓦斯保护、压力保护、温度保护、油位保护及冷却器全停保护。

非电量保护根据现场需要动作于跳闸或发信。

(1)瓦斯保护当变压器内部发生故障时,由于短路电流和短路点电弧的作用,变压器内部会产生大量气体,同时变压器油流速度加快,利用气体和油流来实现的保护称为瓦斯保护。

轻瓦斯保护:当变压器内部发生轻微故障或异常时,故障点局部过热,引起部分油膨胀,油内气体形成气泡进入气体继电器,轻瓦斯保护动作,发出轻瓦斯信号。

重瓦斯保护:当变压器油箱内发生严重故障时,故障电流较大,电弧使变压器油大量分解,产生大量气体和油流,冲击档板使重瓦斯继保护动作,发出重瓦斯信号并出口跳闸,切除变压器。

变压器相间短路后备保护

变压器相间短路后备保护

过负荷保护动作电流
I op
K rel K re
IN
6.6 电力变压器接地保护
电力系统中,接地故障常常是故障的主要
形式,因此,大电流接地系统中的变压器,一 般要求在变压器上装设接地(零序)保护。作 为变压器本身主保护的后备保护和相邻元件接 地短路的后备保护。
1、中性点直接接地变压器的零序保护
信号 跳QF1 跳QF2
• 定值计算:
• 变压器一次侧电流
IN
SN 3U N
计算二次电流:
IN2
K con I N nTA
• 中压平衡系数:
K bm
I N2h I N2m

低压平衡系数:
K bL
I N 2h I N2L
差动最小动作电流:一般取变压器 额定电流的0.3~0.5倍。
• 比例制动系数:一般取0.5。
• 2次谐波制动系数:通过对装置的合理调整, 当谐波分量占基波的15%~25%,保护不动 作,达到变压器空载投入时闭锁差动保护 的目的。
2、中、低压变电所主变压器的保护配置
(1)主保护配置 1)比率制动式差动保护。中、低压变电所主 变容量不会很大,通常采用二次谐波闭锁原理 的比率制动式差动保护。
2)差动速断保护。 3)本体主保护。本体瓦斯、有载调压重瓦斯。
对于中性点接地的变压器,除上述保护外 应考虑设置接地保护。
• 主变压器后备保护均按侧配置,各侧后备保护之 间、各侧后备保护与主保护之间软件硬件均相互 独立。
差动动作方程 I d I res
I d I op.min Kres I res I res.min
双绕组变压器
差动电流 制动电流
I d Ih IL
I res

主变后备保护原理和保护范围汇总

主变后备保护原理和保护范围汇总
电压保护。过电流继电器和低电压继电器的整定原则与低电压起动过电流保 护相同。负序过电压继电器的动作电压按躲过正常动行时的负序滤过器出现
的最大不平衡电压来整定,通常取U2· set=(0.06—0.12)UN由此可见,复合
电压起动过电流保护在不对称故障时电压继电器的灵敏度高,并且接线比较 简单,因此应用比较广泛。
五、接地短路的后备保护
电力系统中,接地故障常常是故障的主要形式求在变压器上装设接
地(零序)保护。作为变压器本身主保护的后备保护和相
邻元件接地短路的后备保护。
1、变电所单台变压器的零序电流保护 中性点直接接地运行的变压器毫无例外都采用 零序过电流保护作为变压器接地后备保护。零序 过电流保护通常采用两段式,零序I段与相邻元件 零序电流保护I段相配合;零序电流保护II段保护 与相邻元件零序电流保护后备段相配合。与三绕 组变压器相间后备保护类似,零序电流保护在配 置上要考虑缩小故障影响范围的问题。根据需要, 每段零序电流保护可设两个时限,并以较短的时 限动作于缩小故障影响范围,以较长的时限断开 变压器各侧断路器。
三、后备保护的分类
远后备保护:当主保护或断路器拒动时,由相邻电力
设备或线路的保护来实现的后备保护。
近后备保护:当主保护拒动时,由本设备或线路的另 一套保护来实现后备的保护;当断路器拒动时,由断路器
失灵保护来实现近后备保护。
高后备保护和低后备保护是相对变压器而言的,变压 器高压侧的后备保护称为高后备,变压器低压侧的后备保 护称为低后备。
足选择性要求,在高压侧或中压侧要加功率方向元件,其方向可指向 该侧母线。方向元件的设置,有利于加速跳开小电源侧的断路器,避 免小系统影响大系统。
(2)高压及中压侧有电源或三侧均有电源的三绕组降压变压器和联 络变压器,相间故障后备保护为了满足选择性要求,在高压或中压侧 要加功率方向元件,其方向宜指向变压器。 (3)反应相间故障的功率方向继电器,通常由两只功率方向继电器 构成,接入功率方向继电器的电流和电压应按90接线的要求。为了消 除三相短路时功率方向继电器的死区,功率方向继电器的电压回路可 由另一侧电压互感器供电。

电气变压器相间短路的后备保护

电气变压器相间短路的后备保护
第十四页,共36页。
四、微机(wēi jī)型变压器阻抗 保护
• 变压器阻抗保护通常作为330KV及以上大型 变压器相间短路的后备(hòubèi)保护
• 组成:

起动元件

相间阻抗测量元件

时间元件

电压回路断线闭锁元件等
第十五页,共36页。
Iu,v,w Iu,v,w Uu,v,w
启动元件 阻抗元件
保护
分为:
1.全绝缘变压器的接地保护
2.分级(fēn jí)绝缘且中性点不装设放电
间隙的
变压器
3.分级(fēn jí)绝缘且中性点装设放电间 隙变压器的接地保护
第二十七页,共36页。
1.全绝缘变压器的接地(jiēdì) 保护
H
跳各侧
1QF
3U0
t3
≥1
断路器
t2
3I0
t1
1QF1跳QF图来自-18 全绝缘变压器接地保护原理框图
变压器侧 过流段
220KV侧
复压过流I 复压过流II
方向
指向220KV变压器
不带方向
复压过流I段
110KV侧
复压过流II段
10KV侧
电流速断 复压过流
指向110KV侧母线
不带方向 不带方向 不带方向
时间
T1
4.2 S
T2
4.5 S
T1
4.8 S
T2
5.1 S
T1
3.6 S
T2
3.9 S
T1
4.2 S
作远后备保护时, Ks ≥1.2。
第十页,共36页。
2) 低电压元件的动作电压整定值: 应按躲开正常运行时母线上可能出现的最低工作电压,

变压器后备保护的保护范围

变压器后备保护的保护范围

变压器后备保护的保护范围1. 引言大家好,今天咱们聊聊变压器后备保护的那些事儿。

听起来有点高大上,但别担心,我会把它讲得简单明了。

变压器就像电力系统里的“中坚力量”,没有它,我们的生活可就没法运转了。

所以,保护它,尤其是后备保护,绝对是个大事。

那什么是后备保护呢?简单来说,就是给变压器穿上一层“防护服”,确保它能在遇到问题时有个“后盾”,不至于受伤。

2. 后备保护的作用2.1. 保护范围后备保护的保护范围可大了去了,不仅仅是变压器本身,还包括它所连带的设备,比如开关、线路等等。

这就好比一个保镖,不仅要保护老板,还得保护周围的环境,确保万无一失。

你想啊,如果变压器出问题了,其他设备也可能受到影响,这可就麻烦了。

所以,后备保护的“手臂”得伸得够长,才能把整个电力系统都罩住。

2.2. 保护原理说到保护原理,后备保护其实是通过一些特定的装置,实时监测变压器的运行状态。

当它发现某些异常,比如过载、短路或者温度过高的时候,就会立马启动,像一位勇敢的骑士,迅速切断故障电流,避免更大的损失。

这就像你在厨房做饭,突然油烟机出故障,烟雾弥漫,这时候你得立刻关掉火源,不然整个人都得受影响。

3. 后备保护的特点3.1. 可靠性后备保护最大的特点就是“可靠”。

在电力系统中,设备故障是常有的事,但只要有了后备保护,就能让系统更加稳健。

它就像一个精明的守门员,总是时刻准备着,保证安全。

想想,如果没有后备保护,那变压器可能随时就面临风险,整个系统就像是没有了防线,随时会崩溃。

3.2. 效率当然,后备保护还得讲究“效率”。

在故障发生的瞬间,保护装置必须迅速反应,及时切断电流。

否则,故障就会像脱缰的野马,肆意破坏,损失可就大了去。

就拿足球比赛来说,守门员如果反应不够快,轻则丢球,重则满盘皆输。

后备保护就得像一个超快速的闪电,瞬间判断并行动,才能保证整个电力系统的安全稳定。

4. 总结总之,变压器后备保护的重要性不言而喻。

它就像是电力系统的“安全卫士”,为我们每天的用电生活保驾护航。

变压器相间短路的后备保护

变压器相间短路的后备保护

变压器接地短路的后备保护
中性点接地变压器的接地保护
中性点不接地时变压器接地保护
间隙零序过流保护: 零序过电压保护:作为间隙零序过流保护的辅助保
护,当变压器中性点不接地时作为接地保护。
一、原理框图:
1QF
TA1
QS
F
TA2
QF
3U 0 3I 0 3I0
T
H
t0
1
解列、灭磁
(跳1QF)
t2
一、过电流保护 动作电流:
最大负荷电流ILmax的确定: (1)对并联运行的变压器,应考虑切除一台变压 器后的负荷电流。当各台变压器的容量相同时,可 按下式计算:
式中 m—并联运行变压器的最少台数; IN—每台变压器的额定电流。
变压器相间短路后备保护
(2)对降压变压器,应考虑负荷中 电动机自起动时的最大电流,即:
关于三绕组变压器后备保护配置
对于三绕组变压器的后备保护,当变压器油箱内部故 障时,应断开各侧断路器,当油箱外部故障时,只应断开 近故障点侧的变压器断路器,使变压器的其余两侧继续运 行。
(1)对于单侧电源的三绕组变压器,应设置两套后备 保护,分别装于电源侧和主负荷侧。电源侧保护动作跳开 QF1;负荷侧保护带两级时限,以较小的时限跳开变压器 断路器QF3,以较大的时限断开变压器各侧断路器。
2、复合电压起动的过电流保护
(1)电流元件 (2)电压元件 (3)负序电压元件
2、复合电压起动的过电流保护
复合电压启动的过电流保护的优点: (1)由于负序电压继电器的整定值较小,因此对于不 对称短路,其灵敏系数较高。 (2)对于对称短路,电压元件的灵敏性可提高1.15~ 1.2倍。 (3)由于保护反应负序电压,因此对于变压器后的不 对称短路,与变压器的接线方式无关。

最新主变后备保护原理和保护范围

最新主变后备保护原理和保护范围

复合电压启动过流保护的优点:
1、由于负序电压继电器的整定值小,因此在不对称 短路时,电压元件的灵敏系数高。
2、当经过变压器后发生不对称短路时,电压元件的 工作情况与变压器所采用的接线方式无关。
变压器保护装置的工作流程如图6-1所 示,保护测量变压器的各参量未超过定 值时,保护处于正常状态。当发生故障 时,装置中各保护根据测量判定故障是 否发生在各自的保护范围内。当变压器 内部故障时,纵差保护动作跳闸;若故 障点在油箱内,气体保护能以较高的灵 敏度动作于跳闸。无论是内部故障还是 外部故障,变压器相间后备保护均应启 动。若为接地故障,零序保护作为接地 故障的后备保护也同时启动。在后备保 护动作延时内,故障若消失,后备保护 返回到正常工作状态;若故障仍存在, 则动作于跳闸,将变压器从电网中切除。 此外,当变压器出现过负荷等异常工作 状态时,相应的保护动作发出信号。
1、过电流保护
过电流保护装置的原理 接线如图5-18所示,其工 作原理与线路定时限过电 流保护相同。保护动作后, 跳开变压器两侧的断路器, 保护的起动电流按照过变 压器可能出现的最大负荷 电流来整定,即
式中 Krel —可靠系数,取1.2—1.3; Kr—返回系数,取0.8—0.95; IL·max — 变压器可能出现的最大负荷电流。 IL·max 可按以下情况考虑,并取最大值:
后备保护是指阻抗保护、低电压过流保护、复合 电压过流保护、过流保护,它们都能反应变压器的过 流状态,但它们的灵敏度不一样,阻抗保护的灵敏度 高,过流保护的灵敏度低。
三、后备保护的分类
远后备保护:当主保护或断路器拒动时,由相邻电力 设备或线路的保护来实现的后备保护。
近后备保护:当主保护拒动时,由本设备或线路的另 一套保护来实现后备的保护;当断路器拒动时,由断路器 失灵保护来实现近后备保护。

变压器后备保护整定计算方法 故障诊断

变压器后备保护整定计算方法 故障诊断

变压器后备保护整定计算方法故障诊断变压器是电力系统中常见且重要的设备之一,它在输电、配电过程中扮演着关键的角色。

为了确保变压器的安全可靠运行,需要合理设置后备保护和进行故障诊断。

本文将介绍变压器后备保护整定计算方法和故障诊断的基本原理与步骤。

一、变压器后备保护整定计算方法1. 选型和安装:根据变压器的额定电压、容量和使用环境,选择合适的保护装置。

保护装置的安装位置应考虑到便于操作和维护,并与变压器的绝缘水平相匹配。

2. 整定参数的计算:后备保护装置的整定参数包括动作时间、定时电流、短路电流等。

根据变压器的特性和保护要求,使用以下公式进行计算:动作时间 = Kt × t定时电流 = Kc × Ib短路电流 = Ks × Isc其中,Kt、Kc、Ks为系数,t为时间常数,Ib为变压器的额定电流,Isc为变压器的短路电流。

系数的选择根据不同的保护要求进行,通常可以参考国家标准和相关规范。

3. 精确计算:在实际计算中,应考虑变压器短路阻抗、变压器连续和短时额定容量、线路电流等因素,进行精确的整定计算。

还应根据变压器的负载率、温度等实际情况进行校正,确保保护装置的可靠性和合理性。

二、故障诊断1. 原理:变压器的故障诊断是通过对变压器的电气参数和振动、声音等物理量进行检测分析,判断变压器是否发生故障、故障的类型和位置等。

常见的故障类型包括短路、断线、绕组接地、绝缘老化等。

2. 步骤:(1)监测检测:通过安装传感器和在线监测装置,对变压器的电流、电压、温度、振动等进行实时监测和检测。

监测数据的获取和存储应做好相应的记录和管理工作。

(2)数据分析:对监测数据进行分析,比较实际测量值和正常工作状态下的参考值,判断是否存在异常。

可以使用数据处理软件和专业的算法进行分析和判断。

(3)故障诊断:根据分析结果,结合变压器的工作情况和设备特点,对故障类型和位置进行诊断。

可以运用故障诊断专家系统和人工智能技术进行辅助诊断。

变压器后备保护及过负荷保护

变压器后备保护及过负荷保护

变压器后备保护及过负荷保护一、变压器相间短路的后备保护变压器相间短路的后备保护,反应变压器区外故障引起的变压器过电流,并作为变压器差动保护或电流速断保护和气体保护的后备保护。

作为后备保护,其动作时限与相邻元件后备保护配合,按阶梯原则整定;其灵敏度按近后备和远后备两种情况校验。

根据变压器容量及短路电流水平,常用的变压器相间短路的后备保护有过电流保护、低电压起动的过电流保护、复合电压起动的过电流保护、负序过电流保护、阻抗保护等。

1、过电流保护变压器过电流保护与线路定时限过电流保护原理相同,装设在变压器电源侧,由电流元件和时间元件构成,保护动作后切除变压器。

电流元件的动作电流按躲过变压器可能出现的最大负荷电流整定。

2.低电压起动的过电流保护低电压起动的过电流保护由电流元件、电压元件、时间元件等构成,变压器低电压起动的过电流保护原理框图如图4-9所示。

电流元件接在变压器电源侧电流互感器TA二次侧,分别反应三相电流增大时动作;电压元件接在降压变压器低压侧母线电压互感器TV二次侧线电压,分别反应三相线电压降低时动作。

当同时有电流元件和电压元件动作时,经过与门Y起动时间电路T1,延日跳开变压器两侧断路器1QP和2QF。

图4-9低电压起动的过电流保护峰理桩图U)挂线示意图;原理框I割低电压起动的过电流保护,是在定时限过电流保护的基础上增加了低电压起动条件。

由于采用了低电压元件,可以保证最大负荷时保护不动作,电流元件动作电流整定可以按照躲过变压器额定电流,显然数值比定时限过电流保护的动作电流小,因此提高了保护的灵敏度。

低电压元件动作电压整定,按照躲过正常运行母线可能出现的最低工作电压,并在外部故障切除后电动机自起动过程中必须返回。

需要指出的是,如果一次主接线采用母线分段接线,作为变压器相间短路的后备保护,应该带有两段时限,以较短时限跳开分段断路器,缩小故障影响范围;以较长时限跳开变压器各侧断路器。

3.复合电压起动的过电流保护如果将图4-9所示保护的三个低电压元件,改为负序电压元件和单个低电压元件,可构成复合电压起动的过电流保护。

主变后备保护原理和保护范围

主变后备保护原理和保护范围
流保护。 (2)中性点可能接地或不接地运行,配置一段两时 限零序无流闭锁零序过电压保护。 (3)中性点经放电间隙接地运行,配置一段两时限 式间隙零序过电流保护。 对于双圈变压器,后备保护可以只配置一套, 装于降压变的高压侧(或升压变的低压侧);三 绕组变压器,后备保护可以配置两套:一套装于 高压侧作为变压器的后备保护,另一套装于中压 侧或低压的电源侧,作相邻后备。
1、后备保护用于在主保护故障拒动情况下,保护 变压器。一般包含: (1)高压侧复合电压启动的过电流保护; (2)低压侧复合电压启动的过电流保护; (3)防御外部接地短路的零序电流、零序电压保 护; (4)防止对称过负荷的过负荷保护; (5)和高压侧母线相联的保护:高压侧母线差动 保护、断路器失灵保护; (6)和低压侧母线相联的相关保护:低压侧母线 差动保护等。
六、后备保护的保护范围:
五、接地短路的后备保护
电力系统中,接地故障常常是故障的主要形式,因此,
大电流接地系统中的变压器,一般要求在变压器上装设接
地(零序)保护。作为变压器本身主保护的后备保护和相
邻元件接地短路的后备保护。
1、变电所单台变压器的零序电流保护 中性点直接接地运行的变压器毫无例外都采用 零序过电流保护作为变压器接地后备保护。零序 过电流保护通常采用两段式,零序I段与相邻元件 零序电流保护I段相配合;零序电流保护II段保护 与相邻元件零序电流保护后备段相配合。与三绕 组变压器相间后备保护类似,零序电流保护在配 置上要考虑缩小故障影响范围的问题。根据需要, 每段零序电流保护可设两个时限,并以较短的时 限动作于缩小故障影响范围,以较长的时限断开 变压器各侧断路器。
2、多台变压器并联运行时的接地后备保护
对于多台变压器并联运行的变电所,通常采用一部分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器后备保护原理与应用
变压器后备保护概述
作用:电力变压器应装设外部接地、相间短路 引起的过电流保护及中性点过电压保护装置, 以作为相邻元件及变压器内部故障的后备保 护。 类型:过电流保护、低压闭锁过流保护、复压 闭锁方向过流保护、零序过流保护、间隙过 流保护、阻抗保护、过激励保护 变压器保护实现双重化后应简化后备保护 “强化主保护,简化后备保护”
相间短路后备保护方向设置
(1)三侧有电源的三绕组升压变压器,相间故障后 备保护为了满足选择性要求,在高压侧或中压侧 要加功率方向元件,其方向可指向该侧母线。方 向元件的设置,有利于加速跳开小电源侧的断路 器,避免小系统影响大系统。 . (2)高压及中压侧有电源或三侧均有电源的三绕组 降压变压器和联络变压器,相间故障后备保护为 了满足选择性要求,在高压或中压侧要加功率方 向元件,其方向宜指向变压器。 (3)反应相间故障的功率方向继电器,通常由两只 功率方向继电器构成,接入功率方向继电器的电 流和电压应按90。接线的要求。为了消除三相短 路时功率方向继电器的死区,功率方向继电器的 电压回路可由另一侧电压互感器供电。
U ca< U l
&
t2
出口
Ia > I g
Ib > Ig
+
0
t0
Ic > Ig
相间短路后备保护
复合电压起动(闭锁)的过电流保护
复合电压起动的过电流保护宜用于1Mw以上的 发电机和升压变压器、系统联络变压器和过电流 保护不能满足灵敏度要求的降压变压器。 作为变压器短路故障的后备保护应主要作为相邻 元件及变压器内部故障的后备保护。常常因灵敏 度不足而增加复合电压闭锁回路。也就是说,在 不对称性故障时,出现负序电压以及在对称性故 障保护安装处三相电压低于某一值时,才可开放 过电流保护,这样使复合电压闭锁过流的电流定 值大大下降,也就提高了灵敏度。
K 低压元件灵敏度 : sen U K . max > 1.2 U op K re
3)负序电压元件 U 2op (0.06 ~ 0.12)U N 负序电压元件灵敏度
K sen U k 2. min U 2 op
> 1.2
相间短路后备保护
负序电流和单相式低电压起动的过电流保护
此保护由负序电流继电器和单相式低电压 起动的过电流保护构成。由负序电流继电器 反应两相短路故障,由单相式低电压起动的 过电流保护反应三相短路故障, 负序电流保护灵敏度较高,且在接线的变 压器另一侧发生不对称短路故障时,灵敏度 不受影响,接线也较简单。
后备低阻杭保护
后备低阻杭保护对发电机定子绕组和变压器高、
低压绕组内部短路的后备保护作用问题 发电机三相定子绕组内部发生相间短路或匝间短 路时,纵然故障点电流很大,机端三相电流有可 能并不大,机端二相电压也可能并不显著降低, 因此装在发电机机端的阻抗保护反应就很不灵敏。 教材p72 所以阻抗保护不能胜任变压器或发电机绕组内部 短路的后备保护作用,只能作为发电机或变压器 引线、母线和相邻线路的相间短路后备保护。
变压器和容量较大的降压变压器 1.动作电流 按变压器额定电流In整定,不必考虑电动 机自起动和并列运行变压器跳闸引起的最 大负荷电流。 2.动作电压整定 (1)按正常运行时可能出现的最低电压整定 (2)按电动机自起动时的电压整定
低压过流逻辑框图
U ab < Ul
U bc< Ul
+
t1
信号
出口 信号
相间短路后备保护
过电流保护
变压器各侧的过电流保护过电流元件按相设置,均 按躲过变压器可能出现的最大负荷电流整定,但 不作为短路保护的一级参与选择性配合,其动作 时间应大于所有出线保护最长时间。最大负荷电 流要考虑事故时,可能出现的过负荷,如并列运 行的变压器切除一台后,另一台可能出现的过负 荷,对降压变压器还要考虑电动机自起动时的最 大电流。上述保护动作应跳变压器各侧断路器。
过电流保护
动作电流:
I op
K rel I L. max K re
m IN m 1
最大负荷电流确定
并列变压器
I L. max
降压变压器
I L. max K ss I L. max
灵敏度
K sen
I k . min I op
接线图
信号
相间短路后备保护
低电压启动的过电流保护:主要用于升压
相间故障后备保护故障时间整定
单侧电源的双绕组降压变压器 单侧电源的三绕组降压变压器,相间故障后备保

护一般在低压侧和电源侧。 高压及中压侧均有电源的三绕组降压变压器 双绕组升压变压器,相间故陈后备保护装在变压 器的低压侧 中压侧无电源的三绕组升压变压器,相间故障后 备保护装于低压侧和中压侧 三侧均有电源的三绕组升压变压器

变压器接地后备保护
变压器接地后备保护
变压器接地后备保护
负序方向过流保护
负序功率方向判据与负序过流判据共同构
成负序方向过流保护。保护输入变压器引 出端TA二次三相电流及同侧母线TV二次三 相电压。动作方程为

P2 > 0 I 2> I 2 g
„„„„„„„„„„„„(6-31-1)
相间短路后备保护
低阻抗保护
当电流、电压保护不能满足灵敏度要求或根 据网络保护间配合的要求,发电机和变压器 的相间故障后备保护可采用阻抗保护。阻抗 保护通常用于330一500kV大型升压及降压 变压器,作为变压器引线、母线、相邻线路 相间故障后备保护。
复合电压起动的过电流保护
至电压断线信号 信号 跳QF1 跳QF2
接至电压互感器
原理接线
复压过流逻辑框图
Uca < U l
+
t1
信号
U 2> U 2 g
出口 信号
&
t2
出口
I a > Ig
Ib > Ig
I0
定值确定: 1)电流元件
I op K rel IN K re
2)低压元件 U op 0.7U N
相关文档
最新文档